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Abstract

Malaria has been an issue worldwide for a long time, having a huge social, economic, and health burden.
This disease occurs mostly in tropical and subtropical areas of the world, in countries where the levels of
poverty are higher. In this work we will focus our study of malaria in Kenya. Because it has been an issue
in this region for a long time. Due to insecticide and cool temperatures the disease was eradicated from
Kenya’s highlands in the 1960’s. However, the disease has returned in recent years, as some researchers
believe ([1],[3], [12]), that it is produced by subtle changes in the region’s climate. We have strongly based
our work in [1]. But, while they focus their study on the influence of climate change in the spread of
malaria, we give a more qualitative approach of the model and present some feasible applications to other
geographical regions. Moreover we introduce different rates to analyse the impact of a pandemic, like the
basic reproduction rate R0.

Keywords

Malaria, Epidemiology, Dynamical systems, SIR models, Basic reproduction rate.

1



1. Introduction

Malaria has been an issue worldwide for a long time, having a huge social, economic, and health burden.
Malaria occurs mostly in tropical and subtropical areas of the world, in countries where the levels of poverty
are higher. In the majority of the countries were malaria is endemic, it is prime factor of illness and death.
During 2018, it was estimated that 405.000 people died from the disease, the majority were young children
in the sub-Saharian Africa. However, the Worlds Health Organization (WHO) says that the mortality of
malaria has decrease around a 20% in the last decade, probably due to control measures and the develop-
ment of clinical treatment against malaria.

Africa is one of the most affected continents due to the following factors: the high presence of the
mosquito vector responsible of the disease transmission to humans, the predominance of the parasite
species Plasmodium falciparum, which is the specie responsible of severe malaria and death, the local
weather conditions and the scarce resources combined with a socio-economic instability which decreases
the effectiveness of control effort.

Due to the high mortality and the presence of the disease all around the world Malaria have been
studied by numerous epidemiologists for the last decades. First Charles Louis Alphonse Laveran, a French
army doctor, observed the parasite inside the red blood cells of an infected people and after that Sir
Ronald Ross proved the complete life-cycle of the malaria parasite in the mosquitoes. Although the disease
has been study for many years it is still a major public health problem. Because there is no effective vac-
cine and, since the parasite evolved drug resistance, many of the anti-malarial drugs are losing effectiveness.

In the past 100 years mathematical models have been used to provide an explicit framework for under-
standing malaria transmission dynamics in human population. This work started with Ronald Ross ([4]),
who presented a simple model to prove that malaria could be eradicated simply by reducing the number of
mosquitoes. And subsequently George Macdonald in [16] presented a highly improved model, focused on
the mosquito eradication.

In this work we will focus our study of malaria in Kenya. Malaria has been an issue in Kenya for a
long time. Due to insecticide and cool temperatures the disease was eradicated from Kenya’s highlands in
the 1960’s. However, the disease has returned in recent years, as some researchers believe ([1],[3], [12])
that it is produced by subtle changes in the region’s climate. We have strongly based our work in [1].
But, while they focus their study on the influence of climate change in the spread of malaria, we give a
more qualitative approach of the model and present some feasible applications to other geographical regions.

In the first section we give an explanation of the model and a detail description of the important pa-
rameters, giving a clear view of the importance of temperatures and rainfall in the model. We also prove
that the solutions of the ODE governing the carrying capacity of the mosquito tend to a periodic solution,
due to the (approximate) periodicity of the rainfall. Along the second section we show the results of the
numerical simulations obtained by integrating the model with a Runge-Kutta method. For that we use the
climate data given in [1]. In addition we expose some interesting insights that we have observed from the
results of the integration. We also explain the numerical tools used for the simulations and the difficulties
that has been presented along the process.
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In the third section we introduce the basic reproduction rate R0, and the algorithm developed by Diek-
mann and Heesterbeek [8] to compute it. In addition we present an interesting example to give a better
understanding of the algorithm. We have applied the algorithm to compute the basic reproduction rate
for COVID-19, in [14] (they compute R0 for a simple model of COVID-19). Since we did not agree with
this computation we modified it and presented as an example of the Diekmann and Heesterbeek algorithm.
Moreover we give an sketch explanation of the method used in [1] to compute R0. During the third section
we show in detail our computation of the basic reproduction rate for the human-mosquito model. We
present commonly used parameters which estimate the mortality risk of a disease, like the case mortality
rate or the crude mortality rate.
In the last section we apply the model to different location, a village located in the Spanish Mediter-
ranean coast, Agost, to introduce an interesting further study: the probability of a pandemic outbreak in
Mediterranean region. To conclude we explain the knowledge acquired during this master’s thesis.

2. Explanation of the Model

2.1 Human component

In this work, we study a malaria population model presented in [1] which couples the dynamics of the
disease in the mosquito vector and the human host. These two components are modeled with a variation
of a SIR model ([21], [6]). The SIR models are used to model epidemics. The particularity of this type
of models is that they divide the host population into three different classes: infected, susceptible and
recovered, which are called compartments.

We present a variation of the SIR with higher complexity. Since both of then, the human and the
mosquito are host for the infection, they are divided on its turn in different compartments depending on
the infection state of the individuals.
To complete the model, the human and the mosquito equations are coupled through two variables: one
which determines the human infections produced by the infectious mosquitoes Λ and y which is the fraction
of infected humans that a mosquito can bite and therefore get infected and become infectious. These two
ways of coupling the system is due to the fact that the human gets infected by the mosquito and vice
versa. Later on we will give a more detailed explanation of these two variables.
In our model the human population is split into different classes, in fig. 1 there is a diagram of the human-
mosquito model to give a clear view of the flow between the different compartments.

For the human component there are two types of infected individuals (E), the ones which develop
symptoms, given by a probability ξ and therefore receive some treatment (C); and the individuals which
are infected but have not present symptoms. Even though, they can transmit the parasite to the vector
(I).
Another group is formed by the individuals who are recovered from the disease (R), whether they have
cleared parasitaemia or have too low levels of it to infect the vector. Another type of individuals is the
one which are susceptible to be infected (S), which is composed by the births and migrations (B), and
the individuals who have recovered and loses immunity at rate σ. The sum of the total population N is
assumed to be constant constant and so births and migrations balance with the loss due to mortality, given
by the population turnover δH , which is also taken as constant.
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Malaria and warmer temperatures

The system of differential equation which describes the dynamics of the human population is given by:

dS

dt
= B − βS + σR− δHS + ρC

dE

dt
= βS − δHE − γE

dI

dt
= (1− ξ)γE − ηβI + νC − rI − ψI − δHI

dR

dt
= −σR + rI − δHR

dC

dt
= ξγE + ηβI − νC − ρC − αC − δHC

(1)

The recovery of individuals depends on the group of the population, for individuals belonging to the
asymptomatic infected class (I), they recover at rate r while for individuals in class C they recover at rate
ρ and become part of the susceptible class (S). The loss of population is due to migrations and mortality.
The mortality which is related to the malaria is measured through ψ and α for classes I and C respectively.
The susceptible individuals S are in the exposed phase, the period when they can get the malaria, in average
this time span is given by 1/γ.

One of the most complex process is the host’s immune response. In [1] they consider two main factors,

Figure 1: Diagram of the human-mosquito model.
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the rate of loss of immunity σ and the recovery rate r. Which are given by:

σ(Λ) =
Λ

exp(Λ/σ0)− 1
(2)

r(Λ) =
Λ

exp(Λ/r0)− 1
(3)

where Λ = aW/N , W is the total number of infectious mosquitoes and N = S + E + I + R + C is the
total human population. We denote as σ0 and r0 the respective basal rates when Λ tends to zero,i.e the
total number of infectious mosquitoes tends to zero (there is no disease transmission).
As figures 2 and 3 show the recovery rate and the loss of immunity versus the total number of infectious
mosquitoes, respectively. Note that both functions are decreasing functions with respect to the number of
infectious bites per human. When Λ the mosquito pressure in human is high the disease clearance becomes
smaller. If Λ is measured in years it is called the entomological inoculation rate (EIR), which is a measured
of exposure of infectious mosquitoes.

Figure 2: Recovery rate, r, for a biting rate a = 0.952 and r0 = 0.04.

The total population N is assumed to be constant, since the replenishment of new susceptible individ-
uals through immigration or births (B) is balanced with the loss of individuals due to mortality. As we can
see in the equations:

Ṅ = Ṡ + Ė + İ + Ṙ + Ċ = B − δN − ψI − αC

In [1] it is assumed that B = δHN and ψ = α = 0 then Ṅ = 0. Therefore the population remains
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Malaria and warmer temperatures

Figure 3: Loss of immunity, σ, for a biting rate a = 0.952 and σ0 = 0.0805.

constant. Thus the system (1) becomes:

dS

dt
= δH(E + I + C +R)− βS + σR + ρC

dE

dt
= βS − δE − γE

dI

dt
= (1− ξ)γE − ηβI + νC − rI − δHI

dR

dt
= −σR + rI − δHR

dC

dt
= ξγE + ηβI − νC − ρC − δHC

(4)

The system (4) given bellow is a non linear system of ODE’s. Due to β the force of infection or transmission
rate, the recovery rate, r, and the loss of immunity rate, σ the dynamics between the human and mosquito
component are coupled.

The Force of infection β: The force of infection β is the per capita probability at which susceptible
individuals get infected through bites of infectious mosquitoes. This rate depends on the immune response
of the individual to the disease, higher is the immune response lower is the probability of developing malaria,
this is measured by b. Also, it depends on the frequency of mosquito bites per human a and in the number
of infectious mosquitoes W . Therefore the local force of infection is as follows:

β = b
W

N
a, (5)

where remind that N is the total number of human population. Since the process of the parasite to make
a mosquito infectious, after it have got the disease, takes some time, the mosquitoes which are infectious
at time t come from a mosquito which have bitten infected humans previously.
There are external force of infection measured by βe. This force measures the imported malaria cases, which
are related to the individuals who get the disease when travelling to an endemic country. The expression
for β given in (5) describes the local force of infection, which is produced by infectious mosquitoes in the
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region. Thus the force of infection will be measured as a sum of these two components, the local force of
infection and the external one. Then we have that:

β = b
W

N
a+ βe. (6)

Note that this external force is assumed constant, in order to simplify the model.

2.2 Mosquito component

Now we present the mosquito component. It is divided in two main categories: the larvae (L) and the
adult mosquitoes (M). The population of larvae L varies as follows:

dL

dt
= fM

(
K − L
K

)
− δLL− dLL (7)

where K is the carrying capacity, which is the maximum number of larvae that the ecosystem can sustain,
f is a per-capita fecundity rate, dL is the development rate and δL the mortality rate. It has been studied
that mosquito females lay eggs only between meals, so the fecundity rate is related to the biting rate as
follows: f = Fa.
The adult mosquito population M is composed by three different types of individuals, the non-infected
mosquitoes (X), infected and non- infectious (V) and the infectious mosquitoes (W), then M = X+V +W .
We denote by y as the fraction of infectious human, then y = (C + I)/N .
The variation of each class is modelled as follows:

dX

dt
= −cayX − δMX + dLL

dV

dt
= cayX − γPV − δMV

dW

dt
= γPV − δMW

(8)

where dL is the mortality rate of adult mosquitoes and γP is the per capita rate at which new infectious
mosquitoes arises. This is related to the time of sporogony.

Some of the parameters of the model depend on temperature and rainfall, which are a key factor in
the development of mosquito from larvae to adult mosquito. Indeed in [1] it has been shown an influence
between the rise in temperature due to climate change and the propagation of malaria. In this work we
will do a qualitative analysis rather than a quantitative analysis as it has been done in [1].
The temperature and rainfall data is taken daily and monthly respectively. We use a cubic spline method
in order to interpolate the time function for rainfall and temperature. This method is explained in detail in
appendix A.
The following parameters are functions which depend on empirical data:

1. Development rate of the mosquito vector, dL, is the amount of time spend in the larvae stage
is given by a regression:

dL =

{
0.00554T − 0.06737 if T > 12.16◦

0 otherwise
(9)

where T is the temperature in Celsius degrees.
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Malaria and warmer temperatures

Figure 4: Development rate of the mosquito vector, dL

2. Development rate of the Plasmodium parasite, γP , is the period of time from when the mosquito
bites a human with malaria until it becomes infectious, i.e when it can transmit the parasite to humans
by the saliva. It is given by a regression:

γP =

{
0.009T − 0.1441 if T > 16.01◦

0 otherwise
(10)

Figure 5: Development rate of the Plasmodium parasite, γP
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3. Death rate of adult mosquitoes, δM :
The death rate of adult mosquitoes is given by :

δM =
1

λ
, (11)

where λ the average life time of adult mosquito which depends on temperature as follows:

λ = −4.4 + 1.31T − 0.03T 2. (12)

Figure 6 shows the average life time for adult mosquito, when T ≈ 21.83 (approximately 10 days)
there is a maximum.
In equation (11) there is a critical point for values of λ close to 4 and 40 degrees Celsius, which is
shown in fig. 7.

Figure 6: Average life time for adult mosquitoes depending on temperature measure in Celsius degrees

4. Death rate of mosquito larvae, δL, in order to express the daily larval survival we take a slightly
different approach from [1]. We modify the component of the mortality rate of larvae depending on
temperature.
The effect of temperature and rainfall in larvae mortality has been studied in [5], where is given data
of larval average life time (the inverse of the per capita death rate, δL) for a given temperature (from
10 to 40 Celsius degrees). We approximate the missing values, δL(T ), as follows:

δL(T ) =
δL(Tk) + δL(Tk+1)

2
, T ∈ (Tk, Tk+1) (13)

where δL(Tk) and δL(Tk+1) are given in [5]. To obtain this values the study was conducted in the
laboratory. The authors do not take into account the mortality due to predators or any other source.
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Malaria and warmer temperatures

Figure 7: Plot of the mosquito adult death rate, δM , depending on temperature measure in Celsius degrees,
we have represented the interval of 15 to 30 degrees.

They state that 20% of the larvae will fail to develop into adult mosquitoes. Therefore in [1] the
mortality death rate of larvae is given as follows:

δL = δ0 + δL(T ) + δ̃L(P ), (14)

where δ0 is the basic mortality rate which is independent of temperature and rainfall.
Another cause of mortality is the rain peaks which are measured by :

δ̃L(P ) = δRΘ(P − 〈P 〉12), (15)

where 〈P 〉12 is the moving average computed from the rainfall data and

Θ(x) =

{
x if x > 0
0 otherwise

(16)

where δR is a proportional factor transforming a positive deviation from the moving average, due to
a peak in rainfall, into a increase in larval mortality.

5. Gonotrophic cycle, mosquito fecundity and biting rate, the gonotrophic cycle or the reproductive
cycle of the mosquito includes the searching for a host, blood feeding, blood meal digestion, egg
maturation and oviposition. Oviposition last approximately between two and eight days depending
on the temperatures. We use the data presented in [2] since we wanted to take a different approach
than in [1]. In this work it has been studied the influence of temperatures in the gonotrophic cycle
in the Western Kenya Highlands.
Hematophagous mosquitoes need blood meals for egg development and the rate of blood meal
digestion is temperature-dependent. The higher the temperatures the faster is the digestion, as a
consequence, the shorter will be the gonotrophic cycle duration. This will imply that the biting rate
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is higher. The inverse of the average gonotrophic cycle, denoted by 〈ta〉, is approximately the biting
rate (a). To approximate the mean gonotrophic cycle duration we compose a piecewise function.
This function will depend on the season of the year. Thus the 〈ta〉 is as follows:

〈ta〉 =

{
2.9 if t is in the dry season
8.6 otherwise

(17)

In the case of Kenya the rainy season will be from February to May and from September to November.

At the end of the gonotrophic cycle, females lay a number of eggs. This is given as follows:

Nf = na (18)

where n is the number of eggs at each oviposition, then the maximum number of eggs that enter the
larval stage per female per unit time is f = Fa.

2.3 Larval Carrying Capacity

The Larval Carrying capacity is the maximum amount of larvae in a given ecosystem, in [1] it is
model with a differential equation depending on rainfall, P , as follows:

dK(t)

dt
= KAP −KEK(t). (19)

Where KAP determines the increase in the carrying capacity due to daily precipitation.
The equation (19) admits a unique periodic solution, of period T, which is denoted by Kp(t). This
is the solution of the Cauchy problem associated:{

K ′(t) = KAP −KEK(t)
K(t0) = K0.

(20)

In our problem we can assume that t0 = 0, so we have that K(0) = K0.
We know, from the theory of differential equations, that the solution of a linear non homogeneous
ODE of the form x′ = ax+ f(t), is given by :

x(t) = xh(t) + xp(t) = ceat +

∫ t

t0

f(s)ea(t−s)ds (21)

where xh is the solution of the homogeneous equation and xp is the particular solution. So for the
Cauchy problem (20) we have the following solution:

K(t) = Kh(t) +Kp(t) = k0e
−KEt +

∫ t

t0

f(s)e−KE(t−s)ds (22)

and ∀k0 ∈ R and every solution K(t) we have that :

lim
t→∞
|K(t)−Kp(t)|= lim

t→∞
k0e
−KEt = 0 (23)

since KE > 0. This means that after some time every solution will tend to the periodic solution,
Kp(t) which corresponds to the period of rains, which it will be approximately one year and we will
show later on in the obtained simulations.
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2.4 Full Model formulation

The whole system of equations for the human-mosquito is given by:

dS

dt
= δHN − βS + σR− δHS + ρC

dE

dt
= βS − δHE − γnHE

dI

dt
= (1− ξ)γnHE − ηβI + νC − rI − δHI

dR

dt
= −σR + rI − δHR

dC

dt
= ξγnHE + ηβI − νC − ρC − δHC

dL

dt
= faM

(
K − L
K

)
− δLL− dLL

dX

dt
= −cayX − δMX + dLL

dV

dt
= cayX − γPnPV − δMV

dW

dt
= γPnPV − δMW

dK

dt
= kAP − kEK

(24)

3. Kericho data simulations

Malaria has been an issue in Kenya for a long time. Due to insecticide and cool temperatures the disease
has been eradicated from Kenya’s highlands in the 1960’s. However the disease has returned in recent
years, as some researchers believe ([1],[3], [12]) that it is produced by subtle changes in the climate region.
In this section we present the numerical results that we have obtained using the data of Kericho, a village
in a tea plantation, which is located in the Kenya’s highlands. Also we give some insights about the results
and about the problems that we have encounter during the process.

We have implemented a program in C using a rk78 integrator, to numerically integrate the equations pre-
sented in (24), to observed the solutions and study how the disease propagates along time.
The rk78 is an Adaptive Runge-Kutta-Fehlberg method. We have chosen it due to the following advan-
tages: smaller errors and adaptative time step (h). Since it uses two rk methods one of order 7th and the
other of order 8th. Assuming that the last one is very close to the exact solution since it is more accurate.
It will modify the time step according to the distance between the solutions of the two numerical methods.
Some difficulties were presented along the process. First of all the climate data given in [1] is a discrete set
and we need a continuous set as a input of the model. Since the data taken from [1] for the temperature
and rainfall is given monthly and daily respectively, we have implemented a method to interpolate the data.
For this task we have chosen the cubic splines which gives an interpolating polynomial.
This method satisfies some convenient properties: it avoids the Runge’s phenomenon and second, it is also
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Figure 8: Average temperatures from 1st December to 1st November of 2003 in Kericho, Kenya. Measured in
degrees Celsius.

Figure 9: Rainfall from 1st December to 1st November of 2003 in Kericho, Kenya. Measured in mm.
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easily computable. More detailed explanation of the method is given in the appendix A.
Another issue presented during the implementation was the memory usage, since we will need to store
many different variables along the integration and also the interpolation. We have implemented a memory
structure based on pointers to optimise the memory usage.
For our simulations we have used the climate data in [1] from January of 2002 to December of 2002. This
data is monthly for temperatures and daily for rainfall.
Figure 9 shows the rainfall in mm during this period, as we can observed the rainy seasons goes from
February to May and from August to November, i.e where the amount of rain is higher. In fig. 8 we can
observe a plot of the average temperature: the red starts denotes the data taken from [1] while the blue
lines denotes the interpolation done with the splines. As we can see the splines are C2 smooth and fit the
same value as the real data in the endpoints of the intervals (the start and the end of each month).
In the other hand we have used the values of the parameters given in table S1 in [1], the authors have used
a genetic algorithm for this propose. We have not get into the fitting parameter problem since this belongs
to the optimization field and is out of the scope of this work.
After we got the data from the C program we use Python to plot the output of the algorithm and some
other interesting graphs which can give an intuitive overview of the problem.

For our simulations we have used the following initial conditions: constant human population set to

Figure 10: Numerical simulations of the model for the SEIR population normalized by the total population.

50000, where the 90 % of the population is susceptible and there are no recovered people. The values of
the parameters are presented in table 1.

Figure 11 shows the susceptible (S), exposed (E), asymptomatic infected (I) and recovered (R) individ-
uals over time. As we can observe the susceptible individuals start to decrease from the beginning of the
simulations, these individuals go to the exposed individuals by a factor β, which is the force of infection.
After a short period of time there is an increase of I, which are the asymptomatic infected individuals.
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Model Parameter Symbol Range CI

Human turn-over rate δH 1/20 year−1

Mosquito fecundity factor F 66

Loss of immunity rate σ0 (0,0.1) 0.0805
Recovery rate r0 (0,0.1) 0.04

Exposed number nH (1,50) 3.07
External force of infection βe (0, 10−4) 2.57e-05

Detection probability (S → C) χ (0, 0.5) 0.131
Recovery rate (C → S) ρ (0,1) 0.428

Case Probability (I → C) η (0,0.1) 0.0346
Recovery rate (C → I) ν (0.2,1) 0.564
Probability (M → H) b (0.5,1) 0.649
Probability (H →M) c (0.1,1) 0.365

Death rate larvae δP (0.01, 0.5) 0.0329
Death factor larvae δR (0, 0.5) 0.00783
Conversion factor KA (0, 3 · 103) 695

Loss rate KE (0,0.3) 0.198
Exposed number nP (1,50) 8.99

S initial fraction yS (0.9,1) 0.99
E initial fraction yE (0,0.02) 0.008
I initial fraction yI (0,0.02) 0.0011
C initial fraction yC (0,0.01) 0.0009

Table 1: In this table it is shown the list of parameters. The two first parameters are left constant, while
the others can vary between a range. In our simulations we have used the average value in the range of
the parameters.
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Figure 11: Numerical simulations of the human model over the 2002 year.

First, we will study the human population and after that the mosquito component to give a clear view
of the results. In fig. 13 a plot of the total human population including the C population, which are the
individuals who got clinical treatment, is presented. We can observed that the C individuals experiment
an increase from May to September as it does for the asymptomatic individuals, I. After some fluctuations
around the 300 day the susceptible individuals start a sharp increase while the infected individuals, I and
C, decrease.
Figure 12 shows the data taken from [1] of the accumulated hospitalized individuals in Kericho. As we
can see there is a maximum around May and a relative minimum around September as it happens in the
simulations for the clinical cases, C, presented in fig. 13.

Now we give some insights about the mosquito component, splitting the population between the larvae
and its carrying capacity, and the adult mosquito. In fig. 14 and fig. 15 there are plots of the simula-
tions over a year for the mosquito component. In the first one the whole mosquito population and the
carrying capacity related to them is represented .In the second one there is a plot of the adult mosquito
population to give a more clear view of the solutions. As we can observed the total number of larvae
goes to the maximum size possible restricted by the carrying capacity at the beginning of the simulations,
and it keeps with this behaviour until the end of the year. The carrying capacity is directly related to
the amount of rain, as we have explained in section 2.3, after some time the solutions tends to the peri-
odic solution which its period is approximately one year. Figure 17 shows the simulations produces by the
model along three years, we can observe that the solutions tends to a periodic solution with period one year.
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Figure 12: Number of individuals hospitalized cases of malaria in Kericho in 2002.

Figure 13: Numerical simulations of the model for the human population normalized by the total population.
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In the other hand, since X increases by a factor dL times the amount of larvae the uninfected adult
mosquito population, X, increases at the beginning with some delay respect to the larvae. This is due to the
fact that it is an increasing function for temperatures greater than approximately 13◦, as we can see in fig. 4.

The decrease on the X population, around the 150 day, is due to the transition of this individuals to the
compartments of the infected mosquitoes, the non infectious and the infectious one, V and W respectively.
This agrees with the increase of the temperatures from 20 to 21 degrees. In the other hand the increase
on the infectious mosquitoes is faster than in the non infectious due to the increase of the development
rate of the Plasmodium parasite, γP since the temperatures are over 20 degrees in this period. We can
observe in fig. 5 that the development rate of the Plasmodium overcomes values of 0.03 for temperatures
greater than 20 degrees.

If we compare the two components, the human and the mosquito, we can give a general view of the

Figure 14: Numerical simulations of the model for the mosquito population and the carrying capacity related to
them.

problem. Notice that there is a relation between the increase of the infectious mosquitoes and the increase
of the infected individuals and viceversa around the 5th month, May. This is due to the force of infection
β which is directly proportional to the total number of infectious mosquitoes and the fraction of infected
individuals y which produces an increase in V , the infected mosquitoes. Also there is a decrease on both
infected population when the temperatures decreases under 20 degrees.
First we have studied the behaviour of the solutions for one year and now we analyze the solutions for a

longer period, three years. For these simulations we have use the same climate data from 2002 to 2004.
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Figure 15: Numerical simulations of the model for the adult mosquito population.

Figure 16: Numerical simulations of the model for the human population over three years, from 2002 to 2004.
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Figure 17: Numerical simulations of the model for the mosquito component over three years, from 2002 to 2004.

Figures 16 and 17 show the simulations for the human and mosquito component respectively. Notice that
there is an important decrease on the infected individuals in the middle of the second year (around the
500 day) for the human component, corresponding to a decrease in the total adult mosquito population as
we can observe in fig. 17. In addition, the total number of infected individuals shows a decreasing trend
over the years, while the susceptible individuals are predominant among the population, in general, over
the second and third year.

4. The basic reproduction rate R0

4.1 What is R0?

The term ”basic reproduction rate” was first introduced to epidemiology by Macdonald in [15] in 1952 in
the context of malaria. He explained R0, ”The number of infections distributed in a community as the
direct result of the presence in it of a single primary non-immune case.” After him Smith C. in [20] applied
this rate in his work about the arboviruses.
The concept of basic reproduction rate assumes that one infected individual enters a large population of
susceptible individuals, during the period of infectiousness. Therefore, the initial spread of the disease can
be approximated by a branched process, which is related to ”traceability”, where the spread of the disease
is represented as a tree. This does not take into account the decrease in the susceptible population in next
generations. Therefore the computation of the basic reproduction rate is a key factor to understand the
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evolution of the disease in its firsts states. From the threshold R0 we have the following statement:
If R0 ≥ 1 then there will be a epidemic whereas if R0 < 1 one expect the disease under control. This R0

is related to the Malthus parameter r as we will proof later on. In [11] more detailed information about
this rate is given, as well as different process to estimate it.

One of the most famous algorithm to compute the basic reproduction rate is the one done by Diek-
mann et al. in [8]. In this work a method to compute R0 through the so called Next Generation Matrix in
compartmental epidemic models is shown.

4.2 O. Diekmann and J. A. P. Heesterbeek Algorithm

This algorithm is used for models which divide the population by traits (age, size or state of infection)
into a finite number of categories (compartments). One can define the newly infected individuals in each
compartment in following generations through the coefficients of the so called Next Generation Matrix
(NGM) which is usually denoted by K. This matrix was introduced by Diekmann et al in [9]. They
also introduced the term infection free state, which is the equilibrium point where the compartments
corresponding to infected individuals are zero.
First we need to divide the system of equations in two subsystems: the one corresponding to the infection
states and the rest. The first subsystem is also divided into two categories: the newborn infected, which
are the individuals who get infected when they have not the infection, and the transitions between states of
infection. For example, if an individual gets infected and is asymptomatic, it will be a newborn infection.
If after a period of time it becomes symptomatic, this is a transition between states of infection.
To compute R0 we will use the subsystem of infected individuals, and linearize the system around the
infection free steady state. Therefore we compute the Jacobian matrix and evaluate it at the DFE, which
is denoted by Jp0 .
Secondly we need to decompose the Jp0 as follows :

Jp0 = Σ + T,

where T is the transmission matrix, describing the production of new infected individuals, and Σ is the
transition matrix, which contains the coefficients of Jp0 corresponding to the transition between infected
states. We introduce two definitions:

Definition 4.1. Let A be a matrix. We will say that (aij) is a positive matrix if and only if ai,j ≥ 0, ∀i, j
and we denote it by A ≥ 0.

Definition 4.2. Let A be a matrix. We will say that (aij) is a positive-off-diagonal matrix if and only if

ai,j ≥ 0,∀i 6= j and we denote it by A
d
≥ 0.

The matrices T and Σ satisfy the following properties:

1. T is a positive matrix.

2. Σ is a positive-off-diagonal matrix.

We will show a brief explanation of the derivation of the Next generation matrix, K = −TΣ−1, given with
more detail in [10]. If we consider the system with reinfection turn off, we have the following system:

ẋ = Σx, (25)
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a solution of the system will be ψ(x) = eΣtψ(0), so if we apply the reinfection to the solution and integrate
it in time from zero to infinity, we get that:

K =

∫ ∞
0

TeΣtψ(0) = −TΣ−1. (26)

Since ψ(0) is the initial infected people and we suppose that it is equal to one and −Σ−1 is a positive
matrix, then eΣt tends to zero when t tends to infinity.

The construction of the Next Generation Matrix has a biological meaning: −(Σ−1)ij is the expected
time that an individual will stay in state i, assuming that it is in state j and Tij is the rate at which individ-
uals in state of infection j produce individuals at state at infection i. Consequently (KL)ij corresponds to
the expected number of new infected individuals starting in state i and caused by an individual in the state
j. The definition of T and Σ does not determine uniquely the Next Generation Matrix K = −TΣ−1 and
consequently R0. In [8] they define the basic reproduction rate as R0 = ρ(K), with ρ(K) := supλi∈Λ{|λi|}
the spectral radius of K, and Λ the set of all eigenvalues of K.

Since the computation of R0 depends on the construction of T and Σ, one of the inconveniences of
this algorithm is the non-uniqueness of the decomposition J = Σ + T and therefore R0. For instance, a
transition between a latency state, where the individual is asymptomatic, and a infectious state does not
involve a new infection, but rather a transition between states of infection. So in principal, these transitions
will not be taken into account in T . In [8] they distinguish between the Next Generation matrix with Large
domain, KL, where more that the purely new infections are consider in the construction of T and the Next
Generation Matrix K. They show that ρ(K) = ρ(KL).
An important result has been proved in [8], which states the following result: if K = −TΣ−1 with T ≥ 0

and Σ
d
≥ 0 then sign(r) = sign(1−R0), where r = s(T + Σ) is the Malthus reproduction parameter. We

recall that if U is a square matrix then s(U) = sup{Re(λi), λi ∈ Spec(U)}.
The stability at the DFE of the linearized system:

dx

dt
= (T + Σ)x,

is given by the sign of the Malthusian parameter r = s(T + Σ). Therefore it provides information of the
stability of the linear system and of the local stability for the complete one.

Theorem 4.3. Let T be a positive matrix and let Σ be a positive off-diagonal matrix with s(Σ) < 0 and
R0 := ρ(−TΣ−1). Consider r := s(T + Σ). Then the following equality holds:

sign(r) = sign(R0 − 1) (27)

Here we can observe the relation between R0 being smaller and greater than one and the local stability of
the DFE.

We will do an sketch of the proof (further detailed explanation is in [8]).

Theorem 4.4. Let A be a positive-off-diagonal matrix. Then s(A) < 0 if and only if A is invertible and
−A−1 is a positive matrix.
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The proof of this theorem is in [10]. For the sake of completeness we present in this report an sketch
of it.
First we will introduce some lemmas which hold under the following assumptions:

1. The matrix (T + Σ) is a irreducible matrix,

2. R0 > 0.

Lemma 4.5. If R > 0 then s(R−1
0 T + Σ) = 0.

Now we construct a function f : R −→ R, with f(y) = s(y−1T + Σ). The following statement holds:

Lemma 4.6. if T + Σ is an irreducible matrix then the function f is strictly monotonically decreasing.

Now we prove the theorem with the two assumptions presented before.

Lemma 4.7. If T + Σ is irreducible and R0 > 0 then sign(r) = sign(R0 − 1).

Proof. We subdivide the proof into three different scenarios.

1. If R0 > 1, by lemma 4.6, s(T + Σ) > s(R−1
0 T + Σ) and since s(R−1

0 T + Σ) = 0, by lemma 4.5,
s(T + Σ) > s(R−1

0 T + Σ) = 0 then (T + Σ) > 0.

2. If R0 = 1, by lemma 4.5, s(T + Σ) = 0.

3. If R0 < 1 then, by lemma 4.6, s(T + Σ) < s(R−1
0 T + Σ) and, by lemma 4.5, s(R−1

0 T + Σ) = 0
hence (T + Σ) < 0.

Lemma 4.8. If s(T + Σ) = 0 then R0 ≥ 1

Proof. By the arguments above it follows that s(T + Σ) is an eigenvalue, and since we assume that
s(T +Σ) = 0, then T +Σ has eigenvalue 0. Let u 6= 0 be the corresponding eigenvector, i.e. (T +Σ)u = 0
and we define a vector v 6= 0 such that v = Σu. Since Σ is an invertible matrix and v 6= 0, if we
add (TΣ−1)v to both side of the equation v = Σu after some calculations we get the following result:
(TΣ−1 + I)v = (T + Σ)u = 0, so we get that −TΣ−1v = Iv = v and therefore 1 is an eigenvalue of
KL = −TΣ−1. Consequently the spectral radius will be greater or equal to one.

From this lemma we can prove a more restricted result.

Lemma 4.9. If s(T + Σ) = 0 then R0 = 1

Proof. We define a function of ε, namely A(ε) = T + Σ + 1ε, where we denote by 1 the matrix with all
coefficients equal to one. Using the arguments of the proof of the lemma 4.6, explained in [8], we have
that the function ε −→ s(A(ε)) is monotonically increasing.
If we construct another function Ã(ε) = A(ε)−s(A(2ε))I, since ε −→ s(A(ε)) is a monotonically increasing
function we have that

s(Ã(ε)) = s(A(ε))− s(A(2ε)) ≤ 0. (28)
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It is clear that Ã(ε) tends to T + Σ as ε tends to zero. Having that s(Ã(ε)) = (T + ε1) + (Σ− s(A(2ε)I))
we construct the function M as follows:

M(ε) = −(T + ε1)(Σ− s(A(2ε)I))−1, (29)

which tends to KL = −TΣ as ε tends to zero. By Lemma 4.8, R0 = ρ(KL) ≥ 1 then ρ(M(ε)) should be
positive for ε << 1. Since Ã(ε) is irreducible by lemma 4.7 then sign(s(Ã(ε))) = sign(ρ(M(ε)− 1)), using
the inequality (28) we have that ρ(M(ε)) ≤ 1. Therefore, we have proved that R0 = 1.

Proof of the theorem 4.3: By lemmas 4.9 and 4.5, with R0 = 1, we have that:

s(T + Σ) = 0⇐⇒ R0 = 1. (30)

By lemma 4.7, with ε << 1, we conclude that:

s(T + ε1 + Σ) < 0⇐⇒ ρ(−(T + ε1)Σ−1) < 1, (31)

so when ε tends to zero we have that s(T + Σ) < 0 ⇒ R0 ≤ 1 and that R0 < 1 ⇒ s(T + Σ) ≤ 0.
Since the equality (30) holds, we have that s(T + Σ) < 0 ⇐⇒ R0 < 1. And we can conclude that
s(T + Σ) > 0⇐⇒ R0 > 1. So we have proved that :

sign(r) = sign(R0 − 1). (32)

4.3 The Diekmann-Heesterbek algorithm, an example:

We present an example to give a better understanding of the algorithm:

Computation of R0 for COVID-19: In [14] it is shown a model for COVID-19 and a computation of
R0 for this model. We have used a different approach for this computation. We take into account for the
computation of R0 the equation related to the infected reported individuals, denoted by R in this case.
The model used in [14] is the following:

dS

dt
= −τS(t)(I(t) + U(t))

dI

dt
= τS(t)(I(t) + U(t))− νI(t)

dR

dt
= ν1I(t)− ηR(t)

dU

dt
= ν2I(t)− ηU(t)

(33)

where S denotes the susceptible individuals, I the infected asymptomatic individuals, R are the infected
reported individuals with severe symptoms and U the unreported infected individuals with mild symptoms.
An explanation of the parameters is given in table 2. First, we subdivide the system and take the equations
which are related to the infected individuals, which are the following:

dI

dt
= τS(t)(I(t) + U(t))− νI(t)

dR

dt
= ν1I(t)− ηR(t)

dU

dt
= ν2I(t)− ηU(t)

(34)
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Model Parameter Interpretation

t0 Time at which the epidemic started
S0 Number of susceptible individuals at time t0
I0 Number of asymptomatic infectious individuals at time t0
U0 Number of unreported symptomatic infectious individuals at time t0
τ Transmission rate

1/ν Average time during which asymptomatic infectious are asymptomatic
f Fraction of asymptomatic infectious become reported symptomatic

ν1 = fν Rate at which asymptomatic infectious become reported symptomatic
ν2 = (1− f)ν Fraction of asymptomatic infectious become unreported symptomatic

1/η Average time symptomatic infectious have symptoms

Table 2: List of parameters for the model given in [14].

Now we compute the Jacobian matrix for the subsystem:

J =

τS − ν 0 τS
ν1 −η 0
ν2 0 −η

 , (35)

and we evaluate J at the disease free steady state (DFE) p0 = (S0, 0, 0, 0). We obtain the following matrix:

J =

τS0 − ν 0 τS0

ν1 −η 0
ν2 0 −η

 , (36)

Now we split this matrix into T and Σ to compute the next generation matrix with large domain KL,

T =

τS0 0 τS0

ν1 0 0
ν2 0 0

 Σ =

−ν 0 0
0 −η 0
0 0 −η

 ,

We compute the inverse of Σ, multiply it by −T , and we get:

KL =

 τS0
ν 0 τS0

ν
ν1
ν 0 0
ν2
ν 0 0

 . (37)

We compute the eigenvalues of KL: one eigenvalue is identically zero, λ1 = 0, and two complex conjugate
eigenvalues

λ± =
τS0η ±

√
τS0η(τS0η + 4ν2ν)

2ην
.

After some simplifications we get the following expression:

λ± = 1±

√
1 +

4ν2ν

τS0η
,

We can distinguish between three scenarios depending on the sign of the discriminant, 1 + 4ν2ν
τS0η

:
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1. The discriminant is equal to zero: we get one eigenvalue with multiplicity 2: τS0
2ν = −2ν2

η . Then the
basic reproduction rate will be equal to:

R0 =
τS0

2ν

2. The discriminant is greater than zero: we obtain two real eigenvalues: τS0
2ν > −2ν2

η . Then the basic
reproduction rate will be equal to:

R0 =
τS0

2ν
(1 +

√
1 +

4ν2ν

τS0η
)

3. The discriminant is less than zero: we obtain two complex eigenvalues: τS0
2ν < −2ν2

η and so

R0 =
τS0

2ν

√
2 +

4ν2ν

τS0η

For the values of the parameters given in [14] we get that R0 = 3.60 which means that the steady state
is unstable so it is a pandemic state.

A very useful tool to compute the basic reproduction rate is the algorithm developed by Diekmann and
Heesterbek (the one presented in this section). However, there are other methods to compute R0. Some
of then are more intuitive and ”handmade”. In the Appendix B of [1] it is presented a computation of R0

in this manner. Here we give a quick view of the process made in [1] to compute R0. First, they assume
two conditions:

1. The system is ”closed”, in our equation (6) this means that βe = 0. It assumes that there are no
imported cases coming from other countries where malaria is present. The only possible way to get
infected is from individuals who are in the population.

2. The carrying capacity is constant, K = K0.

R0 is factorized as follows:
R2

0 = V0R (38)

where V0 is the vector capacity and R is the factor that depends on human related disease parameters.
After some computations they obtained the following approximation for R0:

R(b)
0 = a

√
bc

√
KdL(f − δM (1 + (δL/dL)))

NδMf

√
1

(δH + r0)δM

(
nPγP

nPγP + δM

)nP
2
(

nHγH
nHγH + r0 + δH

)nH
2

,

(39)
As the authors observed this computation of R0 seems to be accurate since it takes into account the
distributed delay introduced by the development of Plasmodium in the mosquito and the incubation phase
of malaria in the human body.
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5. Parameters to measure the epidemiology state
apply to Malaria

5.1 Computation of R0 for the Malaria:

In this section we present the Diekmann and Heesterbek algorithm applied to our model.

First we construct the infectious subsystem, which is given by :

dE

dt
= βS − δHE − γnHE

dI

dt
= (1− ξ)γnHE − ηβI + νC − rI − δHI

dC

dt
= ξγnHE + ηβI − νC − ρC − δHC

dV

dt
= cayX − γPnPV − δMV

dW

dt
= γPnPV − δMW

(40)

We will assume that the system is ”closed” so for equation (6), βe = 0. The disease free point (DFE) for
the system is of the type p0 = (S0, 0, 0, 0, 0, L0, X0, 0, 0, 0), and the Jacobian Matrix is given by:

J =


−δH − γnH 0 0 0 abS

N

(1− ξ)γnH −η abWN − fW − δH ν 0 −η abIN − fI + WIeaW/Nr0

r0
f2

ξγnH η abWN −(ν + ρ+ δH) 0 η abIN
0 caX

N
caX
N −γPnP − δM 0

0 0 0 γPnP −δM

 ,

(41)
where f = a

N(eaW/Nr0−1)
. Now we substitute the disease free steady state p0 in J, as we can observe there

will be some problems in the terms where f is involved, since when W tends to zero f goes to infinity.
To avoid this inconvenient we need to approximate the components which are multiplied by f by the Taylor
expansion and assume that Y ≤ cyW with c ∈ R and is greater than zero.
There are three expressions that we would like to approximate by Taylor:

1. aW
N(eaW/Nr0−1)

≈ aW/N
((aW/Nr0+O(aW/Nr0)2))

= r0
1+O(aW/Nr0) → r0 when W → 0.

2. a2WIeaW/Nr0

r0(N(eaW/Nr0−1))2 ≈
a2WI(aW/Nr0+O(aW/Nr0)2)
r0N2((aW/Nr0+O(aW/Nr0)2))2 = aI

N
1

1+O(aW/Nr0) →
aI
N when W → 0.

3. −aI
N(eaW/Nr0−1)

≈ −aI
N(aW/Nr0+O(aW/Nr0)2)

= −Ir0
W

1
1+O(aW/r0) and if we use that Y ≤ cyW we get the

following : −cyr0
1

1+O(aW/Nr0) → − cyr0 when W → 0.
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We substitute in J the approximations computed before and we get the following matrix:

J =


−δH − γnH 0 0 0 abS

N

(1− ξ)γnH −η abWN − r0 − δH ν 0 −η abIN − cyr0 + aI
N

ξγnH η abWN −(ν + ρ+ δH) 0 η abIN
0 caX

N
caX
N −γPnP − δM 0

0 0 0 γPnP −δM

 , (42)

Then we evaluate it at p0 and we get the following matrix:

J(p0) =


−δH − γnH 0 0 0 ab
(1− ξ)γnH −r0 − δH ν 0 −cyr0

ξγnH 0 −(ν + ρ+ δH) 0 0

0 caX0
N

caX0
N −γPnP − δM 0

0 0 0 γPnP −δM

 , (43)

the next step in the algorithm is to split the matrix J(p0) into the transmission matrix (T):

T =


0 0 0 0 ab

γnH 0 ν 0 0
ξγnH 0 0 0 0

0 caX0
N

caX0
N 0 0

0 0 0 γPnP 0

 , (44)

and transition matrix (Σ):

Σ =


−δH − γnH 0 0 0 0
−ξγnH −r0 − δH 0 0 −cyr0

0 0 −(ν + ρ+ δH) 0 0
0 0 0 −γPnP − δM 0
0 0 0 0 −δM

 , (45)

Therefore we get that the next generation matrix with large domain, KL for (24), is given by:

KL =


0 0 0 0 ab

δM
γnH

γnH+δH
0 ν

ν+ρ+δH
0 0

ξγnH
γnH+δH

0 0 0 0

− caX0ξγnH

N(γnH+δH)(r0+δH)
caX0

N(r0+δH)
caX0

N(ν+ρ+δH) 0 − caX0cyr0

NδM (r0+δH)

0 0 0 γPnP
γPnP +δM

0

 , (46)

We compute the eigenvalues for this matrix and we get three equal to zero and two complex conjugate
eigenvalues of form:

λ± = ±

√
caX0γPnP

(γPnP + δM )δM

cyr0

N(r0 + δH)
i (47)

Therefore, the basic reproduction rate R0 is given by the modulus of the complex eigenvalue:

R0 =

√
caX0γPnP

(γPnP + δM )δM

cyr0

N(r0 + δH)
(48)

where the first quotient is related to the mosquito and the second to the human component. Although
the parameters γP and δM depends on the temperatures, i.e, depends on time, (10) and (11). Since R0 is
computed at the initial time, when there is one infected individual, the parameters γP and δM are constant.
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5.2 Effective Reproduction rate

After computing the Basic reproduction number R0 for our problem, a question arises: does the basic
reproduction rate really measure the real infection grade of a disease at any time?.
Since the R0 does not depend on time, the answer is no. R0 measures the average number of secondary
cases in a population where there is an infected individual and the rest of the population is susceptible.
In reality a whole population is rarely susceptible to a disease. For example some individuals could be
immune due to a prior infection which produced a temporary immunity. Therefore not all individuals could
get infected, so the susceptible individuals are not the whole population. Therefore, the average number
of cases per infectious case will be smaller than the basic reproduction rate. For this reason we need a
measure which depends on time and takes into account that the number of susceptible individuals is a part
of the whole population. This is called the effective reproduction number.

The effective reproduction number, Rt, is the average number of secondary cases produced by a
infected individual at time t in a population where there are susceptible and non susceptible individuals. It
is computed as follows:

Rt = R0s(t), (49)

where s(t) is the fraction of the population which is susceptible to the disease at time t.
These past months in press, during the recently COVID-19 crisis, the term basic reproduction rate has been
used wrongly when in fact they meant effective reproduction rate Rt.

5.3 Deaths rates

In the previous section we have presented, Rt, a rate to measure the infection grade of a disease, crucial
when there is a pandemic. However, there are other relevant rates, for example, those which measure the
mortality produced by the disease.
One of the first questions that one asks when there is a pandemic is, if someone gets infected, how likely
is that person to die?. This is a simple but hard to answer question because mortality rates rely on the
information about the confirmed cases and the number of deaths. As we have experienced with COVID-19
this data is not trustworthy and also some people who are sick and soon will die.
Due to these two facts it is extremely complicated to compute accurately the risk of death. In addition in
the context of Malaria in Kenya, the health care system is weaker than in the Western World and the level
of poverty is higher. These are two key factors that increase the uncertainty in the data.
There are many indicators to measure the risk of dying. We will focus on two of them, the Case Fatality
Rate or CFR and the Crude Mortality Rate.

The case fatality rate (CFR): The case fatality rate is one of the most commonly used rate to measure
the risk of death. It is also called the ”Case fatality risk” or ”Case fatality ratio”.
The CFR requires an easy calculation. It is the number of people who have died divided by the number of
total people who have been diagnosed with the disease:

Case fatality rates =
Number of deaths from the disease

Number of diagnosed cases from the disease
· 100. (50)

Note that this is a ratio over the number of confirmed cases, so not over the total number of people who
have got the disease. As we have experienced with COVID-19, the number of diagnosed people in Spain is
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related to the people working in the health care system or the people who has severe symptoms and there-
fore they have gone to the hospital to receive clinical treatment. Since many people with weak symptoms
or asymptomatic will not be included, this rate does not give the true risk of death. Consequently the CFR
does not measure the true mortality risk.
For example, in a population of 500 individuals, 100 are infected by the disease, and 30% of these infected
individuals are asymptomatic and consequently have not been diagnosed, and 10 people have died from
the disease. We will have that the CFR = 14,28 % when in real it would be 10%, if all the asymptomatic
cases had been diagnosed. This is a vital difference when we talk about the death risk of a disease.

Another important ratio to measure the death risk is the crude mortality rate:

The crude mortality rate (CMR): This rate is another simple measure, also called the crude death
rate.
The difference with the case mortality rate is that, instead of dividing by the number of diagnosed cases,
it is divided by the total number of susceptible individuals, i.e., the total size of the population:

Crude mortality rate =
Number of deaths from the disease

Size of the population
· 100 (51)

It is easy to observe that the crude mortality rate will be, in general, much smaller than the case mortality
rate, since the number of diagnosed case is often much smaller than the size of the infected population, even
for the most infectious diseases. For example, this happens with COVID-19 which is a highly contagious
disease.
In the example given before the crude mortality rate will be 2%, a small amount compared to 14,28%.
Even if there is a considerable difference between these two rates, they are often confused. A common
example is the Spanish flu in 1918 where Johnson and Mueller confused the crude mortality rate with the
case mortality rate in [13]. The pandemic killed around 50 million people, which is a 2.7% of the population
of that time, and they used this amount as the case mortality rate. However, the case mortality rate was
in fact much higher.
To answer the question, if a person is infected how likely is s/he to die?, None of the two ratios explained
before could accurately answer this question. A rate which will answer with more accuracy this question
will be the Infection fatality rate:

The infection fatality rate (IFR): It is defined as:

Infection fatality rate =
Number of deaths from the disease

Number infected people
· 100, (52)

This would be the rate which will measure the death risk of a sickness with more accuracy. However in
reality we cannot know how many people have got infected by the disease, since there are only a part of
this group which will be diagnosed. We can estimate the total number of cases, as we have done with for
the case of Malaria before. But this will not produce an accurate infection fatality rate value.
For the example given for the other two rates, if we have 100 people infected and 10 deaths the infection
fatality rate will be of 10%.
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6. Conclusions and further studies

Even if not generally acknowledged, Malaria was an issue in the Mediterranean in the past. Historical
records indicate that malaria was endemic from the Middle ages until the 1950s, when some policies
where implemented to stop the epidemic. One of the most effective was the use of the chemical DDT
(Dichlorodiphenyltrichloroethane). There have been many studies about the disease in the past and its
social impact ([22],[19]).
Because of the tragic events of these last months and the fact that Malaria was present in the Mediter-
ranean before, the following question arises: how likely it is that another malaria epidemic occurs in the
Mediterranean? Could be this a feasible consequence of global warming?.
Malaria is one of the most widely-spread diseases in the world, causing thousands of deaths per year, mostly
in sub-Saharan Africa, like in Kenya. However, the globalization and the increase of temperatures due to
climate change have worried epidemiologists about the increase of malaria in Europe.
In the last few years an increase in malaria cases has been reported in the Mediterranean countries. Most
of them are imported cases, which means that an individual has got the disease in an endemic country and
travelled back to Europe [17]. This growth is probably supported by the increasing number of international
travels to countries where malaria is endemic. In [24] there is a full report about the malaria cases in
Europe from 2014 to 2018, with a distinction between imported and born cases. In [24] we can observe an
increasing trend for Spain, going from 688 cases in 2014 to 851 in 2018.
For these reasons, we believe that studying the behaviour of malaria in the European Mediterranean can be
of high interest. We have repeated the analysis with model (24) but now for malaria in the Mediterranean,
keeping the same values for the parameters but adapting the climate data. To fix an example, we have
taken this data, temperatures and rainfall, from a village, Agost, in Alicante which is located in the coun-
tryside of the region and with an economy based on agriculture. This data is from January to December
of 2018 given in [25].
In fig. 18 a graph of the average temperatures in this region is shown. We can observe there is a maximum
in the 216th day, corresponding to the 5th of August, with an average temperature of 29.03 Celsius de-
grees. The minimum is at day 49 (19th of February), where the average temperature reaches 10.03 degrees
Celsius. As expected, average temperatures are higher during the summer.
Figure 18 displays the rainfall in mm during the same period as the temperatures. We can observe that the

amount of rain is higher during the rainy seasons, from February to May and from September to November.
Now we would like to know what would happen if a small part of the population become infected. We

use the climate data presented before for these simulations. The initial conditions are as follows: a total
human population of 5000 individuals, which is approximately the population of Agost, with 99% of the
population susceptible and the rest infected, corresponding to 50 individuals. We also assume that there are
no recovered individuals. For the mosquito population we followed the same logic, taking a total population
of 1000 adult mosquitoes where 99% are non infected mosquitoes and the rest are infected. For simplicity
we use the value of the parameters presented in table 1.
Figure 20 shows the simulations related to the human population over a year. As we can observe, there is
no increase of the infected individuals until approximately the day 150, which corresponds to the beginning
of May. This is related to an increase on the average temperature, exceeding 20◦. Between day 150 and
200 the susceptible individuals decrease until a relative minimum is reached, and at this point around the
80% of the population is infected or has been infected. After this increase on the infected individuals there
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Figure 18: Average temperatures from 1st January to 31st December of 2018 in Agost, Alicante. Measured in
degrees Celsius.

Figure 19: Rainfall from 1st January to 31st December of 2018 in Agost, Alicante. Measured in mm.
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Figure 20: Numerical simulations of the model for the SEIR population normalized by the total population for the
Mediterranean case.

are some fluctuations until around the 279 day where the susceptible individuals increase reaching almost
the total population and infected individuals get closer to zero. Figure 18 shows how this is related to the
decrease in the temperatures below the 20◦.

A similar behaviour can be observed for the adult mosquito population. Figure 22 displays the adult
mosquito population, note that between days 150 and 200 there is a decrease in the non infected population
and a increase in the infected individual. This behaviour is expected since the development rate of the
Plasmodium parasite increases with temperature, as it is shown in fig. 4.
After some fluctuations around the 300th day, the total adult mosquito population starts to decrease almost
reaching extinction while the larvae continue to fluctuate reaching a relative maximum around the 350th
day. This causes that even if the adult population is close to zero in a period of time, it increases due to
a large amount of larvae, as we can observe in fig. 23.

An interesting remark is that even with a really small part of the population infected, as we have as-
sumed for our simulations, the climate conditions of the Mediterranean could trigger an outbreak of malaria
during a summer period.
If we compare the two cases studied in this project, the one related to malaria in Kenya and the basic study
for the Mediterranean, we can see that in Kenya the epidemic is stronger since it is an endemic country
and in the case of the Mediterranean the cases of malaria are mostly imported cases. However, as we have
said at the beginning of section 3, the malaria was eradicated from Kenya Highlands and has returned
back. Some researches believe that it is due to subtle changes in the region’s climate. Since the number
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Figure 21: Numerical simulations of the model for the mosquito population and its carrying capacity for the
Mediterranean case.

Figure 22: Numerical simulations of the model for the mosquito adult population for the Mediterranean case.
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Figure 23: Numerical simulations of the model for the mosquito adult population, M, and the larvae, L, for the
Mediterranean case over one year.

of mosquito vector is increasing in the Mediterranean, it would be interesting, as a further work, to study
the effect of climate change on the malaria in the Mediterranean and to create a more specific model for
this particular problem.

During this work I got into epidemiology, a field that I had no knowledge of before. In particular I have
learnt about vector borne disease and how to model them.
First, I started with the simplest one, the SIR model, which is a compartmental model, i.e., it distributes
the population in different compartments depending on the infectious states. After that, I studied more
complex models which are variations of the SIR models, such as the one presented in this work. Since these
are systems of ODE’s that do not have an analytical solution I applied numerical methods to solve them.
For this purpose I programmed in C, a programming language which I have not used before. I have also
learnt more about non autonomous systems since during my degrees studies I was focused on autonomous
systems. Due to the fact that everything gets more complicated when some parameters of the system
depend on time, I have learnt how to study the system with a different approach.
In the other hand I have developed skills to work with models used in epidemiology dealing with different
rates, like the basic reproduction rate, to measure if it is likely an outbreak of the disease.
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A. Interpolation method: Splines

One key component on the model is the temperature and rainfall data, since the temperatures and rainfall
are discrete values, sometimes given by days and in other cases monthly. We need to interpolate the data
to have a continuous function, to do that we have used the interpolation method called cubics spline, which
use the method of moments.
A spline of order k in an interval [a, b] is a function which satisfies the following conditions:

1. S has continuous derivatives until order k − 1.

2. S is a polynomial piecewise function of order k.

In this work we use spline of order 3 which are called cubic splines.
If we have a set of points {x0, x1, ..., xn} and the value of the function evaluated in this set of points
{f(x1) = y1, f(x2) = y2, ..., f(xn) = yn}. The associated cubic spline should satisfy that:

1. S(xi) = yi, ∀x ∈ {1, 2, ..., n}.

2. S is a polynomial of degree 3 defined for each interval {xi, xi+1}.

3. S ∈ C2.

Imposing some conditions to S, we get the following expression:

Si(x) = Ai +Bi(x− xi) +Mi
(x− xi)2

2
+
Mi+1 −Mi

hi

(x− xi)3

6
, (53)

where hi = xi+1 − xi, Ai = f(xi), di+1 = 6
(
f(xi+2)−f(xi+1)

hi+1
− f(xi+1)−f(xi)

hi

)
and we need to solve the

following tridiagonal system of equations to obtain the values of Mi:

T


M1

.

.

.
Mn−1

 =


d1

.

.

.
dn−1

 , (54)

where T is defined as follows:

T =


2(h0 + h1) h1

h1 2(h0 + h1) h2

. . .
. . .

hn−2 2(hn−2 + hn−1)

 , (55)

and

Bi =
f(xi+1)− f(xi)

hi
− (Mi+1 −Mi)

hi
6
−Mi

hi
2
.
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B. Definitions, Lemmas and Theorems

Definition B.1. A n×n matrix A, is called an irreducible matrix if there is no permutation of coordinates
such that:

P TAP =

[
A11 A12

0 A22

]
, (56)

where P is a n× n permutation matrix.

Theorem B.2. Perron-Frobenius Theorem for irreducible matrix
If A = (ai,j) is n× n nonnegative and irreducible matrix, the following statements holds:

1. One of its eigenvalues is positive and greater than or equal, in absolute value, to all other eigenvalues.
This eigenvalue is called the ”the dominant eigenvalue” or Perron-Frobenius eigenvalue of the matrix.

2. There is a positive eigenvector corresponding to this eigenvalue.

3. The spectral radius ρ(A) is equal to this eigenvalue and it satisfies the following:

min
i

∑
j

ai,j ≤ ρ(A) ≤ max
i

∑
j

ai,j

A proof of the Perron-Frobenius theorem could be found in [18].
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