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In this project we aim to improve the Erik+2 method for obtaining the right distributions at
the leaves of a phylogenetic tree by addressing the problems that are due to the lack of enough
experimental data when dealing with a high number of species. We introduce a new procedure
based on successive applications of the Erik+2 method to take into account the most filled rows
and columns of the observed data matrix and on balancing the scores obtained from both rows and
columns. We also propose normalizations to compare the scores based on the dimensions of the

data matrix.
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I. THEORETICAL INTRODUCTION

The evolution of species is usually modelled in a phy-
logenetic tree 7. The leaves of the tree represent current
species and the root the common ancestor. The aim of
phylogenetics is to determine the phylogenetic tree of a
set of species from the DNA sequences of current species.
Due to its structure, we can deal with DNA sequences as
if they were a sequence of nucleotids (A, C, G, T). For this
reason, we need a statistic model for the substitutions of
nucleotids to face our problem. We will work under the
following assumptions:

e The trees are binary (which means that two
branches come out of the root, if it exists, and that
they are divided into another two branches in each
node).

e The processes in each branch do only depend on
the common father node.

e Mutations of the DNA chain occur randomly.

e Each position of the DNA evolves independently
and under the same mutation probabilities. This
means it is enough to model one position of the
chain.
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FIG. 1. A example of an unrooted 4-leaf phylogenetic tree

Following these assumpions we can think the nucleotid
mutation process as a Markov process by assigning to
each edge e a transition matrix

P(A|Aje) P(C|Ae) P(G|A,e) P(T|Ae)
g P(a|C,e) P(C|C,e) P(G|C,e) P(T|C,e)
¢~ | P(aA|G,e) P(C|G,e) P(G|G,e) P(T|G,e)
P(A|T,e) P(C|T,e) P(G|T,e) P(T|T,e)

where P(I|J,e) is the probability of the nucleotid in
the father node J becoming I after the edge e. These
entries are unknown and along with the distribution in
the root m = (7TA,7TC,7TG,7TT) are the parameters of our
model. By imposing conditions on the matrix S, one
obtains different models.

We define now the random variables X; as the state
of the leaf i for i € {1,...,n} so that X; takes value in
{A,C,G, T} = K, where n is the number of leaves of the
tree. Now let pyyzy.z, = P(X1 = 21,...,X,, = z,) be
the joint distribution at the leaves of the tree. Those
probabilities can be calculated using only the entries of
the transition matrices.

We are now ready to state the main definition and
the main theorem we will need to understand Erik+2
method. Let A|B be a partition of the leaves (that is,
if L(T) is the set of leaves of the rooted tree 7 then
L(T) = AUB and AN B = &). Then we define the
flattening matriz flat 4 p associated to the partition A|B

as the 4141 x 4181 matrix

DaA---AA PAA---AC PAA---AG """ DaA---TT
Pac---aa Pac.--ac Pac---a¢ 0 Pace-TT
flat 4 p = PaG---an PAG---AC PAG---AG " PAG---TT
PrT---AA PTT---AC PTT---AG 0 PTT---TT

That is, each column of the flattening matrix corre-
sponds to a state of the leaves in B and each row to
state of the leaves in A. We will call such a partition



proper if we can remove an edge such that all the leaves
in A are in the same connected component and all the
nodes leaves in B are in the other one. For instance, in
the previous example 12|34 is a proper partition, while
13|24 is not. Now we are ready to state the following

THEOREM. Let A|B be a partition of the set of leaves
of the tree 7. If that partition is proper, then

rank flat 4 p < 4
whereas if it is not a proper partition then
rank flat 4 p > 4.

For the case with n = 4 species at the leaves if the
parameters are “general enough” one can show that the
rank of the flattening matrix for partitions which are not
proper is maximum (i.e. 16), but since we will be dealing
with cases with n = 12 we can not assume this as true.

II. THE ERIK+2 METHOD
A. Fundamentals and the algorithm

We start off with a set of nucleotid sequences (one
for each leaf in our tree, as they are the observed DNA
chains of current species) which we will assume that have
nonempty entries and have all the same length. We will
call an alignment such a set, for instance, consider the
following 3-species alignment:

Specie o AAAGAGTTCCA
Specie 3 AGACAGATGCA
Specie v AGGGGGAAAGA

From this experimental data we can calculate the
relative frequencies Py, zy...z,, which we will use as
estimators for the true probabilities pz,z,...2, (in fact it
can be shown that those are the maximum likelihood
estimators for the true probabilities). Given a partition
of the leaves A|B, we can build the estimated flattening

matrix flatt 4 p just like we did in the previous chapter
but this time using the relative frequencies instead of
the true probabilities. We aim to determine the right
topology of the tree (i.e. to determine which specie is at
each leaf) by studying which partitions of the leaves are
proper according to the experimental data and which not.

By the theorem we stated above, if those matrix was
exactly the flattening matrix we should be able to dis-
tinguish between proper partitions and the other ones
because proper ones would have exactly rank 4 and the
other ones would not. This could be done easily by check-
ing whether all 5 x 5 minors vanish or not, but since we
only have the estimated matrices we have to develop a
method to decide which one is “closer” to rank 4 matri-
ces. Since we want to know how close is a matrix to the

set of rank 4 matrices }V we should define a distance. In
this case we will work with the distance induced by the
Frobenius norm (which is the square root of the quadratic
sum of all elements in the matrix). It can be shown that
the distance in the Frobenius norm of a matrix to V can
be computed as the quadratic sum of the singular values
of the matrix other than the first four. This is, if M
is an m X n matrix with values in C, its singular value
decomposition is a factorization of the form

M=UXV*

where U is a m X m unitary matrix, 3 is a m x n diag-
onal matrix with entries o; > 0 and V* is the Hermitian
transpose of a n X n unitary matrix. Then we stated that
the distance of an arbitrary matrix to rank 4 matrices in
the Frobenius norm is simply

min{m,n}

2
E o;.

=5

d(M, V) =

The Erik method uses this fact to give a score to
each flattening matrix. Indeed, it works as follows:
given an alignment and a partition A|B, it computes
the estimated flattening matrix and then it obtains
the singular value decomposition of the matrix and

computes the distance d(flatt4|5,V) which is the score
assigned to the partition. Hence the partition which is
estimated to be proper is the one that has the lower score.

The Erik42 method slightly modifies the previous pro-
cedure by noticing that since there are mutations that
are more probable than other ones (e.g. similar species
have similar nucleotid sentences) then there are rows and
columns which are more filled than other and this fact
can lead to wrong predictions. The solution given by
the Erik+2 method is to normalize first rows and then
columns so as each one sums up to 1. Scores obtained
after normalizing by both rows and columns are taken
into account to compute the final score.

B. Some issues of the method

One has to take into account that if we are dealing
with a case with n = 4 then the flattening matrices
for 2 x 2 partitions will have dimension 16 x 16. But
in our case we used the algorithm to treat cases with
12 species, which leads to flattening matrices with
dimensions 42 x 419 for 2 x 10 (actually the dimensions
of the matrix we were dealing with computationally
were about 16 x 60000 since we were only taking into
account nonempty rows and columns) and 4% x 47 for
5 x 7 partitions. This explains why alignments with
size 100000 work fine with 4 species but often are not
enough to fill bigger flattening matrices so as to give
a closer approach to the theoretical situation. It is



important to notice that this important problem is only
due to the lack of enough data, since if we were working
with theoretical flattening matrices and not with the
estimated ones then the Erik method would assign a
perfect 0 score to the proper partition and a strictly
greater one to not proper ones.

Another issue we tried to address is to make scores
which come from partitions with different size compara-
ble. With the existing method it was not possible since
the diagonal matrices ¥ dimensions depend on the size
of the partition and hence when dealing with partitions
where both sets have similar cardinal we have more sin-
gular values to sum than when one set has significantly
more elements than the other.

III. OUR PROPOSED MODIFICATIONS

In this section we describe some of the most successful
modifications out of the ones we tried. We start off with
the observation that for the 2 x 10 sized partitions the
flattening matrices have lots of columns which contain
a single element due to the lack of data and that this
fact can easily alter the rank of the matrix. Since the
theoretical model stated that we should be dealing with
matrices of rank approximately 4 we conjectured that
there should be an important amount of data in a few
rows and columns.

First of all we looked at how data should be distributed
if the matrix was completely random to compare it to
the actual flattening matrices. We obtained (assuming
alignments of size 10° as the ones we had) for instance
that for the 2 x 10 partition there would be on average
95380 nonempty columns where 90869 of them have
only one entry. The actual matrices have about 60000
columns, 40000 of them having a single entry, hence
dispersion is lower than in the random model but not
much lower. For 5 x 7 partitions, we observed that
random matrices have entries in almost all columns (we
computed an average of 16347 nonempty columns out
out 47 = 16384 possible and we expected that just 98
columns had one entry). In this case we observed that
on average we had 9000 nonempty columns so dispersion
was also lower than in the random case.

We also looked with detail to some cases and found
out the following patterns for flattening matrices coming
from a proper partition. They usually:

e Have a lower amount of nonempty rows and
columns.

e Have less rows and columns with only 1 entry.
e Have more entries in the most populated rows.

This led us to think that a good idea was to reorder
rows and columns according to their number number

of entries in order to have the most populated (and
hence most significant) rows and columns in the first
place. Then we consider the sub-matrices obtained by
taking the m rows and the first & columns. We apply
the Erik+2 method to those sub-matrices and then we
increase the value the k a certain amount (we usually
increased by 1000 because we saw heuristically it gave
a nice balance between time of computation and data
considered), compute the score again and so on and
finally we add up all the scores. In order to compare the
scores between partitions of different size, it is a good
idea to divide the score for the number of total SVDs
done, but when dealing with partitions of the same size
this does not help since usually the wrong matrices have
a higher number of columns and so in those cases we do
a higher amount of SVDs, helping to increase the score
for not proper partitions.

We also considered to do an analogous procedure for
the rows, i.e. considering sub-matrices of size ki X ko
and then increase both k; and ko, but since we are
usually dealing with matrices which have m < n
we did not see a significant improvement of the re-
sults. Due to this fact we also need to multiply by
m the score obtained by normalizing the columns and
by mn the score obtained by normalizing the rows in
order to have the same order of magnitude for them both.

Since we are adding up scores of matrices with different
dimensions the next step is to give estimates for the value
of those scores so we can normalize. We will try a simple
model that gives us a lower bound for the Frobenius norm
of the matrix. Assume that each row has e/m entries
which are equal to 1, where e is the total number of
entries of the matrix. After normalizing by rows, those 1
entries becomes m/e. Hence the Frobenius norm of the
matrix is

2

1Ml =/ (£) " = om=

and since we are multiplying this score by the number
of columns n then then our bound becomes mn/+/e.
It is easy to see that an analogous argument gives the
same result when we normalize by columns and then
multiply by m. An upper bound for the Frobenius norm
is obtained easily since the maximum is attained when
all the data of the row is in a single position, so that
|[M]|l2 = m and after multiplying by n we obtain mn.
Again the argument is symmetric for both rows and
columns.

Since dispersion is high we assume that our data will be
closer to the lower bound model and hence the score we
assign to a m xn sub-matrix (the overall score is obtained
after adding up all the scores given to sub-matrices).

n - rowscore + m - colscore

score(M) = /e




where rowscore and colscore are the scores assigned by
the Erik+2 method after normalizing rows and columns
respectively. After computing the overall score we can
divide by either the number of SVDs done (so as to
compare our score to scores coming from partitions with
different size) or by the expected number of SVDs for
that size of the partition, in order to keep a penalty to
flattening matrices which require a higher number of
SVDs because they have a higher number of columns.

Another option (which takes more into account the
algebraic nature of the problem) is to notice that V is an
algebraic variety (since it can be described in terms of a
system of polynomial equations because the condition to
be rank 4 is to have all 5 x 5 minors equal to zero), which
dimension varies when we change the dimensions of the
matrix, but were not able to reach a good conclusion from
this idea.

IV. PERFORMANCE OF THE METHOD

To test the performance of our method and to compare
it to the original Erik+2 method, we were given a set of
100 data files corresponding to trees with 12 leaves with
the same topology but with random branch lengths. For
every data set, we obtained the scores for 9 partitions, 3
of size 2 x 10, 3 of size 3 x 9 and 3 of size 5 x 7, where
one partition of each size was proper and the rest were
not.

The following table contains the information of the per-
formance for the following methods: sc; is the number of
rows of the flattening matrix, sco the number of columns,
scg the score given by the original Erik4+2 method, scy
the Erik+2 using the mn/+/e normalization, scs our score
without dividing for the number of SVDs, scg our score
taking the arithmetic mean of the scores for each sub-
matrix, and scy our score taking a pondered mean of the
sub-scores.

TABLE I. Percentage of success for the different methods (we
count draws as a success)

Partition|sc1 sce sc3 scs4 sCs sCg SCr
2 vs 10 |100 64 33 40 70 65 67
3vs9 |100 50 39 31 42 35 36
5vs7 | 97 76 58 21 47 24 26

TABLE II. Average of the score given to proper partitions

Partition|sc;  sco SC3 SC4 SC5 SCg SC7
2vs 10 | 16 57418 3209 181 9972 176 177
3vs9 |62 38453 13926 296 10929 291 291
5vs 7 |890 8745 75489 589 4530 620 677

TABLE III. Average of the score given to wrong partitions

Partition|sc;  sco SC3 SC4 SC5 SCg SC7
2vs 10 | 16 59347 3206 181 10502 179 183
3vs9 | 64 39422 14396 293 11134 288 288
5vs 7 [954 9816 87601 560 4814 584 638

V. CONCLUSIONS

We can see that our method (score 5) works signif-
icantly better than the original Erik+2 method since
it recognizes the proper partition out of the three 70
out of 100 times, since the original method worked fine
only 33% of the time. This could be explained by the
fact that the Erik4+2 method does a single SVD where
only 16 singular values are obtained (notice that the
Erik+2 method is more accurate as the partition is more
balanced), and that the dispersion present in those type
of matrices fits nicely with our model.

For the 3 vs 9 case our method turns out to be slightly
better but not significantly, but neither the original
method nor ours provided a satisfactory result, so we
thing new ideas should be introduced to deal with this
problem. In the 5 vs 7 case the most effective score
turns to be the original Erik4+2 method, but we should
notice that the percentage of success of taking the score
as simply the number of columns is really high and
the averaged difference of columns between proper and
wrong partitions is percentage-wise the most significant.
The number of rows, which was not reliable for the other
partitions, could be considered as the number of rows
increases and for this case it gives a huge percentage of
success.

We can also see that while we have reduced the rela-
tive difference between scores when averaging (although
by doing this we are decreasing the percentage of success)
those scores are not yet comparable. A noticeable fact
is that for the method that works better (without aver-
aging) scores obtained for the first two sizes are really
close, but for the 5 vs 7 it reduces to less than one half
(this is due to the fact that we make much less SVDs,
as one can see looking at the averaged score), while for
the original Erik+2 the score shows a steady increasing
trend when the partition gets more balanced. We have
to keep in mind that our estimations were for the 2-norm
of the matrix, while we were actually dealing with the
distance to a variety, so we are not taking into account
the first 4 singular values and we do not know whether
this is going to make the score change always in the same
way, and also that score differences between proper and
wrong partitions are not big enough to ensure that if we
were able to reduce them to a common scale we would be
able to distinguish between proper and wrong partitions
which have different size.
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