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Abstract. A high-order discontinuous Galerkin Finite Element solver is developed for solving 
electro-fluid-dynamics problems. The solver is employed to perform numerical simulations of 
deformation of a droplet suspended in another immiscible liquid by applying steady and 
oscillatory electric fields. The level set method is adopted to represent the common interface 
of the droplet and surrounding medium. Electrostatics equation with a jump in the dielectric 
property at the interface is solved to find the electric field distribution. The incompressible 
Navier-Stokes equations including the surface tension force are solved to find the flow field. 
The Electrostatics and Navier-Stokes equations are coupled through changes in the geometry 
because of the deformation of the droplet and the dielectrophoretic body force, which is 
present at the interface. 

1 INTRODUCTION 
Numerical simulations of deformation of a droplet in steady and oscillatory electric fields 

are performed in the present study. The droplet, which is shown in figure 1, is suspended in 
another immiscible fluid with the same density and viscosity but a different dielectric property 
(permittivity). The droplet and surrounding fluid are considered as perfect dielectrics. By 
applying an electric field, the fluids are polarized and because of the jump in the dielectric 
property, the dielectrophoretic force exerts at the interface of the droplet and surrounding 
fluid. The droplet continues to deform until a force balance between the electric force, 
pressure and surface tension force is achieved and the droplet becomes a spheroid, see e.g. 
Torza et al. [1]. The deformation of the droplet is defined in figure 1.  

A two-way coupling exists between the fluid and electric sub-problems. On one-hand, the 
electric force exerts at the interface of the droplet and surrounding fluid and on the other hand, 
the deformation of the droplet changes the geometry for the electric field computation. 
Therefore, an electromechanical approach is required, which includes solving the governing 
equations of both electric and fluid fields, computing the electric force and capturing the 
movement of the interface of the droplet and surrounding fluid. Supeene et al. [2] have 
considered a moving mesh approach to find the movement of the interface, which is suitable 
for small deformations. Hua et al. [3] have used a front tracking/finite volume method. In the 
present study, a high-order discontinuous Galerkin Finite Element method (DG)  is employed 
and a one-fluid approach is followed, which enables us to solve one set of the governing 
equations for the droplet and surrounding fluid. 
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The surface tension force is modeled using the continuum surface force model (CSF), 
Brackbill et al. [7]. To decrease the intrinsic spurious velocities, the surface tension force is 
computed by using high-order polynomials for computation of the normal vector,   , and 
curvature, κ. The normal vector is computed as the gradient of a signed-distance level set 
function,   . The curvature is the divergence of the normal vector by definition. A 
reinitialization equation is solved in each time step to find      from the level set function   , 
which provides the position of the interface by solving the level set advection equation, 
Mousavi [8]. 
 

 
Figure 2: The solution algorithm for the coupled Electro-Fluid-Dynamics problem. 

To find the electric potential, the Laplace equation is discretized using an interior penalty 
method (IP-MCP), which Emamy [4] has provided for the case of a regularized jump in the 
coefficient (dielectric property). After solving for the electric potential, the electric field and 
electric force are computed. The electric force is added as a body force to the Navier-Stokes 
equations, (1). 

3 NUMERICAL RESULTS 
To perform the numerical simulations, a Reynolds numbers of 1 is considered because the 

physical problem, which we consider, is a creeping flow. The numerical settings and 
boundary conditions from Karcher [9] are shown in figure 3. In figure 4, a test case with a 
negligible surface tension force is considered. In absence of the surface tension force, the 
droplet continues to deform in response to the electric force and there is no equilibrium state. 
The droplet preserves the shape of an ellipse while deforming. A convergence study for this 
test case is performed by grid refinement, which is shown in figure 5. Using polynomial 
degrees of 5 for the flow field variables, a convergence rate of 3.25 is achieved for the 
coupled problem. A reduced convergence rate is expected because of the regularization of the 
jump in the dielectric property at the interface. 

Including the surface tension force, in figure 6, effect of the size of the computational 
domain and boundary conditions on the deformation of the droplet in the equilibrium state, 
d∞, is studied. Dirichlet velocity (wall) and Dirichlet pressure boundary conditions are 
compared. For larger domains, influence of the boundary conditions becomes smaller. For 
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