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Abstract. Stress transport in an unsaturated granular material is analytically derived.
As such, an effective stress tensor related to the mechanical state governed by the inter-
ganular forces within the skeleton is identified together with a capillary stress tensor that
accounts for the interactions due to the liquid and gaseous phases. Using a Discrete Ele-
ment Method for modelling an unsaturated granular material, this capillary stress tensor
is computed along different loading paths. Knowing the applied total stress, the effective
stress tensor is then readily deduced and it is shown that it describes adequately the
strength of the unsaturated granular material along various loading paths for any degree
of saturation.

1 INTRODUCTION

Geomaterials encountered in Civil Engineering are multiphasic systems which typically
encompass solid, liquid (wetting) and gas (non-wetting) phases. Considering granular
geomaterials, the solid phase is discontinuous, consisting of a collection of distinct soil
particles. Voids exist between the particles, and we denote the union of the solid phase
and these voids as the skeleton. Most of the classical analyses of geomaterials pertain to
limiting conditions represented by the void space containing only gas (dry case) or only
liquid (saturated case). However, conditions encountered in geotechnical practice involve
unsaturated soils, for which these voids include both liquid and gas phases. The pres-
ence of the three phases and their mutual interactions enrich their mechanical behaviour,
leading for example, to higher strengths depending on the water content. As such, we
tackle here this unsaturated case. Various filling configurations of the liquid phase within
the void space exist depending on the degree of saturation Sr, i.e. the ratio between the
water volume, and the volume of the voids. Here, a pendular regime is invoked where the
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liquid phase consists of distinct menisci between soil particles (Figure 1), corresponding
to low values of degree of saturation (Sr < 20%).

Figure 1: Unsaturated granular material in the pendular regime: water phase forms distinct menisci
between contacting and some distant soil particles (idealized as spheres)

We aim here to analyze the mechanical state of unsaturated granular materials, and
to investigate how it relates to skeleton behaviour. To this end, analytical derivations of
stress transport in the unsaturated material are introduced in Section 2, identifying an
effective stress related to the skeleton. Then, these newly derived analytical expressions
are used in a DEM simulation of an unsaturated granular soil [1] to verify the role of
effective stress in governing material strength.

2 FORCE TRANSPORT IN UNSATURATED MEDIA

2.1 Analytical derivations

In [2], the total, or macroscopic, stress for the volume V of unsaturated material
depicted in Figure 1 has been computed as an average of the stresses existing in the
different phases. The stresses inside the liquid or gaseous phases are readily computed as
σ = uα δ ∀ �x ∈ Vα, with Vα, α = l, g, the volume of the phase α, uα its uniform pressure,
and δ the identity tensor. Note that geomechanics sign convention is used troughout this
paper, with compressive stresses and strains being positive.

The stress within the solid phase is computed from local stresses inside each particle,
assuming they are in static equilibrium without body forces: div(σ) = �0 ∀ �x ∈ V k

s , with
V k
s the volume of the solid particle k. Under this assumption, the volume integrals of σ

are classically computed from the external tractions existing on the boundaries on each
particle. Taking into account the solid contact forces, as well as the loadings of the water
pressure along all wetted surfaces Sk

l , of the air pressure along all dry surfaces Sk
g , and

of the surface tension along all menisci contours Γk
m (i.e. the intersection of solid, liquid,

and gaseous phases along the particle k), the total stress is finally obtained as:
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σ =
1

V

∑

cont. s−s

�f ⊗�l + ug δ − (ug − ul)χ−B (1)

χ =
Vl

V
δ +

1

V

∑

k

∫

Sk
l

Rk�n⊗ �n dS

B =
1

V

∑

k

∫

Γk
m
�γ ⊗Rk�n dl

In equation (1), the vectors �f and �l are defined for each contact between two solid

grains “1” and “2”: �f is the contact force, as acting on the grain 2, and �l is the branch
vector joining the two particles centers, from 1 to 2. The Rk are the radii of the solid
particles considered as spherical whereas �γ dl is the incremental surface tension acting on
one particle k, at one point of a meniscus contour along this particle.

This analytical model is currently being extended to take into account the interfaces
between the different phases, these interfaces having their own energies and stresses [3, 4].

2.2 Discussion

In equation (1), the first term in the expression of σ corresponds to the Love-Weber
formula [5, 6]. It is related to the skeleton behaviour, as it will be shown in Section 3.
Thus, it is denoted as effective stress.

In addition to this effective stress, two other stress-like tensors arise from the deriva-
tions, neglecting the air pressure ug δ. They correspond to the mechanical interactions
due to the presence of both liquid and gaseous phases. For this reason, their sum is
denoted as capillary stress.

One term of the capillary stress is proportionnal to the matric suction ug − ul, with
a symmetric tensor χ depending on the distribution of the water phase around the solid
particles. This tensor is isotropic, i.e. spherical, if and only the above-mentioned distri-
bution is isotropic. The water phase distribution being to a certain extent controlled by
the distribution of grain contacts, a deviatoric nature for χ may arise during a deviatoric
loading, due to induced anisotropy [7].

A second term, denoted B, describes the mechanical action on the solid grains of
the surface tension existing at the liquid-gas interface. In case of a monosized granular
material, with an isotropic distribution of liquid phase, this tensor vanishes [2]. In other
cases, this tensor is a non-null deviatoric one since, assuming a null contact angle:

tr(B) =
1

V

∑

k

∫

Γk
m
Rk�n. �γlg dΓ = 0 (2)

According to equation (1), the sum of these two terms, (ug − ul)χ + B, is equal to

the difference between the effective stress 1/V
∑ �f ⊗�l and the total one σ. Conversely,
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for a known distribution of the water phase in an unsaturated granular material under a
total stress σ, equation (1) can be applied to determine the effective stress related to the
granular skeleton: σ + (ug − ul)χ + B. Note that for the saturated case, equation (1)
reduces to Terzaghi’s equation.

3 COMPARISON WITH DISCRETE SIMULATIONS

3.1 The DEM model

Simulations of an unsaturated granular material are performed using the code Yade
[8], that is based on the Discrete Element Method [9]: the model describes the mechanical
state of a collection of discrete elements that correspond to the soil particles. In addition
to the contact forces between touching elements, the model includes capillary forces acting
on elements. Introducing these capillary forces allows us to simulate the liquid bridges
(menisci) of the pendular regime [1].

The contact between particles is governed by frictional elastic-plastic contact laws. Re-
pulsive normal forces act when spheres get closer and they are linearly computed from the
relative normal displacement. Contact forces include tangential forces too, computed lin-
early from the relative tangential displacement up to a plastic threshold obeying Coulomb
friction law. This part of the model depends on three micro-parameters: two local stiff-
nesses, and one microscopic (inter-particle) friction angle. Values used in [1] are retained.

Suction controlled simulations are performed based on an algorithm solving the Laplace
equation that describes pendular menisci [1]. From the surface tension, the suction ug−ul,
and features of the numerical packing (radii and distance between elements), a distribu-
tion of menisci results directly from the algorithm. Menisci characteristic features are then
derived, such as filling angles, volumes, and associated forces acting on grains. Assuming
a wetting loading path (increasing Sr), menisci are created between touching particles,
and exist between these particles as long as a solution is found for Laplace equation. In
particular, menisci still exist when the particles do not touch anymore, leading to distant
attractive forces.

Different loading paths may be simulated, using periodic and non-periodic boundary
conditions. Periodic and non-periodic triaxial paths (σI = σyy > σII = σxx = σIII =
σzz = cst) are considered, as well as periodic simple shear tests (∂vx/∂y = cst, σyy =
σzz = cst), see Figure 2. Periodic simulations rely on the homogeneous strain of an unit
cell including the sample (see [10] for details). Non-periodic simulations involve rigid
frictionless boundaries whose movements impose strain onto the numerical sample.

Periodic and non-periodic simulations were performed on two similar numerical sam-
ples. The two samples, one periodic and another non-periodic, include 20,000 spher-
ical particles obeying an uniform size distribution with Dmax/Dmin = 3 and D50 =
45.3±0.5µm. The porosity of the two samples under 1 kPa isotropic pressure is 0.36±0.01,
leading to a dilatant behaviour for confining pressures in the range [1; 20 kPa].
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Figure 2: Triaxial (axisymmetric) compression: left, and simple shear: right

3.2 Discrete results for the dry case

The failure of the granular material is first investigated in the dry case, without intro-
ducing any capillary forces in the model. Limit stress states for the two samples along
various loading paths are depicted in Figure 3 according to the first and second invariants
of σ: the mean stress p = (σI+σII+σIII)/3 and the deviatoric stress q =

√
3/2∗||σ−p 1||

(q = σI − σIII for the triaxial paths). Since the plastic limit criterion of granular ma-
terials also depends on the third invariant, deviatoric stresses for simple shear paths are
corrected according to the current Lode angle, θ, values, assuming a Lade criterion [11].
As such, direct comparison is possible between the various loading paths, despite differ-
ent θ values (θ = 0◦ for triaxial compression, while, here, θ ∈ [22◦; 30◦] for simple shear).
As is evidenced in Figure 3, all stress limit states obey a common Mohr-Coulomb (MC)
criterion, with a macroscopic friction angle φ = 29◦.
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Figure 3: Stress limit states according to the mean and deviatoric stresses, p and q. Deviatoric stresses
for simple shear tests are corrected to be directly compared to values of triaxial tests, despite the difference
in Lode angle θ

3.3 Discrete results for the unsaturated case

The model is then applied to the unsaturated conditions. Six non-periodic triaxial
loadings are simulated for different confining pressures, in {5;10} kPa, and suction values,
in {10;50;100;300} kPa, see Table 1. Associated degrees of saturation values are low
(below 10%) ensuring a pendular regime.
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Table 1: Initial degrees of saturation (%) for the simulated unsaturated triaxial loadings

ug − ul (kPa)
10 50 100 300

σxx (kPa)
5 - - 0.32 0.045
10 8.7 1.0 0.32 0.046

Classically, limit stress states in unsaturated conditions correspond to higher deviatoric
stresses, not obeying anymore to the Mohr-Coulomb determined from the dry case (Figure
4).
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Figure 4: Stress paths for two unsaturated triaxial loadings with 100 kPa suction, and different lateral
pressures

Indeed, due to the presence of liquid and gaseous phases, the effective stresses related
to the solid phase are now different from the total stresses (Figure 5). All stress tensors
being axisymmetric around �y axis (see Figure 2) during triaxial loadings, it is sufficient
to consider the mean (one third of the trace) and deviatoric (yy − xx) components of
each tensor. Both water and gaseous phases induce mainly a change in mean stresses.
The deviatoric component of the capillary stress tensor is here small, so that there is not
much of a difference between deviatoric effective and total stresses. This is related to the
initial isotropy of the DEM packing (see [2] for a study of inherent anisotropic packings),
which is consistent with initial null values of the deviatoric stress. However, because of
the induced anisotropy at the solid contact scale, a deviatoric feature for the capillary
stress tensor is induced by the loading (see also the Figures 7 and 8) and this deviatoric
feature increases with suction (Figure 6).

Among the two terms forming the capillary stress tensor, (ug − ul)χ is rather predom-
inant with respect to B (compare Figures 7 and 8). However, the relative magnitudes of
these two terms depend on the suction. Indeed, the deviatoric component of (ug − ul)χ
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Figure 5: Mean (left) and deviatoric (right) components of the different stress tensors during two
unsaturated triaxial loadings, under 10 kPa lateral pressure, and two different suctions. Capillary stress
tensor is (ug − ul)χ +B, and effective stress tensor is σ − (ug − ul)χ −B
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Figure 6: Deviatoric feature of the capillary stress tensor (ug − ul)χ+B for triaxial loadings under 10
kPa lateral pressure and different suctions

increases considerably from initial small values with suction (Figure 7) whereas on the
other hand the deviatoric component of B (i.e. its norm) decreases significantly from
large values with suction (Figure 8). This is because, for increasing suction, both degree
of saturation and filling angles decrease in the granular material, leading to lower menisci
contour, and lower values for the components of B. In the end, for high suction values,
(ug−ul)χ is the main contributor to the capillary deviatoric stresses. On the other hand,
for low suctions, deviatoric capillary stresses arise mainly thanks to B.

Periodic unsaturated simple shear simulations, with σxx = σyy = 10 kPa, are also
performed for different suction values. Corresponding degrees of saturation (for the initial
states) are detailed in Table 2. The same trends concerning the relative magnitudes of
these two terms are observed during simple shear than triaxial conditions (Figures 9 and
10).
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Figure 7: Mean (left) and deviatoric (right) components of (ug−ul)χ for triaxial loadings under 10 kPa
lateral pressure and different suctions

0 5 10 15 20
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

ε1 (%)

q B
 (k

P
a)

10 kPa
50 kPa
100 kPa
300 kPa

Figure 8: Deviatoric component of B for triaxial loadings under 10 kPa lateral pressure and different
suctions (remind that tr(B) = 0)

Table 2: Initial saturation ratios (%) for the unsaturated simple shears

ug − ul (kPa)
10 50 100 300
10.1 1.2 0.37 0.054

3.4 A comprehensive plastic limit criterion for dry and unsaturated cases

For the various loading paths simulated in unsaturated conditions, effective stresses σ′

related to the skeleton are deduced from the total and capillary stresses. Note that the
DEM model offers a direct computation of effective stresses [1], which is not done here.
As in the previous Section 3.2, limit stress states are determined and plotted in the (p′, q′)
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Figure 9: Mean (left) and deviatoric (right) components of (ug − ul)χ for simple shear loadings with
different suctions
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Figure 10: Deviatoric component of B for simple shear loadings with different suctions

plane (Figure 11). The Mohr-Coulomb criterion determined from the dry case in Section
3.2 is obeyed with an acceptable dispersion. This validates the relevancy of the effective
stress derived in equation (1) to express the strength of a granular material, whatever its
saturation ratio.

4 Conclusion

Analytical derivations of stress transport in an unsaturated granular media identified
an effective stress related to the mechanical state governed by intergranular forces within
skeleton, and a capillary stress arising from the mechanical interactions due to the liquid
and gaseous phases. This capillary stress depends on the packing and on the liquid phase
distribution inside the material. This stress is non-spherical for anisotropic liquid distri-
bution, as it has been evidenced in case of loading-induced anisotropy. This deviatoric
feature of the capillary stress increases with matric suction.
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Figure 11: Limit stress states for unsaturated cases along different loading paths, compared with the
dry Mohr-Coulomb criterion deduced from the dry case

In fact, two tensorial terms accounting for the capillary actions can be distinguished,
with one deviatoric in case of a null contact angle. Relative magnitudes of these two terms
depend on the suction.

Determining such capillary stress allows us to identify the effective stress tensor. It is
shown that this effective stress tensor is an adequate variable to express the strength of
an unsaturated granular material, along various loading paths irrespective of the degree
of saturation.
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