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TECHNICAL SUMMARY 
The principal aims of the report written on termination of this project are 
(i)  to summarize the most important mathematical models of migration that 
have so far been used, (ii)  to provide a critical commentary on these 
models,  and (iii)  to assess what further work is necessary before 
mathematical models can be used to their full  potential in framing, and 
monitoring,  legislation on migration that  is  both scientif ically sensible 
and practical.  

Chapter One of the report summarizes the principal classes of migration 
behaviour ,  and the c lass i f icat ion adopted is  c lose ,  in  physical  terms,  to  
tha t  adopted  by  Katan  in  1971;  however  the  prec ise  def in i t ion  of  the  
classes is given in terms of mathematical models.  
 
The next Chapter deals f irst  with the units and notation used throughout 
the report .  Then some relatively simple models are presented and used to 
highlight several  features that  recur throughout the report  and which have 
crucial  inf luences  on the success ,  in  both pract ical  and scient i f ic  terms,  
of  any mathematical  model  of  migrat ion.  The f i rs t  of  these is  that  
systematic  use  of  non-dimensional  quant i t ies  in  data  analysis  and 
presentat ion,  and in  mathematical  predict ions of  migrat ion,  should be 
rou t ine  p rocedure ;  unfor tuna te ly  i t  i s  no t .  The  second  fea tu re  i s  tha t  
the  geometry of  the food/package system is  among i ts  most  important  
properties in the sense that  changes in the shape or size of the system can 
cause large changes in  the amount  of  migrat ion;  this  point  has  largely 
been ignored in  the past .  Al l  workers  are  agreed on the f inal  feature  
which is  the  importance of  correct ly  model l ing the boundary and ini t ia l  
condi t ions  that  apply to  the  migrant  concentrat ion.  The descr ipt ion of  
mathematical models,  and commentary on them, are the subjects of Chapter  
Three.  This begins with a discussion of well-known formulae that  give the  
maximum possible  concentrat ion of  the migrant  in  the food.  The res t  of  
this Chapter deals with models that  predict  how the mass of migrant in the  
food var ies  with  t ime.  
 
Most of the models in the li terature apply to Class II systems which, 
roughly speaking, are those where the food may influence migration but does 
not have a controll ing influence.   All  the models assume that  migration is  
a  dif fusion process ,  and there  is  a  substant ia l  account  in  this  Chapter  of  
the governing equations for such a process (and of useful approximations to  
them).  In  view of  the  importance of  geometry,  this  account  gives  the 
equations in forms which apply in allgeometries and it  also emphasizes the  
need for  fur ther  experiments ,  par t icular ly  on condi t ions  during migrat ion 
at  the  interface between the food and the plas t ic .  There  then fol lows a  
critical summary of the solutions of these equations that have been used in  
migration work. All these solutions apply only in one-dimensional geometry 
and may be reasonably accurate predictors of what occurs in most migration 
tes t  ce l l s ;  however  i t  i s  un l ike ly  tha t  they  a re  quant i ta t ive ly  appl icab le  
to  most real-life food/package systems although they do enhance 
understanding of the relative importance of the various physical  processes 
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tha t  in f luence  the  quan t i ty  o f  migra t ion ,  and  th i s  i s  va luab le .  Th i s  
section of the report  also presents a new solution which includes all  the 
earl ier  ones as special  cases.  

Class III systems are considered next; in such systems migration is 
c o n t r o l l e d  b y  t h e  f o o d  ( o f t e n  a s  a  r e s u l t  o f  t h e  f o o d  p e n e t r a t i n g  t h e  
p las t ic ) .  Al though such  sys tems  are  be l ieved  to  form the  major i ty  there  
has  been less  effor t  on their  mathematical  model l ing than on that  of  Class  
I I  sys tems .  Al l  known models  a re  rev iewed;  the  pr ime conc lus ion  of  th i s  
i s  that much more work needs to be done, not least on comparison with data. 
The Chapter concludes with a discussion of some complications, including 
c h e mi c a l  c h a n g e  a n d  i n h e r e n t  v a r i a b i l i t y .  O n e  c o n c l u s i o n  o f  t h i s  
d i scuss ion  i s  tha t  there  should  be  more  cons idera t ion  than  h i ther to  of  
model l ing migrat ion as  a  s tochast ic  process .  

The first  three Chapters emphasize (but not exclusively) the use of 
mathematical  models  in  scient i f ic  research.  Their  use  in  draft ing 
legislation and in designing food/package systems that meet legal standards 
i s  the  major  concern  o f  Chap te r  Four ,  the  f ina l  Chap te r  o f  the  repor t .  I t  
i s  noted that  legis la t ive  s tandards  that  are  expressed in  terms of  tota l  
t ransfer  per  uni t  area  of  the  package surface,  but  with  no reference to  the 
package geometry, should not be accepted since they do not control the 
concentration of migrant which can be made arbitrarily high. The report 
endorses  s tandards  expressed in  terms of  the  concentrat ion i tse l f  
(expressed as  a  mass-rat io)  and supports  the  use of  decis ion-t rees .  
However i t  is  concluded that  there is  inadequate knowledge at  present for 
a l l  b ranches  in  such  a  t r ee  to  be  spec i f i ed  re l i ab ly .  

We believe that i t  is very likely that work satisfying the requirements 
established in the report will lead to a small group of mathematical models 
cover ing  mos t  rea l  s i tua t ions ,  g iv ing  resu l t s  re l iab le  to  a t  l eas t  an  order  
of  magnitude. This should be perfectly adequate, when combined with 
toxicity data of similar,  or greater variability,  to util ise as a basis for 
l eg is la t ion .  
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CHAPTER ONE:    BACKGROUND 

 

 

 

Plastics used in food packaging comprise a range of molecular species 
from very high to very low molecular weights.  It is generally accepted 
that the higher molecular weight species (macromolecules) are so immobile 
and insoluble that  their  migration into the food is  so low that  i t  can be 
ignored, i .e.  the migration of such molecules is ,  in practical  terms, 
zero. The remaining species can, potentially at least,  migrate.  Examples  
of such substances are residual monomers or processing reagents, additives 
such as antioxidants or plasticisers,  colouring materials and decom-
position or reaction products formed in processing or work-up.  Potential 
migrants may or may not have any vapour pressure; in this regard it  is 
important to recognise the wide range of temperatures that packaged food 
can be exposed to from the time at which containment occurs until the 
package is finally removed or the food within it  has been totally con-
sumed.  Throughout this report, the term contaminant* will be used to 
denote a single potential migrant.  

 

Some contaminants have undesirable effects on the consumer if they are 
present in sufficient quantity in food.  Such effects range from un- 
pleasant (but harmless) taste and smell to the ingestion of dangerous 
materials like heavy metals or VCM.  Inevitably therefore legislators 
wish to lay down standards which control both the manufactured plastic 
packaging and its migration properties when it is in contact with food. 
Considerable legislation is already in force and widespread consultation 
is taking place on new draft proposals which, if adopted, are intended  
to  f inal ise  the  legis la t ion.   However  i t  i s  obviously desirable  that  
such legislation, designed to protect the consumer, should be as soundly 
based, scientifically speaking, as possible. 

 

There  are  several ,  more or  less  dis t inct ,  themes to  this  scient i f ic  
research,  and this report  is  a contribution to one of these,  namely the 
use of mathematical and physical models to describe and predict migration. 

 

*Use of this term should not cause confusion even though, perhaps, ordinary 

English usage would require it to be used only after migration has occurred. 
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The use of mathematical  models is  potentially attractive because i t  may 
be that  a single model* can describe,  to acceptable practical  accuracy, 
what occurs in many apparently different si tuations.   If  so,  the need for 
costly and time-consuming chemical analyses of innumerable special cases 
will  be significantly reduced; however the need for such analyses can 
never disappear since we are concerned with science and the real world. 
Mathematical models must be validated and tested against data, and physical 
properties such as diffusion and partit ion coefficients will  have to be 
determined for new materials. 

An additional advantage of mathematical models is that they will permit 
the rigorous classification and quantification of migration behaviour.     
I t  i s  for tunate  that ,  in  qual i ta t ive  terms,  there  appear  to  be only a  
moderate number of types of such behaviour; the summary below is based   
on the treatment in Katan (1971) - see also Briston and Katan (1974) -  
and further relevant discussion has been given by many authors, including 
Figge (1980), Crosby (1981) and Shepherd (1982).  Class I systems are 
those in which essentially no migration takes place, and possible examples 
include cases where the contaminant combines chemically with the polymer 
that forms the basic plastic, and those involving some hard and/or dry 
foods l ike  sal t  and sugar .   In  consider ing this  c lass ,  however ,  i t  must  
be remembered that the surface of the packaging may contain some residual 
toxic material from the manufacturing process and abrasion may occur. 
Systems in Class II were defined to be those where the migration of con- 
taminants  occurs  f rom the plas t ic  whether  or  not  i t  i s  in  contact  with  
food.  Although the food may accelerate migration, i t  does not have a 
controlling influence.  Katan (1971) - see Briston and Katan (1974,    
pps .  145-149)  -  fu r ther  subdiv ides  th i s  c lass ;  fo r  the  presen t  i t  i s  
sufficient to note that  i t  includes most monomers,  water in all  plastics 

 

*The concept of a mathematical model is difficult to define concisely or 
precisely.  Roughly speaking, a model of a migration process involves a 
set of hypotheses about the underlying physics and chemistry which, when 
expressed in mathematical terms, enable quantitative deductions to be 
made about quantities like the concentration of a contaminant in a food 
and its dependence on time.  These ideas should become clearer from later 
work in this report ,  especially in Chapter Three.  
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and some addi t ives  (such as  ant is ta t ic  agents  and colourants) .   For  the 
purposes  of  the  present  repor t ,  the  above  def in i t ion  wi l l  be  s l igh t ly  
modif ied to  include al l  cases  where any penetrat ion of  the  plas t ic  by   
the  food  has  an  ins ign i f i can t  e f fec t  on  migra t ion .   F ina l ly  Class  I I I ,  
o f ten  re fe r red  to  as  leaching ,  inc ludes  a l l  cases  where  migra t ion  i s  
con t ro l l ed  by  the  food  wi th  the  impl ica t ion  tha t  i t  i s  neg l ig ib le  in     
the  absence  of  food .   An impor tan t  g roup  in  th i s  c lass  i s  tha t  in  which  
the food penetrates  the plas t ic ,  perhaps with  a  change in  volume,  and 
thereby  enables  subs tan t ia l  migra t ion  to  occur .   This  c lass  inc ludes ,    
fo r  example ,  mos t  addi t ives  in  mos t  p las t ics  in  contac t  wi th  o i ly  or  
f a t ty  foods ,  o r  in  hydroph i l i c  p las t i c s  such  as  ny lons  in  con tac t  wi th  
a q u e o u s  f o o d s .   U s e f u l  a s  i t  i s ,  t h e  a b o v e  c l a s s i f i c a t i o n  i s  n o t  r i g i d ;  
for example,  improvements in analytical  techniques may result  in a  
sys tem prev ious ly  in  Class  I  be ing  t ransfer red  to  Class  I I .   Fur thermore ,  
the  c lass i f icat ion is  for  a  specif ic  t r io  of  food,  polymer and con-  
taminant.  Since polymers normally contain many different contaminants  
when they are used to form plastic packaging, i t  is  often true that  a 
food/packaging system exhibits behaviour in all  three classes. 
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CHAPTER TWO:      MATHEMATICAL AND PHYSICAL PRELIMINARIES 

 

 

It has already been noted in Chapter One that legislation should be based 

on the results  of scientif ic research.   The main purpose of this report  is  

to describe the role of the specific disciplines of physics and (especially) 

mathematics in this regard:  thus the Description of Work in the project 

agreement includes the phrase:  "To analyse by means of mathematical and 

physical models the migration of additives and residual small chemical 

species from plastics into foods with which they are in contact".  At the 

outset it has to be said that hitherto, and with some notable exceptions, 

rather too much emphasis has been placed on research into the physical 

chemistry of migration processes.  Many authors have not considered 

mathematical models and many others have quoted results from e.g. Crank 

(1979) but have either not subsequently used these results or have not 

used them efficiently.  It  is hoped that the outcomes of this report will  

include 

      (a)  convincing readers that good mathematical models can be much 

 more useful in studying migration than has been generally 

 recognised; 

      (b)  persuading those embarking on future research that success in 

       th is  f ie ld  requires  ful l  in ter-discipl inary col laborat ion.  

Although this chapter has the word "Preliminaries" in its t i t le i t  is,  

nevertheless, very important since it exposes certain principles which 

not only underpin the remainder of the report but also, it is believed, 

are central to any sound future application of mathematical models to 

migration. 

As far as possible, technical mathematics has been kept to a minimum so 

that the report will be as accessible to as wide a readership as possible. 

In any event, understanding the details of the formal mathematics per se 

is less important than sympathising with the underlying philosophy which 

is to unify, and to quantify, in a scientifically sensible way. 
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The field of migration research has used many different units, as well as 

many different materials!  Concentrations, for example, are expressed in 

p.p.m. (parts per million), percentages, mg/kg and mg/litre to name but 

a few;  worse still, mongrel units like ing/square inch have been used to 

describe transfer.   In accordance with the desirability for unity (as 

emphasized by Katan 1979) and with worldwide standard practice in physics, 

engineering and mathematics, the SI (Systeme International) system of units 

will be the primary one used throughout this report.  This system is based 

on the fundamental units of metre (m), kilogram (kg) and second (s).  Thus 

one milligram will normally be expressed as 10-6kg, and an overall migration 

limit  of 10mg/dm2 as 10-3kg/m2 or - more commonly - as 10-3kg m-2 .  The 

standard unit of concentration used in this report will be kg m-3 (kilograms 

per cubic metre) since this can be unambiguously applied in all cases, 

unlike, for example, percentages, where it is unclear whether the percentage 

is by mass or by volume.  Some states have, and the EEC proposes, a 

migration limit of 60mg/kg.  For food with a density of 103kg m-3 (the 

density of water) this is a concentration of 6 ×  10-2  kg m-3, i .e. 0.06kg m-3, 

and similar conversions can be made, if necessary, for foods with other 

densi t ies .   Note  that  in  a  la ter  sect ion -  §2.4 -  of  this  chapter ,  the  con-  

sistent and widespread use of non-dimensional quantities will be strongly 

advocated.  This means that many of the quantities will be pure numbers, 

i .e .  units  become irrelevant.  

Table 1 summarizes the principal notation that will be used throughout this 

report.  From time to time other notation will have to be introduced for 

specific purposes;  on such occasions full  definitions will  be given.  In 

addition to the entries in this table, standard mathematical notation will  

be used for common constants (e.g. π,е) and functions.  One function that 

will  often appear is the error function, abbreviated to erf,  and defined 

by the equation 

.due2xerf
x

0

u2

∫ −

π
=        (2.1) 

The right-hand side of (2.1) involves an ordinary integral,  and the factor 
( π2 ) is included for arithmetical convenience since, with the definition 
(2 .1) ,  1erf =∞ .  Tables  of  the  e r ror  func t ion  a re  readi ly  ava i lab le  and  
its graph is sketched in Figure 1, together with that of the complementary 
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QUANTITY or PROPERTY SYMBOLS UNITS 
Concentration of 
contaminant 

C Kg m-3 

Average concentration 
of contaminant 

c  Kg m-3 

Time t s 
Cartesian coordinates x,y,z m 
Radial coordinate 

2
1

222 )zyx(r ++=
m 

Mass m or M kg 
Length l or h or a m 
Volume V m3 

Area A m2 

Density ρ kg m-3 

Temperature T K 
Diffusion coefficient D 

12 sm −
 

Partition coefficient γ NONE 
Non-dimensional quantities 
(as illustrated by the 
partition coefficient in 
the line above 

Greek letters 
(e.g. α or г) NONE 

TABLE 1:  List of the most common notation in the report. 

error function  erfc, defined by the equation 

.due2xerf1xerfc x
u 2

∫
π

=−= ∞ −     (2.2) 

A convenient reference for the properties of these functions is Abramowitz 

and Stegun (1965, Chapter 7) and a shorter account is given in Crank (1979, 

Table 2.1 on p.375, and elsewhere).  It will be noted from Figure 1 that, 

like many functions relevant to migration, the curve with equation y = erf x 
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FIGURE 1   Graphs of y = erf x (equation 2.1) and y = erfc x (equation 2.2) 

has an asymptote as x approaches infinity, in this case the line y = 1*. 

 

*Quite deliberately, the variable x has been used in (2.1) and (2.2) to 

denote the number at which erf and erfc are being evaluated, and it has 

a quite different meaning from that in Table 1 (where x denotes a Cartesian 

coordinate).  This double use of one symbol to denote two unrelated 

quantities is unfortunately sometimes inevitable because of the limited 

number of symbols available;  in this case of course both uses are entirely 

in accord with standard conventions but,  in general ,  the use has to be 

deduced from context. Exactly the same situation occurs in ordinary English, 

e.g. "The band played well" and "I put an elastic band round the packet". 
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Many of the general points to be made in the remainder of this chapter 

can be illustrated by considering the mathematical structure of a class 

of migration problems without, at this stage, enquiring about their 

relevance to real applications.  This will be considered later.  Figure 2 

illustrates the geometry for the first problem.  Plastic occupies the 

region x > 0 and food the region -a < x < 0.  It will be supposed that the 

thickness of the plastic is irrelevant, i.e. it can be regarded for 

migration purposes as being of infinite thickness.  Initially, at t = 0, 

a contaminant is present in the plastic at uniform concentration C0. 

(Throughout this report the term "uniform" means "independent of position"; 

in this case - therefore - the initial concentration of contaminant in 

the plastic is the same, viz. C0, everywhere in the plastic.)  For t > 0 

migration of contaminant takes place across the interface x = 0.  Within 

the plastic, assume that transfer of contaminant takes place according 

to the standard constant-coefficient diffusion equation (Crank 1979) 

,
x

cD
t
c

2

2

∂
∂=

∂
∂               (2.3) 

where D is the diffusion coefficient of the contaminant in the plastic 

and C is the concentration of contaminant.  For t > 0, C is no longer 

uniform and, indeed, depends on both x and t;  when this dependence requires 

emphasis, the notation C(x,t) is used instead of C. For the present exer- 

cise, it will be assumed* that the diffusion coefficient of the contaminant 

in the food is so large (compared with D) that, for t > 0, the concentration 

of contaminant in the food is uniform.  Its value will be denoted by C*, 

where C* depends on t (i.e. the notation C* = C*(t) may be adopted if required.) 

 

The first general point is now relevant, namely that (2.3) is, in itself, 
an insufficient piece of information for the problem to be solved completely. 
Initial conditions and boundary conditions, specific to the problem, are 
needed in addition.  Here the initial conditions have, in fact, already been 
given in words;  in mathematical terms they are: 

C(x,0) = C0  for x > 0 ;   C*(0) = 0 .     (2.4) 
 
*It is worth emphasizing again that the validity, in practice, of the 
assumptions made in this section will be discussed later. 
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FIGURE 2.   Sketch of geometry for first problem in §2.3 

 

FIGURE 3. Sketch of geometry for second problem 
        of §2.3.  Diffusion takes place at each 
        place in the plastic in the direction 
        passing through the centre of the sphere 
        (as indicated by the arrowed lines). 
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The boundary conditions have not yet been discussed.  It will be supposed 

in this example that the interface at x = - a is impermeable to contaminant 

and  tha t ,  for  la rge  pos i t ive  x ,  C(x , t )  i s  c lose  to  i t s  in i t i a l  va lue  C 0 ,  i . e .  

C ( x , t )  →  C 0   a s  x  →   ∞  .     (2.5) 

(Note that the notation C(x,t) in (2.5) emphasizes that (2.5) h olds for 

all  t  > 0.)  Conditions at the food-plastic interface x = 0 are of crucial 

importance.  First of all, since no contaminant is lost from the food to 

the environment outside, the rate of increase of the mass of contaminant 

in the food must equal the rate at which contaminant is crossing the 

interface from the plastic.  Let A be the area of the food-plastic inter- 

face so that the total mass of contaminant in the food is Aa C*, and its 

rate of increase with time is Aa (dC*/dt) since A and a are constant.  Con- 

sistent with (2.3), the rate at which contaminant is crossing from the 

plastic to the food per unit area is D(∂C/∂x) evaluated x = 0.  Hence 

,
0

*
0

*
=∂

∂
=⇒

=∂
∂

=
xx

cD
dt

dc
a

xx
cAD

dt
dc

Aa     

 (2 .6)  

where the conventional notation 
0x=

•  denotes evaluation at (in this 

case) x = 0*.   Finally,  i t  will  be assumed that the concentrations of 

contaminant on either side of the interface satisfy the following con- 

d i t i o n :  

,0xγC*C ==               (2.7) 

where γ  is constant.   More will  be said later about the initial and boundary 

conditions,  particularly (2.7);   for the moment i t  is  sufficient to note 

that the information that they contain is additional to (2.3) and that some 

such conditions are essential before the solution can be determined. 
 

*More formally (and more precisely) the phrase "evaluation at x = 0" means 

"the l imit  as x →  0 through posit ive values".   The point is  that  (2.3) 

cannot hold at x = 0, since - according to the model - this is the interface. 

However the model assumes (implicitly) that a good approximation to reality 

can be obtained by assuming that the interface has zero thickness, and this 

assumption, which can be tested in any real case only by reference to 

experimental  data,  justifies the l imit  process implicit  in (2.6).  
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It is important to note also that it has been assumed that there is no 

variation of C in the directions perpendicular to the x axis.  This can 

be true only if diffusion occurs as if the plastic is homogeneous and if 

the lateral boundaries, as well as x = -a, are impermeable to plastic 

and this is indicated schematically in Figure 2.  The interfaces at x = 0 

and x = -a must also be plane but their precise shape is irrelevant; 

they could be square or rectangular or circular etc. 

It can then be shown that 

.22exp10*
⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧

⎟⎟
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⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

a
Dterfc

a

DtCC
γγ

γ     (2.8) 

This solution is given, for example, in Reid, Sidman, Schwope and Till 

(1980) where further discussion can be found. 

 

Consider now another problem which has different geometry, but identical 

physics, to the one that has just been discussed. As illustrated in 

Figure 3, the food is in the shape of a sphere of radius a completely 

surrounded by plastic.  However, and this illustrates the second general 

point to be discussed later, the change in geometry is important.  For 

example, diffusion of contaminant in the plastic takes place (because of 

spherical symmetry) along the radii, i.e. along the lines emanating from 

the centre of the sphere.  Therefore, as shown by the two arrows in 

Figure 3, the direction of diffusion changes from place to place in the 

sphere.  This is in contrast to the first problem where the direction of 

diffusion is always a direction fixed in space, viz. the x axis.  This 

basic geometrical difference causes changes in some of the equations. 

In particular it is now appropriate to use r, distance from the centre of 

the sphere, instead of x, and (2.3) is replaced by (see e.g. Crank 1979)* 
 

*It is possible and correct, but mathematically inefficient, to use Cartesian 

coordinates x,y,z instead of r (where - see Table ))zyx(r1 2
1

222 ++=−  . 
In this case the governing equation is 
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and this is, physically speaking, identical with (2.9) although the proof of 
the truth of this statement requires some technical - but routine - mathematics. 
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∂
∂      (2.9) 

There are corresponding changes in the mathematical formulation of 

some of  the  in i t ia l  and boundary  condi t ions .   Note  f i rs t  tha t  now 

C =  C(r , t ) ;   thus  (2 .4)  becomes  

C( r ,0 )  =  C 0   fo r   r  >  a  ,  C * (0 )  =  0  ,     (2.10) 

and (2.5) becomes 

C ( r , t )  →  C 0   a s   r  → ∞ .     (2.11) 

As with (2.5),  equation (2.11) holds for all  t  > 0.   A more substantial  
change is  required in (2.6).   The volume of the sphere is  3a

3
4 π  and i ts  

surface area is  4πa2 .   Thus,  using the same physical  principles that  

l e d  t o  ( 2 . 6 ) ,  

,
r
CD3

dt
dCa

r
CDa4

dt
dCa

3
4

ar

*

ar

2*3

== ∂
∂

=⇒
∂
∂

π=π    (2.12) 

and  i t  i s  c lear  tha t  the  fac tor  3  a r i ses  en t i re ly  f rom the  change  in  

geometry between Figures 2 and 3.  Finally (2.7) is replaced by 

.CC ar* =γ=      (2.13) 

The solution to this second problem turns out to be more complicated 

than the first ,  and to have a mathematical  structure that  depends on 

t h e  v a l u e  o f  γ  e x p l a i n e d  b e l o w  i n  § 2 . 4  a n d  a s  i l l u s t r a t e d  i n  F i g u r e  4 .  

For  p resen t  purposes ,  i t  i s  su f f i c ien t  to  quo te  two  spec ia l  cases :   fo r  

s ma l l  v a l u e s  o f  γ ,  
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a n d  f o r  ,
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(Whils t  (2 .14b)  holds  only i f  the  constant  γ  has  the value 
4
3 ,  i t  i s  

useful for present purposes not to make the numerical substitution.) 
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Suppose we wish to test whether the models above agree, for all  t ,  with 

experimental data.  Thus, in line with normal scientific procedure, we 

first  hypothesize that the results of the mathematical model calculations 

apply to a given dataset,  and then we look for discrepancies.  If  the 

discrepancies are judged to be too great,  the hypothesis is rejected. 

(Note that,  in line with the principle of falsification, scientific hypo- 

theses can never be proved, but only rejected.)  In line with this method, 

let us suppose that we have data from an experiment in which the geometry 

is essentially that of Figure 2, and let us hypothesize that equation (2.8) 

applies to the results.   The values of a and C0 can be measured before the 

experiment begins.  On the other hand, the values of γ  and D may or may not 

be known;  suppose they are unknown.  By hypothesis,  we are entitled to 

use the data to determine them. Now γ  be determined, at least in 

principle, from the data by measuring the value that C*, the concentration 

of contaminant in the food, approaches after a long time;  according to 

(2.8) this is γC0.  It  may also be shown from (2.8) that,  for sufficiently 

small values of t ,  a good approximation to C* is given by (e.g. Reid, 

Sidman, Schwope and Till  1980) 

.
a
Dt4CC 20* π

≈       (2.15) 

(It  is noteworthy that (2.15) is independent of the value of γ .)   From 

(2.15) it  follows that a graph of C* against t  has a slope of 

)a()D4(C 2
0 π  at  the origin and, as noted by many authors, this provides 

a method of determining D. 

Thus all  the quantities appearing in (2.8) are known, or (in the case of 

γ  and D) can be calculated as indicated above, or (in the case of C* and t) 

can be measured as they vary.  The results of the experiment can be plotted 

in many ways;  for example C* can be plotted against t .   However, and this 

is the key point of present concern, the resulting plots would change if 

any of γ ,  C0, D or a changed.  This is undesirable and inefficient; 

fortunately a far more satisfactory alternative is available.  Define 

new variables г  and τ  by the equations 

.
a

Dt,
C
C

220

*
γ

=τ
γ

=Γ       (2.16) 
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Then г and τ  are non-dimensiona1 quantities, i.e. they have no units and 

are pure numbers whose values are independent of the particular system 

of units chosen. We can refer to г and τ as non-dimensional concentration 

and non-dimensional time respectively.  In terms of г and τ, equation (2.8) 

can be written in the form 

)}(cerfe1{ τ−=Γ τ .     (2.17) 

The graph of г against τ  given by (2.17) is the solid curve in Figure 4. 

It represents the behaviour of all systems with the geometry of Figure 2 

subject to the hypothesis that (2.8) holds.  The single equation (2.17) 

(or the single solid curve in Figure 4) describes all such systems 

irrespective of the values (in any particular case) that γ ,  C0, D or a 

may have.  It is then easy to test whether the data agree with the hypothesis 

that (2.8) holds by rescaling the measured values of C* and t so that they 

are in their non-dimensional forms г and τ. 

Use of non-dimensional quantities, as illustrated by the example just 

discussed, therefore significantly reduces the labour involved in testing 

experimental data using mathematical models.  One important conclusion of 

this project is that all  data and all  models should be expressed in appro- 

priate non-dimensional terms. 

 

 

In  l ine  with the conclusion of  §2.4,  i t  i s  natural  to  express  the resul ts  

(2.14a) and (2.14b) for the spherical geometry shown in Figure 3 in terms 

of the non-dimensional concentration г and the non-dimensional time τ  de- 

f ined  in  (2 .16) .  The  resu l t s  a re :  

(2.14a):  )}3(erfce1{ 9 τ−=Γ τ ;      (2.18a) 

(2.14b):             .
2
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   (2.18b) 

The dashed curves labelled (A) and (B) in Figure 4 show the result of 

p lo t t ing  г  aga ins t  τ  fo r  (2 .18a)  and  (2 .18b)  respec t ive ly .  



 

 

 

 
FIGURE 4. Graphs of non-dimensional concentration (Г)  against non-dimensional time (τ). 
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Two comments are in order.  Unlike the plane geometry case of Figure 2, 

the results for the spherical  geometry case of Figure 3 do not collapse 

onto a single curve when expressed in terms of г  and τ ;   there is  in 

fact  a different curve for each value of γ*  .  (However the use of non- 

dimensional quantit ies,  advocated in §2.4,  st i l l  represents an enormous 

gain in efficiency.  Without such use the plots of C*  against  t  would 

change if any of γ, C0, D or a changed whereas, with non-dimensional 

quantities,  only changes in γ  matter.)   The second comment is that,  what- 

ever  the value of  γ ,  the  plot  of  г  against  τ  i s  a lways above the curve 

label led (A) in  Figure 4.   Thus,  for  a  given value of  τ ,  the  value of  г  

for the spherical geometry case of Figure 3 is never below that value 

given by curve (A),  i .e.  for this geometry,  curve (A) represents the 

lowest migration - not surprising when it  is recalled that curve (A) 

represents behaviour for small values of γ .   Furthermore curve (A) is above 

the  so l id  curve  for  a l l  va lues  of  τ ,  i . e .  for  a  g iven  va lue  of  τ  migra t ion  

in the spherical geometry case is always more rapid (for given values of 

γ  and C0) than in the plane geometry case. 

These comments illustrate that migration behaviour depends on the geometry 

of  the food -  package system.   The l i terature  pays l i t t le  a t tent ion to  

this  fact ,  and the actual  (and proposed) legislat ion almost  none at  al l .  

A recommendation of this report  is  therefore that  explicit  at tention 

should be given,  both in planning research and in draft ing legislat ion,  

to this unfortunate omission.  Suggestions as to how this recommendation 

can be implemented will be made later in this report. 

 

 

 

* Indeed this si tuation will  be the norm.  I t  can be shown that,  whatever 

the geometry, a migration system satisfying the physical laws described in 

§2.3 wil l  resul t  in  an equat ion of  the form г  =  f(τ ,γ) ,  where the funct ion 

f  depends on the geometry.   I t  has been shown in §2.4 that a peculiari ty 

of  the plane geometry of  Figure 2 is  that  f ,  nominally a function of  the 

two var iables  τ  and γ ,  does  not  in  fact  depend on γ -   but  this  could not  

have been anticipated. 
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In §2.3 it was emphasized that the diffusion equation (2.3) needed supple- 

mentation by additional boundary and initial conditions before precise 

predictions could be made.  The same statement would be true whatever 

(differential) equation were used.  Furthermore, the difference between 

curves (A) and (B) in Figure 4 can be ascribed entirely to a difference 

in the value of γ, which enters the mathematical formulation of the problem 

via the boundary condition (2.13).  It can therefore be seen that accurate 

predictions can (in general) be made only if the proper boundary and 

initial conditions are known with adequate precision.  In migration problems 

this statement has particular force in relation to conditions at  the inter-  

face between food and plastic, and a further recommendation is that more 

research on this specific problem should be undertaken. 

 
It  is emphasized again here that the point of this chapter has been to 

discuss, and therefore bring out, certain basic physical and mathematical 

principles that will be crucial in the evaluation of mathematical models 

in Chapter 3 of this report, and in the recommendations for development 

in Chapter 4. 
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CHAPTER THREE:   CRITICAL DISCUSSION OF IMPORTANT MODELS 

 

In  the course of  preparing this  report  several  hundred papers  and books 

have been consul ted,  of  which about  90 have been ident i f ied as  of  par t ic-  

ular  importance,  and s tudied in  depth.   This  chapter  provides  a  coherent ,  

but  cr i t ical ,  account  of  those mathematical  models  in  this  l i terature  that  

have proved most  useful  or  appear  to  be most  promising;   there  are  a lso 

some or iginal  contr ibut ions.   The discussion wil l  not  be a  piecemeal  

annotated l is t  of  a l l  papers  that  have quoted mathematical  formulae but ,  

ins tead,  an at tempt  a t  a  logical  development  in  which important  work is  

quoted where appropriate .   (Consis tent  with  this  approach and also to  

avoid useless  repet i t ion,  not  a l l  the  90 or  so sources  wil l  be  referred 

to  in  the text ,  but  a  ful l  l i s t  i s  provided in  §3.8.)   Natural ly  the 

account  wil l  be  consis tent  with  the pr inciples  la id  down in  Chapter  2;  

in  par t icular  the  great  potent ia l  importance of  geometry wil l  be  cont in-  

ual ly  emphasized.  

Before beginning the bulk of  this  Chapter ,  i t  i s  helpful  to  make a  few 

remarks about  mathematical  models  and their  use ,  addi t ional  to  those in  

the footnote  on page 1/2/3.  As there  indicated,  a  mathematical  model  

of  a  migrat ion process  involves  a  set  of  hypotheses  about  the underlying 

physics and chemistry which, when expressed in mathematical terms, enable 

quant i ta t ive predict ions to  be made.   The value of  any mathematical  model  

can be assessed only by comparison with data .   I t  requires  separate  

judgement ,  involving perhaps such matters  as  the costs  of  ref ining and 

developing the model  as  wel l  as  obtaining data ,  and the percept ion of  

the degree of  discrepancy that  is  acceptable ,  to  decide whether  or  not  a  

given model  is  a  sat isfactory predictor  for  a  given set  of  migrat ion 

phenomena.   (Such judgement  of  what  is  acceptable  as  a  discrepancy does 

not  involve science alone;   however  this  s tudy aims to  descr ibe some 

factors  re levant  to  the exercise  of  this  judgement . )   I t  i s  important  to  

note  a lso that  any comparison between the predict ions of  a  mathematical  

model  and appropriate  data  is  not  a  tes t  of  any one of  the set  of  several  

individual hypotheses that, together, comprise the model.  A single hypothesis 

(e .g .  that  the  contaminant  concentrat ions on ei ther  s ide of  a  food-plast ic  

interface are  in  a  constant  ra t io  throughout  the migrat ion process  as  in  
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(2.7)) must be tested directly since such an hypothesis may be invalid 
even though the model as a whole is judged acceptable (and vice versa). 
Of course, if  a model is judged to be unacceptable, i t  is then sensible 
to re-examine each of the individual hypotheses on which it is based, 
but it  is important also to note that errors in some hypotheses are 
l ikely to  be more cr i t ical  ( in  the sense of  s ignif icant ly  a l ter ing the 
predictions of the mathematical model) than errors in others.  There is 
an analogy here with the concept of controll ing factors,  i .e.  errors in 
the modelling of the dominant process(es) are much the most significant. 
However it is also important to note that, in general, any one mathematical 
model has a limited range of validity.  For example it may be valid only 
for certain (non-dimensional) times or for a plastic-food-contaminant 
system with certain physical properties.   Outside the range of validity, 
other factors (not included in the model) may become important – even 
controlling - and an experimental test of a model ought to attempt assess- 
ment of this range.  Unfortunately many workers have assumed wrongly 

that  certain mathematical  results  (e.g.  migration proportional to 2
1

t  )  
have universal  appl icabi l i ty .  
 
Given a mathematical model, it is sometimes possible to obtain quantitative 
predictions from it  in the form of relatively simple formulae such as 
(2.8),  (2.14a) and (2.14b).  Sometimes the predictions can be obtained 
only in more complex mathematical form, e.g. as infinite series or compli- 
ca ted  in tegra ls .   In  genera l ,  i t  i s  rare  (because  of  fea tures  l ike  compl i -  
cated geometry for example) for it  to be possible to obtain mathematical 
formulae (simple or complex) for the solution of the set of equations 
forming the mathematical model*.   In such a case the theory of the rapidly 
expanding branch of mathematics called numerical analysis (universally 
abbreviated to N.A.) would be employed to solve the set of equations numer- 
ically using a computer.   (In practice i t  would also normally be sensible 
nowadays to use a computer to obtain numerical results in cases where the 
 

*In such circumstances a mathematician would normally write "The set of 
equations do not admit an analytical  solution";  the word "analytical" 
in its technical mathematical sense has however been avoided in this report 
because of the different, also technical, meaning which it has in chemistry. 
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predictions of the mathematical model have been expressed in complex 

mathematical form.)  The purpose of numerical analysis when used in this 

way is to ensure, as far as possible, that the numerical solution(s) 

are obtained efficiently and accurately;  it is important to note not 

only that modern computers have greatly increased the potential useful- 

ness of mathematical modelling of phenomena like migration but also, and 

as a warning, that their use introduces further potential errors, namely 

those associated with the numerical computation process.  Such errors 

are inevitable and numerical analysis is (partly) concerned with their 

control.  Despite this warning, it  is certain that obtaining the accurate 

numerical solutions of many of the mathematical models of migration dis- 

cussed below will be fairly routine provided the task is carried out by 

a person with appropriate training and skill .   In this phase of the study 

time and resources have not permitted the development of new computer 

results but these should form a prominent part of the next phase.  There- 

fore the mathematical predictions that will be discussed will be for 

simple geometries;  fortunately such predictions, properly interpreted, 

allow one to understand the interaction of the various processes contrib- 

uting to migration and therefore to anticipate,  at  least  quali tat ively,  

migration behaviour in the more complex geometries occurring in real life 

situations.  This is the real value of simple mathematical solutions. 

Comments on page 106 (and elsewhere) of Reid, Schwope and Sidman (1983) 

are relevant to the above discussion of mathematical models. 

 
It is sensible first to note some simple formulae that give the maximum 

possible concentration in food of a specific contaminant.  The formulae 

have universal validity provided only that the contaminant does not undergo 

chemical change during the migration process.  Suppose a plastic package 

of volume V contains food (or food simulant) of volume V*, and that, when 

containment occurs, there is a mass M of a specific contaminant in the 

plastic at  concentration C0 where,  by definit ion,  

V
MC0 =      (3.1) 
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Whatever happens to the package between initial containment and ultimate 

consumption of the food, the mass of the contaminant in the food-package 

system at no time exceeds M (making the reasonable assumption that no 

further contaminant is added to the system). Although some contaminant 

may in practice be lost (e.g. by handling or by migration to the atmosphere), 

i t  is  simplest  and safest  to ignore any such loss;   if  required,  corrections 

can always be made later.  The total mass of this specific contaminant in 

the system is therefore taken to be M for all time. 

Irrespective of the mechanism of mass transfer, migration acts to equalise 

the contaminant concentrations between the two different parts of the 

system;  provided an ultimate steady temperature T is reached, the system 

will approach an equilibrium whose properties depend, in general, on T. 

In this equilibrium, the concentrations C and C* of the contaminant in 

the plastic and food respectively are uniform and, since mass is conserved, 

CV+C*V* =M.      (3.2) 

At equilibrium the ratio of C*to C is equal to the parti t ion coefficient 

γ ,  i . e .  

γ=
C
C* .      (3.3) 

Elimination of C from (3.2) and  (3.3)  gives 

/V)*(V1γ
0C

/V)*γ(V1
0γC

*γVV
γM

*C
+−=

+
=

+
= ,   (3.4) 

where (3.1) has been used to express C* in terms of C0 rather than M. 

Equation (3.4) and close equivalents have a long history in migration 

research. A special case was apparently first introduced by Garlanda 

and Masoero (1966), and other workers who have discussed this result 

include Sanchez (1979), Katan (1979), Senich (1981) and Reid, Schwope 

and Sidman (1983).  Since (3.4) gives the maximum possible concentration 

C* of the contaminant in the food, it  is easy, provided γ  is known, to 

use i t  to assess in a specific case whether the concentration of the 

contaminant in the food will  ever exceed a specified l imit  (e.g.  legal 

or toxic).   Only if  the value of C* given by (3.4) exceeds such a l imit  
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will it be necessary to use more complex mathematical models of migration 

l ike  those  d i scussed  in  l a te r  sec t ions  o f  th i s  Chap te r .   Th i s  po in t  i s  

made by Katan (1979).  Reid, Schwope and Sidman (1983) also make the 

same point  but  for  a  special  case of  (3 .4)  with  plane geometry;   th is  

res t r ic t ion  i s  qu i te  unnecessary .  

But  i t  has  been  noted  tha t  (3 .4)  can  be  used ,  as  i t  s tands ,  on ly  i f  the  

va lue  of  the  par t i t ion  coeff ic ien t  γ  i s  known for  the  par t icu la r  t r io  of  

plast ic ,  food and contaminant  and this  is ,  in  pract ice ,  of ten not  so.  

Many authors, including Sanchez (1979), Sanchez, Chang and Smith (1980) 

and Keinhorst and Niebergall (1986b)have discussed the dependence of γ 

on temperature and other properties.   In particular Sanchez discusses 

how γ can be estimated for Class III systems, and Keinhorst and 

Niebergall demonstrate good agreement between theory and experiment 

for some particular sets of materials.   For aqueous foods and lyophilic 

plastics (which are the majority and include polyolefins) values of γ  

are typically very small;  thus Reid, Schwope and Sidman (1983) quote 
3101.7 −×≈γ  for styrene monomer migrating from polystyrene into 50% 

aqueous ethanol and 4102 −×≈γ  for BHT migrating from HDPE into a 

water gel.  On the other hand much higher values, some greater than 

unity, have been measured, especially with oily foods and lyophilic 

plastics.   In view of the importance of γ ,  but the uncertainty about 

i ts  value in many circumstances,  a major conclusion of this report  is  

that a suggestion of Schwartz (1983) should be given high priority, 

namely that  "a data base for parameters such as diffusion and parti t ion 

coefficients" should be "developed".  

Fortunately, use can be made of (3.4) even when the value of γ  is not 

known because, whatever the value of γ ,  the value of C* in (3.4). never 

exceeds  C * * ,  where  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

*
0** V

VCC .     (3.5) 

The concentration of the contaminant in the food must always be less 

than C* * since such a concentration would be achieved only in the physic- 

ally unrealist ic circumstances when the plastic is  completely denuded of 

contaminant .   Neverthless  C* *  can easi ly  be calculated in  any specif ic  

case  s ince  i t  does  not  involve  γ ,  and th is  should  a lways  be  done s ince ,  
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when C* * is  less than the specified l imit ,  no further use of mathematical  

models is  required.   The difference,  in practice,  between (3.4) and (3.5) 

can be illustrated by a numerical example.  Suppose a 50g bottle holds 

1  l i t re  of  l iquid food so that  V/V* = 0.05 i f  both substances  have the 

density of water.   Table 2 shows values of C*/C0 obtained from (3.4) 

for  severa l  va lues  of  γ ,  and of  C* * /C0  obta ined from (3 .5) .   I t  wi l l  be  

no ted ,  in  par t icu la r ,  tha t  there  i s  l i t t l e  d i f fe rence  be tween  C * * /C 0  

 

TABLE 2:  Numerical examples from equations (3.4) and (3.5).  Other 

examples are given by Reid, Schwope and Sidman (1983). 

and the value of C*/C0 when γ  ≥  1 .   Equation (3.5) can also be used 

in  an inverse  design sense.   Suppose there  is  a  specif ied legal  or  

toxic l imit  CL on the concentration of a specific contaminant in a 

specific food.  According to (3.5) this is  bound not to be exceeded 

provided the ini t ial  concentrat ion C0 of the contaminant  in the plast ic  

is less than CL(V*/V), and there is presumably some scope in designing 

plastic containers so that  (V*/V) can be made as large as possible 

(bearing in mind other constraints such as cost ,  strength and, above 

a l l ,  consumer  acceptab i l i ty . ) *     Pursu ing  th i s  po in t  a  l i t t l e  fur ther  

i s  ins t ruct ive ,  and i l lus t ra tes  again  the  potent ia l  impor tance  of  

geometry.   Suppose a plast ic  f i lm of f ixed thickness h is  to be used 

to make a container  for  a  f ixed volume V* of  l iquid food.   In l ine with 

the discussion above i t  i s  desirable ,  other  things being equal ,  to  make 
 
*Conversely problems are most l ikely to occur when V*/V is small  as in 

mi n i a t u r e  b o t t l e s  o f  s p i r i t s .  
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the shape of the container such that (V*/V) is as large as possible, 

i.e. such that V is as small as possible.  The best possible shape 

from this point of view is a sphere, and it can be shown that the value 
of (V*/V) for a sphere is about 0.207 /h)3

1

*(V . The best possible cylinder 

has its radius equal to half its height and (V*/V) about 0.181 /h)3
1

*(V , 

and the best possible cuboid is a cube with (V*/V) about 0.167 /h)3
1

*(V . 
 
In concluding this section it is worth noting that, according to (3.4), 

0* CC γ≈  when (V*/V) is small, i.e. when the volume of the plastic is 

effectively infinite.  Reference to (2.8),  (2.14a) and (2.14b) in 

Chapter 2 will confirm that the model problems there considered satisfy 

this result .  This simple result  can also be very useful in estimating 

C** when V*/V is not known precisely. 

 

Scientific basis of the models 

As noted in Chapter 1, Class II systems are those where migration properties 

do not depend on penetration of the plastic by the food.  Almost all the 

mathematical models of these systems that appear in the literature are 

based on classical diffusion theory, and this section begins with some 

background to that subject.  More substantial treatments do of course 

exist;   the most familiar of these is l ikely to be the book by Crank (1979). 

It should be noted that, historically, many of the models considered 

here for Class II systems were intended for application in all systems. 

The models in the literature all make simplifying assumptions about the 

structure of both the plastic and the food.  In particular they assume 

that the length scales of concern in migration are much larger than those 

which characterise the micro-molecular structure.  This is the continuum 

hypothesis which is explained in, for example, Chapter 1 of Batchelor (1967), 

and its satisfaction enables the definition of properties like concen- 

tration (temperature, density, . . .)  as continuous functions of position 

and time (except - perhaps - at discontinuities between different media). 

Such properties are defined as spatial averages over regions large enough 

to contain many molecules but with dimensions smaller than those of direct 
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concern for migration.   The characterist ic length scale of such regions 

is known as the continuum scale.  Two further assumptions are universally 

made.  First ,  i t  is  assumed by modellers that  the structure in both media 

is  isotropic on the continuum scale (except at  boundaries and interfaces),  

i .e .  when the media  are  in  equi l ibr ium al l  d i rect ions are  equivalent  a t  

every point.  The second assumption concerns the geometry of migration 

systems. Although the boundaries and interfaces between different media 

are  not  smooth  and sharp  in  rea l  l i fe ,  i t  i s  hypothes ised that  adequate  

predict ions can be obtained by supposing that  they are.   I t  might  be 

reassuring to note that  the assumptions described in this paragraph have 

been universal ly applied to almost  al l  motions of  sol ids,  l iquids and 

gases  for  over  100 years  wi th  excel lent  resul ts .  

Consider the migration of a specific contaminant.   Consistent with the 

notat ion in  §2.3 and §3.2,  the  concentrat ions of  this  contaminant  in  

the plast ic  and the food wil l  be denoted by C and C* respectively,  where 

( in general)  C and C* depend on t ime t  and al l  three space coordinates 

x,y,z.   (Note that  in the special  examples considered in §2.3,  C* happen- 

ed  to  be  uniform,  i .e .  independent  of  x ,y ,z . )   On the  bas is  of  the  con-  

t inuum hypothesis ,  i t  i s  legi t imate  to  suppose that  C and C*  are  wel l -  

behaved funct ions .   Consider  a  smal l  surface  in  the  in ter ior  of  the  

 
 

 

x
C
∂
∂  < 0 at P => flux      

x
C
∂
∂  > 0 at P => flux 

positive (left to right)      negative (right to left) 

F IGURE 5 .      Schemat ic  ske tch  i l lus t ra t ing  equa t ion  (3 .6 )  
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plast ic  whose area is  δA and whose normal  (perpendicular)  is  in  the 

d i rec t ion  of  the  x  ax is .   I f  C  depends  on  x  in  the  ne ighbourhood of  

t h i s  s u r f a c e  t h e r e  w i l l  b e  a  n e t  f l u x  o f  c o n t a mi n a n t  a c r o s s  i t ;  

Accord ing  to  P ick ' s  f i r s t  l aw or  on  the  bas i s  of  more  genera l  phen-  

omenonological arguments given in Chapter 3 of Batchelor (1967),  the 

r a t e  o f  t r a n s f e r  o f  c o n t a mi n a n t  ma s s  a c r o s s  t h i s  s u r f a c e  i n  t h e  

d i r e c t i o n  i n  w h i c h  x  i n c r e a s e s  i s  

A.
x
CD δ
∂
∂− ,     (3.6) 

where  D i s  known as  the  d i f fus ion  coef f i c ien t  (o r  mass  t r ans fe r  co-  
e f f i c i e n t )  .   T h e  mi n u s  s i g n  i n  ( 3 . 6 )  i s  n e c e s s a r y  b e c a u s e  t r a n s f e r  
t akes  p lace  f rom reg ions  where  C  i s  l a rger  to  reg ions  where  C  i s  
s ma l l e r .   T h e  u n i t s  o f  t h e  i mp o r t a n t  p a r a me t e r  D  a r e  m 2 s - 1 ,  and  D  
i s  a n  i n t r i n s i c  p r o p e r t y  o f  t h e  p l a s t i c - c o n t a m i n a n t  s y s t e m  a n d  o f  
the  pos i t ion  where  the  f lux  i s  eva lua ted .   In  pa r t i cu la r  D  may  depend  
on C and propert ies  l ike temperature  for  example;   however  the depend-  
ence  on  C i s  l ike ly  to  be  smal l  when C i s  smal l ,  and  most  model le rs  
have ignored such dependence for  Class  I I  systems (even in  cases  
where  C is  not  smal l ) .   The phi losophy adopted is  tha t  such dependence 
shou ld  be  inc luded  on ly  i f  the  resu l t s  o f  mode l s  tha t  a ssume D i s  
independen t  o f  C  a re  unaccep tab le .   I f  the re  i s  sys temat ic  va r ia t ion  
of  s t ruc ture  on  the  cont inuum sca le  D wi l l  a l so  depend on  x ,y ,z ,  bu t  –  
aga in  -  model le rs  have  not  cons idered  the  inf luence  of  such  var ia t ion ,  
i .e.  they have assumed that the media can be regarded as homogeneous 
on the cont inuum scale .   For  the moment ,  however ,  i t  i s  not  necessary 
to  assume tha t  D i s  cons tan t  and  uni form.   The  f lux  in  the  food  wi l l  
a lso be assumed to  be given by (3.6) ,  but  with C and D replaced by 
C*  and D*;   the  f lux across  small  surfaces  normal  to  the y  and z  axes  
is  l ikewise given by (3.6)  but  with ∂ /∂x replaced by ∂ /∂y and ∂ /∂z 
respec t ive ly .   In  mathemat ica l  t e rms  i t  i s  ac tua l ly  mos t  e f f i c i en t  to  
use  vec tor  no ta t ion ,  and  the  f lux  across  a  smal l  sur face  of  a rea  δA 
is written - D ~n . ∇C δA, where ∇C is the concentration gradient and ~n  

i s  a  un i t  vec tor  normal  to  the  sur face .   (The  assumpt ion  of  i so t ropy  
ensures  that  D has  the same value for  a l l  surface areas  whatever  
t h e i r  o r i e n t a t i o n . )  
 
 
I t  i s  a  s t r a igh t fo rward  exe rc i se  now to  show tha t  F i ck ' s  f i r s t  l aw  i s  
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consistent  with conservation of  mass provided C sat isf ies  the part ial  

d i f fe rent ia l  equa t ion  

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂=

∂
∂

z
CD

zy
CD

yx
CD

xt
C .    (3.7a) 

One derivation of this equation is given on pages 2 to 4 of Crank (1979).  

In  the  language of  vectors  (3 .7a)  can be  wri t ten  in  e i ther  of  the  fo l low-  

ing two forms: 

)CD.(
t
C ∇∇=
∂
∂ ,     (3.7b) 

or (Crank 1979, page 5) 

)CgradD(div
t
C =
∂
∂ ,     (3.7c) 

and the shortness of  ei ther  of  (3.7b) or  (3.7c)  compared with (3.7a)  

shows why mathematicians prefer vector formulations.  It may happen 

for  geometr ical  reasons in  an appl icat ion that  C (and D) are  independent  

of  one  or  more  of  x ,y ,z .   In  such  a  case  the  genera l  equat ion  (3 .7a)  

s implif ies;   suppose,  for  example,  that  C (and D) are independent  of  y 

and z.   Then (3.7a) reduces to 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂
∂

x
CD

xt
C .     (3.8) 

I t  has also been noted earlier that  many modellers have assumed that 

D is constant and uniform;  in such a case (3.7a) becomes 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

2

2

2

2

2

2

z
C

y
C

x
CD

t
C ,    (3.9a) 

or  ( in  vector  notat ion)   

CD
t
C 2∇=
∂
∂ ,      (3.9b) 

and (3.8) becomes 

2

2

x
CD

t
C

∂
∂=

∂
∂ ,     (3.10) 

Crank  (1979)  points  out  that  (3 .10)  is  usual ly  referred to  as  Fick 's  
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second law.  I t  is  hoped that  the account here wil l  make clear  two 

p o i n t s :  

(a)   Fick 's  second law is  a  direct  consequence of  his  f i rs t  law 

and of conservation of mass together with -  in the case of 

(3 .10)  -  cer ta in  s impl i fy ing assumpt ions .   I t  therefore  

hardly meri ts  ident i f icat ion as  a  separate  law.  

(b)  Fick's second law in the form (3.10) is  valid only when 

the geometry of the problem being considered is particularly 

s imple .   In  rea l  l i fe  th i s  wi l l  be  so  on ly  ve ry  ra re ly  and  

i t  i s  then  necessa ry  to  use  (3 .7a )  o r  -  pe rhaps  -  (3 .9a ) .  

Unfortunately many users of mathematical models in migration 

have ignored this  fact ,  already highlighted in §2.5 and §3.2,  

with the consequence that many formulae in the l i terature,  

though valuable for understanding, do not apply quantitatively 

t o  r e a l - l i f e  s i t u a t i o n s .  

Boundary and initial conditions 

The task of  the modeller  is  to f ind -  normally nowadays by use of  a  

compute r  as  exp la ined  in  §3 .1  -  the  so lu t ion  o f  (3 .7a )  o r  (3 .9a )  tha t  

applies to the problem with which he/she is  concerned.   As explained 

and  s t ressed  in  §2 .3  and  §2 .6 ,  th i s  cannot  be  done  wi thout  the  spec-  

i f i ca t ion  o f  boundary  and  in i t i a l  cond i t ions  tha t  con ta in  in format ion  

add i t iona l  to  (3 .7a )  and  (3 .9a ) ,  and  spec i f i c  to  the  p rob lem.  
 
I n i t i a l  c o n d i t i o n s  a r e  e a s y  t o  s t a t e  f o r  mi g r a t i o n  p r o b l e ms .   L e t  t h e  
t ime when conta inment  occurs  be  des ignated as  t  =  0*  .   The in i t ia l  

cond i t ions  g ive  the  d i s t r ibu t ion  o f  t he  con taminan t  w i th in  the  p l a s t i c  

a n d  t h e  f o o d  a t  t  = 0 .   A l l  mo d e l l e r s  a s s u me  t h a t  t h e  c o n t a mi n a n t  i s  

d i s t r i b u t e d  u n i f o r ml y  w i t h i n  t h e  p l a s t i c ;   d e n o t i n g  t h i s  u n i f o r m 

concen t r a t i on  by  C 0  a s  i n  §2 .3  g ive s  

C(x,y,z,0) = C0      (3.11) 

f o r  a l l  v a l u e s  o f  ( x , y , z )  c o r r e s p o n d i n g  t o  p o i n t s  w i t h i n  t h e  p l a s t i c .  

 
* O t h e r  c h o i c e s ,  e . g .  t  =  t 0 ,  s i m p l y  c o m p l i c a t e  t h e  a l g e b r a  w i t h o u t  -  

in  any  way -  changing  the  resu l t s .  
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S imi la r ly  i t  i s  supposed  tha t ,  in i t i a l ly ,  the re  i s  no  con taminan t  

within the food.  Thus 

C*(x,y,z,0) = 0     (3.12) 

for all  points within the food.  Amendments to (3.11) and (3.12) will  

have to be made should other  condit ions occur ini t ial ly,  e .g.  the con- 

taminant  i s  not  d is t r ibuted uniformly wi th in  the  p las t ic  or  there  i s  

some contaminant within the food. 

Boundary conditions are required at all  boundaries with the medium 

(e.g.  the atmosphere)  external  to the food-package system and at  the 

interface (or  interfaces)  between the food and the plast ic  package.  

Cons ider  the  former  condi t ions  f i r s t .   In  rea l  l i fe  there  i s  undoubtedly  

some loss of contaminant to the external medium;  however this is 

d i f f icul t  to  quant i fy  (and -  even i f  done -  would  lead to  great  com- 

pl icat ions) .   As explained in  §3.2,  i t  i s  s implest  from the mathematical  

point of view and safest  from the hazard assessment point of view to 

assume that no such loss occurs.   Mathematically this is  expressed 

e i t h e r  a s  

0
n

C,0
n
C * =

∂
∂

=
∂
∂  a t  a l l  e x t e r n a l  b o u n d a r i e s  ,    (3.13a) 

where ∂ /∂n denotes  different ia t ion in  the direct ion along the local  

normal to the external boundary,  or ( in vector form) as 

0C.~n,0C.~n * =∇=∇  a t  a l l  external  boundaries  .   (3.13b) 

In  some c i rcumstances ,  i t  i s  poss ib le  to  express  the  same physica l  

condi t ion in  another  way.   Usual ly  d i f fus ion of  the  contaminant  in  the  

p las t ic  i s  a  s low process  and ,  as  a  consequence ,  the  per iod  of  t ime 

for  which migra t ion predic t ions  are  required  may be  ( re la t ively)  shor t  

enough for  l i t t l e  of  the  contaminant  near  the  ex terna l  boundar ies  of  

the  p las t ic  to  have  migra ted .   From the  poin t  of  v iew of  migra t ion ,  

i t  i s  t h e n  p o s s i b l e  t o  r e g a r d  t h e  p l a s t i c  a s  o f  i n f i n i t e  e x t e n t  w i t h  

no change in the concentrat ion of  contaminant  far  away from the food- 

package  in te r face (s ) ,  i . e .  
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∞→++→ 2
1

222
0 )zyx(asC)z,y,x(C .    (3.14) 

I t  i s  impor tan t  to  emphas ize  tha t  (3 .14)  rep laces  the  f i r s t  cond i t ion  

in  (3 .13a)  -  o r  (3 .13b)  -  bu t  tha t  the  condi t ion  on  C *  i s  unchanged,  

and  a l so  tha t  (3 .14)  i s  an  approx imat ion  to  the  f i r s t  cond i t ion  in  

(3 .13a) .   I t  i s  poss ib le  to  assess  the  pe r iods  o f  t ime  fo r  which  (3 .14)  

i s  a  good approximat ion  s ince ,  in  a  t ime t ,  the  th ickness  of  the  reg ion  

of  the  p las t ic  tha t  has  los t  contaminant  has  order  of  magni tude 2
1

)Dt( .  

P rov ided  th i s  i s  much  less  than  the  th ickness  h  o f  the  p las t i c  f i lm 

forming the packaging, equation (3.14) will  be a valid approximation. 

Thus,  for example,  consider a fi lm of thickness 5 x 10- 5m (50 microns) 

and  a  va lue  o f  D of  5  x  10 - 1 6 m 2 s - 1  (5  x  10 - 1 2 cm 2 s - 1 ) ,  typ ica l  o f  the  

migration of styrene monomer in polystyrene.  For t  = 86400s (1 day),  
2
1

)Dt(  i s  abou t  6 .6  x  10 - 6 m,  i . e .  abou t   h /8  ,   and  (3 .14)  i s  l ike ly  to  be  

reasonable .   On the  o ther  hand  2
1

)Dt( =  h  when t  =  5  x  10 6 s ,  i . e .  about  

58  days .   Use  o f  (3 .14)  in  th i s  case  i s  the re fore  l ike ly  to  g ive  accep t -  

able  resul ts  for  migrat ion t imes not  exceeding a  day or  two,  but  (3 .13a)  

should be used for longer times. 

Most difficulty concerns the specification of the boundary conditions 

a t  the  in te r face  be tween the  food  and  the  p las t ic  -  and  th i s  i s  very  

important .   I t  i s  assumed to  be val id ,  as  explained above,  to  regard 

th i s  in te r face  as  sharp  and  smooth  -  a t  l eas t  fo r  the  Class  I I  sys tems  

tha t  a re  cur ren t ly  under  cons idera t ion .   At  th i s  in te r face  the  ra te  

at  which contaminant leaves the plastic must be equal to the rate at  

which  i t  en te rs  the  food .   By Fick ' s  f i r s t  l aw -  equat ion  (3 .6)  –  th i s  

requires  

n
C

D
n
CD

∂
∂

=
∂
∂ *

*  at  every point  on the interface .   (3.15) 

There is a widely used alternative to (3.15), based on the fact that 

for many systems diffusion in. the food is much more rapid than diffusion 

in the plastic;   this is  normally true,  for example,  when the food is 

l iquid.   In those circumstances i t  is  consistent to suppose that the 

concentration C* of contaminant in the food is uniform at all times. 

Any internal bulk motion in the food, caused e.g. by convection, would 

of course greatly accelerate this tendency of C* to approach uniformity. 

This is discussed later.  The rate of increase of contaminant mass 
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within the food is therefore d/dt(C*V*), and this must be equal to the 

rate at which contaminant is leaving the plastic.  This is equal to the 

surface integral of D(∂C/∂n) over the interface where ∂/∂n denotes diff- 

erentiation along the local normal to the interface in the direction 

from the food into the plastic.   Thus 

dA
n
C

A
D

dt
*dC

*V
∂
∂

∫∫= ,     (3.16a) 

or,  in vector notation, 

∫∫ ∇=
A ~~dA.CD

dt
*dC

*V .    (3.16b) 

In fact ,  this  condit ion has been used in al l  models  in the l i terature 

in simplified form, appropriate for the idealized geometries of the 

problems that have been studied.  For example, suppose the interface is 

a plane, and take its equation as x = 0 with plastic occupying the 

region x > 0.  If,  in addition, D and C are independent of y and z (and 

thus depend only on x and t),  the integral on the right-hand side of 

(3.16a) or (3.16b) can be evaluated with the result  that 

0xx
CDA

dt
*dC

*V
=∂

∂
= ,     (3.17) 

where A is the area of the interface.  The special case of (3.17) when 

the food has the shape of a cuboid with cross-sectional area A and 

thickness a (so that V* = Aa) is equation (2.6).   Another special case 

of  (3 .16a) ,  for  a  spherical  interface,  is  equat ion (2.12) .  

 

Before the mathematical model is (at least in principle) soluble, more 

information is  needed about conditions at  the interface.   At equilibrium, 

the concentrat ions  C*  and C have a  f ixed rat io  ( the par t i t ion  coeff ic ient)  

a t  po in ts  very  c lose  to  the  in te r face  (but  on  oppos i te  s ides) .   Users  

of mathematical models of migration have invariably assumed that this 

equilibrium condition holds throughout the migration process,  i .e.  they 

have assumed that  there  i s  a  constant  γ  such that  

γ
C
*C
=  a t  a l l  p o i n t s  o f  t h e  i n t e r f a c e  f o r  a l l  t i m e ,  i . e . γ

t)C(0,
t)(0,*C
= .  

(3.18) 
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This extension of the partition coefficient concept to non-equilibrium 
situations is central to the whole problem of modelling migration. 
Roughly speaking, the assumption can be justified on the grounds that 
migration is normally a (relatively) slow process and that, therefore, 
at each time during the migration process, conditions on either side of 
the interface are in quasi-equilibrium.  (This type of argument is common 
in fluid mechanics;  for example, the equilibrium gas laws are used to 
link pressure, density and temperature in the atmosphere with good results.) 
More part icularly,  i t  should be noted that  γ  is  the rat io of  chemical  
activit ies and these do not change greatly with concentrations if  these 
are well removed from saturation concentrations.  This is not always so, 
and  the  au thors  of  th i s  repor t  wish  to  s t ress  tha t  rea l  p rogress  in  
migrat ion research requires  that  the  val idi ty  of  (3 .18)  should be tes ted 
experimentally;  they are unaware of any such tests having been conducted. 
Obviously such experiments will  not be easy to design or execute, given 
also that  they should aim at  discovering the correct  interfacial  condi t ion 
should (3.18)  be found to  be inval id .  
 
I t  was mentioned in §1.1 that ,  in general ,  packaged food is exposed to a 
wide and fluctuating range of temperatures between containment and con- 
sumption.  From the point of view of the model equations discussed in 
this section,  changes in temperature T cause changes in the values of γ  
and D. Other effects (such as volume changes due to thermal expansion/con- 
t ract ion)  are  l ikely to  be much less  s ignif icant  -  probably negl igible  –  
for practical  prediction purposes.   References for the dependence of γ  
on T were given in §3.2, and the dependence of D on T is mathematically 
similar  (van Amerongen 1965;  Garlanda and Masoero 1966).  It would be 
possible, but extremely expensive in terms of computer resources and also 
much more diff icul t  in terms of  control l ing numerical  errors ,  to use the 
model equations with the explicit dependence of γ  and D on T included; 
one reason for  the expense and diff icul ty  is  that  i t  would then be 
necessary  to  inc lude  par t ia l  d i f fe ren t ia l  equa t ions  for  T  in  the  model .  
No authors have so far included such dependence in their mathematical 
models  and i t  i s  therefore  necessary  to  adopt  the  hypothes is ,  consis tent  
with the philosophy of mathematical  modelling outl ined in §3.1,  that  
there are some constant  values of γ  and D which give,  on comparison of 
the  mathematical /numerical  resul ts  with  data ,  acceptable  predict ions of  
migrat ion from the pract ical  point  of  view.   I f  so,  i t  would be necessary 
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to regard these constants as appropriate averages over the relevant 
temperature range.  For the sake of completeness and clari ty,  i t  is  
necessary to emphasize one point in connection with temperature dependence. 
Nearly all experiments have been conducted under isothermal conditions, 
and legislative standards specify a constant temperature for the analytical  
tes ts  of  migrat ion that  they include* .   In  these ideal  cases  there  are  
no changes in γ and D during the migration process and these parameters 
therefore have constant values (dependent on the specified/controlled 
temperature).   The complications discussed in the first  part of this 
paragraph are then irrelevant.  However, this remark suggests to the 
authors of this report that inadequate attention may so far have been 
paid to the possible effects of temperature changes during migration, 
and it is therefore recommended that some migration tests be conducted 
under non-isothermal conditions typical of those that real foods and 
packaging undergo.  For example, tests should examine cases where the 
food changes phase during the migration process due, for instance, to 
f reezing.  
 
A few authors have used an empirical "mass transfer resistance" law 
instead of (3.18).   This will  be dealt  with when their  models are dis-  
cussed below.  With this exception, all  the equations that have been used 
in the formulation of mathematical models of migration in Class II systems 
have been given. 

Remark 
The remainder of this section will  highlight some special  solutions of 
the equations discussed above that have already been used in migration 
research.  However,  in the view of the authors of this report ,  the most 
important part  of this section has already been seen by the reader.  
The point  i s  tha t  the  specia l  so lut ions  tha t  fo l low apply  only  in  speci f ic  
circumstances and cannot be used in other circumstances (e.g.  different 
geometr ies) ,  except  -  perhaps -  approximately;   then proper  just i f icat ion 
must be given.  On the other hand, the model equations derived and dis-  
cussed above apply  (a t  leas t  as  a  promis ing hypothes is )  to  a l l  Class  I I  
systems and,  for  any given geometry,  i t  i s  a  mat ter  of  technique (of ten 
routine technique) to derive the appropriate solut ion in numerical  form 
 
*Strictly isothermal tests are of course impossible because of "come-up" 
and "come-down" times. 
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using a computer.   Perhaps an analogy with chemical analysis is  useful.  
The migration characterist ics for each trio of food/polymer/contaminant 
in a  given geometrical  configurat ion have to be measured in a  specif ic-  
a l ly  des igned  exper iment ;   l ikewise ,  fo r  a  spec i f i c  s i tua t ion ,  the  
solut ion of  the set  of  equations forming the mathematical  model  has,  in 
genera l ,  to  be  der ived  ab  in i t io .   (A d i f fe rence  i s  tha t  the  mathemat ica l  
solution is expressible for given geometry in non-dimensional form and 
this  reduces  the potent ia l  labour  as  explained in  §2.4.)   The point  above 
is  important,  and experience shows that  i t  is  often not understood by 
non-mathematicians who attach too much significance (and often the wrong 
s ign i f i cance)  to  spec ia l  so lu t ions .  

Special solutions for well-mixed food 
It  has already been noted that  one of the most comprehensive accounts of 
special  solut ions of  the mathematical  model  equations for  Class II  
systems is given by Crank (1979).   Many of those solutions have been 
known for many years, and van Amerongen (1965) discusses some of them 
from the particular viewpoint of migration from rubber and the determin- 
a t ion of  the diffusion coeff ic ient  D.  
 
The f i rs t  speci f ic  appl ica t ion  of  mathemat ics  to  migra t ion  f rom plas t ic  
packaging into food is by Garlanda and Masoero (1966).  The special solu- 
t ions  a re  for  th ree  s i tua t ions  of  ascending  complexi ty  bu t  each  i s  one-  
d imens iona l ,  i . e .  d i f fus ion  takes  p lace  only  in  the  d i rec t ion  of  one  
a x i s  -  t a k e n  t o  b e  t h e  x - a x i s .   I n  t h e  f i r s t ,  i l l u s t r a t e d  i n  F i g u r e  6 ,  
bo th  p las t ic  and  food  have  inf in i te  ex ten t .   The  in i t ia l  concent ra t ion  of  
contaminant  in  the plas t ic  is  C0  and in  the food is  zero.   Garlanda and 
Masoero suppose that  diffusion in the food is  so rapid that  the concen- 
tration of contaminant within the food is uniform throughout migration,  
i .e .  they assume the  condi t ions  leading to  (3 .17) .   However ,  s ince  the  
volume V*  of  the food is  inf ini te ,  the  boundary condi t ion (3.17)  can be 
f u r t h e r  r e d u c e d  t o  C *  =  0  fo r  a l l  t .   T h e  i n t e r p r e t a t i o n  o f  t h i s  i s  t h a t ,  
in  an inf ini te  extent  of  food,  a  uniform concentrat ion can never  be de-  
tectably different  f rom zero,  given that  a t  any t ime the food contains  a  
finite mass M* of contaminant.  Garlanda and Masoero show that 

2
1

02* ⎟
⎠
⎞

⎜
⎝
⎛=
π
DtACM ,     (3.19) 
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where A is  the area of  the interface and D is  the diffusion coeff ic ient  

of  the  contaminant  in  the plas t ic .  
 
Despite  the unreal is t ic  nature of  the geometry in Figure 6,  there are 
two features of (3.19) that  happen to apply in all  si tuations where the 

model  equa t ions  a re  as  g iven  in  the  ear l ie r  sub-sec t ion .   F i r s t  o f  a l l ,  

M* is  proportional to C0,  the init ial  concentration of contaminant within 

the  p las t ic .   (This  impor tan t  resu l t  i s  a l so  i l lus t ra ted  by  the  work  in  

§§2.3 -  2.5 and in §3.2.)   Secondly,  M* in (3.19) is  proportional to 2
1

t .  

Th i s  i s  no t  t rue  fo r  a l l  t  i n  more  rea l i s t i c  s i tua t ions  than  tha t  i l lus -  

t ra ted in  Figure 6  but ,  in  fact ,  in  a l l  s i tuat ions covered by the model  

equat ions,  M* is  proport ional  to  2
1

t  for  suff ic ient ly  short  t imes af ter  

migra t ion  s t a r t s .   (Th i s  i s  i l lus t ra ted  by  (2 .15)  in  §2 .4 . )  

The next situation considered by Garlanda and Masoero is shown in 

Figure 7.  The plastic now has thickness h so that migration takes place 

across two interfaces (x = 0 and x=h).   The food is  s t i l l  supposed to 

have  inf in i te  ex ten t  so  tha t  C *  =  0  for  a l l  t ,  where ,  as  a lways ,  C *  i s  

the concentration of contaminant within the food.  The major difference 

from the s i tuat ion of  Figure 6  is  that  now there  is  only a  f ini te  mass  

of contaminant available for migration into the food.  Indeed all  the 

contaminant  ini t ia l ly  in  the plas t ic  eventual ly  migrates  into  the food 

so that ,  f inal ly ,  the  tota l  mass  M*∞  of  contaminant  within the food is  

given by 

Ah0C*M =∞ .      (3.20) 

Garlanda and Masoero show that ,  a t  t ime t  af ter  migrat ion s tar ts ,  the  

mass M* of contaminant within the food is given by the formula 
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22

,   (3.21) 

where τ+  is  a non-dimensional t ime defined by 

2h
Dt=τ+ ,     (3.22) 

i . e .  l ike  the  second def in i t ion  in  (2 .16) ,  bu t  wi th  γ  =  1  and  h  rep lac ing  
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a. It can be shown that, for small values of τ+ ,  a good approximation 
to (3.21) is 

2
1

π
DtA04C2

1

π
τ.4*M*M ⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ +

∞≈ .    (3.23) 

Given that there are now two interfaces, this is what would have been 
predicted from (3.19), and the interpretation of (3.23) is,  of course, 
that  in the early stages of  migrat ion,  the fact  that  the plast ic  has 
f ini te  thickness is  i rrelevant  s ince i t  is  contaminant  near  the inter-  
faces  tha t  passes  in to  the  food .  
 
Finally Garlanda and Masoero consider the situation shown in Figure 8. 
Now the food has finite extent, with total width 2a, and is symmetrically 
distributed about the plastic.   They also assume that,  at  the interface,  
(3.18) holds,  i .e.  C*/C = γ  for al l  t  where γ  is  assumed to be the equi- 
l ibrium partit ion coefficient.   Eventually the concentration C* of con- 
taminant within the food is given by (3.4) with V*/V = 2a/h.  Thus M*∞, 
the total  mass of contaminant that  is  f inally in the food, satisfies 

11
0

1
2.0

* −+
=

+
=∞

ββ
γ AhCAaC

M ,    (3.24) 

where the non-dimensional constant β is defined by 

h
a2γ=β .     (3.25) 

I t  wi l l  be  seen la ter  tha t  β  can  be  in terpre ted  as  the  ra t io  of  the  
capacities of the food and the plastic for containing contaminant. 
It is the product of 

h
a2 , the volume ratio, and γ ,  which is a measure 

of the relative "attraction" of the two media for the contaminant.   For 
this case, Garlanda and Masoero do not give the formula for M* for 
arbi t rary  t .   This  i s  ra ther  surpr is ing s ince  they remark,  qui te  correc t ly ,  
that  i t  has wider application than either (3.19) or (3.21).   However 
the formula is given by Crank (1979), and is discussed in the specific 
context of migration by Reid, Schwope and Sidman (1983) and others. 
The result can be written in many forms, of which two are recorded here. 
F i r s t  

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∑
β+β+

τ−
β+β−=

∞

=

+
∞

1n 2
n

2

2
n

**
q1

)q4exp()1(21MM ,   (3.26) 

 



3/21/56 
where τ+,  M*∞  and β  are defined in (3.22),  (3.24) and (3.25) respectively,  

and  the  q n  (n=1 ,2 , . . . )  a re  the  pos i t ive  roo t s  in  ascend ing  o rder  o f  

magnitude of the equation 

nn qqtan β−= .      (3.27) 

Secondly ,  rep lac ing  τ+  by  τ  =  Dt / (γ 2 a 2 )  as  in  (2 .16) ,  (2 .17)  and  (2 .18)  

g i v e s  
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,   (3.28) 

where  the  qn  cont inue  to  be  def ined by (3 .27) .  (Note  that  (3 .26)  and 

(3 .28)  a re  no t  d i f fe ren t  r esu l t s  bu t  a  s ing le  resu l t  expressed  in  two  

s l igh t ly  d i f fe ren t  ways . )  
 
The result  in (3.26),  or  (3.28),  may well  appear complicated to a  non- 
mathematician but  i t  is  as  s traightforward to him/her as  the formula 

of  a  protein  expressed in  terms of  individual  a toms is  to  a  chemist .  

In both cases the symbolism used leads to a rather long expression in 

deta i l ,  but  the  profess ional  can "see"  the  s t ructure  and form.   The 

description of a typical house in terms of individual components would 

need much more length.   The authors ask the reader to accept that  the 

expressions do not involve very advanced or novel mathematics, and to 

continue into the discussion that  fol lows which should clarify their  

meaning.  The same comment applies to later expressions like (3.37). 

 

Since e - s   tends to  zero as  s  approaches inf ini ty ,  i t  can be seen 

immediately from either formula that M* tends to M*∞ ,  as of course it  

should .   Less  obvious  perhaps  i s  the  fac t  tha t  (3 .26) ,  o r  (3 .28) ,  in -  

c ludes  many of  the  ear l ie r  resu l t s  g iven  in  th i s  repor t  as  spec ia l  cases .  

For example,  consider the si tuation of Figure 7 which results from that 

o f  F igure  8  by  l e t t ing  a ,  i . e .  β  i n .  (3 .25) ,  approach  in f in i ty  whi le  

keeping  h  f ixed .   For  la rge  β ,  the  so lu t ions  of  (3 .27)  a re  approximate ly  

those of cosqn = 0, remembering that tanqn = sinqn/cosqn .   Thus 

qn ≈  (2n+1)π/2 (n = 0,1,2, ...).  Moreover, when β  is large, 2 β  (1+ β) ≈  2 β2  

and  2
n

22
n

2 qq1 β≈β+β+ .  T h u s ,  f o r  l a r g e  6 ,  ( 3 . 2 6 )  b e c o me s  ( 3 . 2 1 )  a f t e r  

some rout ine  a lgebra .   I t  has  a l ready  been  seen  tha t  (3 .19)  i s  a  spec ia l  

case  of  (3 .21) ,  and therefore  of  (3 .26) .   I t  can  a lso  be  shown that  when 
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h approaches infinity keeping a fixed, i.e. when β  in (3.25) approachess 

zero,  the result  in (3.28) approaches that  in (2.8) which applies to the 

si tuation i l lustrated in Figure 2.   In summary therefore,  (3,26) – or 

(3.28) - includes all  the cases of one-dimensional migration so far con- 

s idered in  this  report .   In  par t icular ,  i t  may be noted here  that  for  

small  values of  τ  or  τ+ ,  and irrespective of  the value of  β ,  the result  

in (3.26) gives 
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04* ⎟
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π
DtACM ,     (3.29) 

which would have been predicted from (3.23) - an approximation to 

(3.26) for large β  -  and from (2.15) -  an approximation to (3.26) for 

small β  when it  is multiplied by 2 (because there are two interfaces 

in  F igure  8) .   Equat ion  (3 .29)  can  be  rewr i t ten  2
1

2
1

0* )Dt()/4.(A2.CM π≈  

when i t  can be seen that  in the early stages of migration,  the material  

that  passes into the food is from surface layers of thickness of order 
2
1

)Dt( .   This  result  extends to plast ic  containers  of  arbi trary shape 

in the early stages of  migrat ion.   I t  a lso has important  implicat ions 

in  i ts  own r ight ,  e .g .  for  repeat  extract ion tes ts  with  the same container .  

The result  (3.29) eventually ceases to be valid because these surface 

layers  increase in  thickness  and coalesce in  the centre  of  the  plas t ic ;  

once that  occurs the concentrat ion in the plast ic  is  everywhere less  

than C0.   These remarks apply direct ly to total  immersion tests  of  e .g.  

global migration.   Similarly (3.19) can be applied to one-sided extraction 

from a plastic film (with the other interface impermeable to contaminant) 

only for short  t imes.   I t  ceases to be applicable once 2
1

)Dt(  becomes 

comparable with the film thickness and, consequently, when the contaminant 

concentrat ion in the plast ic  is  everywhere less  than C0.  

Plotting results in dimensignless form 

For  the  reasons  g iven in  §2.4 ,  a l l  the  graphs  in  th is  repor t  wi l l  be  g iven 

in non-dimensional form.  There remains some choice about the exact non- 

dimensional  variables to use in a  plot ,  and two possibi l i t ies  are given 

in Figures 9 and 10.  Crank (1979) points out that  β ,  defined in (3.25),  

is  s imply rela ted to  the proport ion of  the tota l  quant i ty  of  contaminant  

that  is  eventually in the food.  This proportion is  M*∞ / (C0Ah),  which 

from (3.24), is given by 



 

FIGURE 9.   The behaviour of M*/(C0Ah) predicted by (3.26) for 3 values of β, where τ+ and β are defined in (3.22) 
and (3.25) respectively.  Note that M*∞ in (3.26) is equal to C0Ah/(1+ β-1) - see (3.24).  Also shown 

is the approximate behaviour predicted by (3.23);  evidently the accuracy of this approximation depends 

on β (as well as τ+).



3/24/56 

 

FIGURE 10.    A compar ison ,  for  β  =  9 ,  o f  the  exac t  resu l t  (3 .26)  

with the approximation (3.21).
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β+
β=∞

1AhC
M

0

* .     (3.30) 

(Recall,  as noted before (3.24), that (3.30) is consistent with the dis- 

cussion in §3.2 and with (3.4) in particular.)  Figure 9 gives plots of 

M*/(C0Ah) against τ+ as predicted by (3.26) for three values of β, viz. 

9, 1 and 1/9 corresponding to final uptakes of 90%, 50% and 10% respect- 

ively. Reid, Schwope and Sidman (1983) give more extensive graphs of 

the same relationship in Figures 4, 5 and 6 of their work.  (There are 

certain differences between these figures and Figure 9 of this report. 

Their axes have logarithmic scales and there are trivial changes in 

notation.  For example Reid, Schwope and Sidman use a for the present 

β  and ψ for the present 4τ+ .)  Figure 9 illustrates well the importance 

of the parameter β.  For large values of β (which could be caused by a 

large value of the parti t ion coefficient γ ,  or by a large value of the 

ratio a/h of the volumes of the food and plastic,  or by both possibil i t ies),  

the food is  effect ively a large reservoir  for  the contaminant  so that  

equilibrium takes a long time to be achieved and a large proportion of 

contaminant is  eventually transferred to the food.  The converse state- 

ments hold when β  is small as Figure 9 well i l lustrates.   Also shown on 

Figure  9  i s  the  approximat ion (3 .29) ,  and i t  i s  c lear  tha t  i t  i s  adequate  

for a range of non-dimensional times τ+ whose length increases with β ,  

consis tent  again with  the interpretat ion that  the  s ize  of  β  i s  a  measure 

of the capacity of the food as a reservoir for the contaminant.  

Figure 10 compares the dependence of M*/M*∞ on τ+ for β =9 (as predicted 

by (3.26)) with that predicted by (3.21), already noted as an approxi- 

mat ion to  (3 .26)  for  large β .   Even for  this  re la t ively smal l  value of  β ,  

the agreement is remarkably good. 

In contrast  with the presentat ion in §§2.3 -  2.6,  the discussion above 

has been in terms of M*, the mass of contaminant in the food, rather than 

C*,  i ts  concentration.   However the difference can be tr ivially accounted 

for because C* approaches  C*∞,  where 

0
*

*
* C

1V
MC

β+
γ== ∞

∞ .    (3.31) 

( I t  can  eas i ly  be  ve r i f i ed  tha t  th i s  fo rmula  fo r  C *∞  i s ,  in  the  d i f fe ren t  

notat ion,  ident ical  with  (3 .4) .   I t  wi l l  a lso be noted that  C*∞ /C0   can 
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be reduced, for a fixed γ ,  by increasing β ,  i .e .  by increasing V*/V = 2a/h.)  
Thus (3.26) can be rewritten as 
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and other formulae above can be rewritten using the same technique. 
Among the many authors who have quoted one or more of the formulae 
above are Briston and Katan (1974), vom Bruck, Eckert and Rudolph (1976), 
Sanchez, Chang and Smith (1980), Messadi, Taverdet and Vergnaud (1983), 
Miltz and Rosen-Doody (1980) and Keinhorst and Niebergall (1986a).  In 
most cases, many of the experimental results are apparently consistent 
with the quoted formulae.  (Cases where there is clearly disagreement 
are not Class II systems, or there is chemical change.)  We say "apparently" 
because, having quoted the formula(e), most authors do not give the 
experimental values of the parameters in the formulae, and the reader 
is consequently unable to check the agreement (or otherwise) between 
theory and experiment.  This point has been made previously by one of 
the authors of this report (Katan 1979);  unfortunately that recommend- 
ation has not been generally followed and practice that is (frankly) un- 
professional continues, although there are welcome signs of recent improve- 
ment.  A further criticism of many papers, including those cited above, 
is that the graphs are not plotted in non-dimensional form and therefore, 
as explained in §2.4,  can only be used for the specific tr io of food/ 
polymer/contaminant for which the data were measured. 
Fortunately there are exceptions to the strictures made above.  These 
include Reid, Schwope and Sidman (1983) who give many practical numerical 
examples.  In general, values of β  for these examples are much less than 
1.  For one case (water/polystyrene/styrene monomer at 40°C(313K)) the 
values of γ ,  a and h were 3.3 x 10-4 ,  3.1 x 10-3m and 1.2 x 10-4m, 
giving β  = 2γa/h ≈  1.7 x 10-2.   Sometimes higher values of β  occur; 
in another case (50% aqueous ethanol/polystyrene/styrene monomer at 
40°C(313K)) γ ,  a and h were 7.1 x 10-3, 1.05 x 10-2m and 9.3 x 10-5m, 
 

*Reid, Schwope and Sidman actually quote a value of 1.6 x 10-2  for β; 
whi le  th is  i s  not  consis tent  wi th  the  values  they give  for  γ ,  a ,  h  (which 
are quoted above),  the difference is  not  important .  
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giving β  ≈  1.6.  A value of β  of order 10 can be inferred from experiments 

reported by Messadi, Taverdet and Vergnaud (1983) in which 20 circular 

discs of a commercial PVC compound containing dioctyl phthalate as a 

plasticiser were immersed in 2 x 10-4 m3(200ml) of two food simulant liquids 

(n-heptane and peanut  oi l) .   I t  is  s tated that  γ  "was found to be about  1",  

and each disc had radius 9 x 10-3m and thickness 3.4 x 10-3m, giving 

β ≈  V*/V ≈  (2 x 10-4)/(20 x π x 81 x 10-6 x 3.4 x 10-3) ≈  11 .6. 

Results for immobile foods 

All the models considered so far have assumed that the food is "well-mixed", 

i .e.  that the concentration C* of contaminant in the food is uniform.  As 

noted above in the discussion following (3.15), this can occur because 

the diffusion coefficient D* of the contaminant in the food is much greater 

than D, or because the food is l iquid and is in convective motion. 

(Messadi, Taverdet and Vergnaud (1983) and others discuss the effect 

of  s t i rr ing and show i t  to be signif icant .)   For completeness,  we record 

now another special solution which applies when there is no motion in 

the food, and when no assumption is made about the relative magnitudes 

of D and D*.   For example,  this solution is  l ikely to apply to many cases 

where the food is solid.   The geometry is  that  of Figure 8 and, for clari ty,  

the equations, and boundary and initial conditions, will  on this occasion 

be l isted in full .   As usual the concentrations of contaminant in the 

plastic and the food are denoted by C and C* respectively where, now, C* 

(as well as C) depends on x.  Both C and C* stil l  of course depend on t .  

The equations governing C and C* are 

2

2

x
CD

t
C

∂
∂=

∂
∂ f o r  0 < x < h ; 2

*
2

*
*

x
CD

t
C

∂
∂

=
∂
∂ f o r  – a < x < 0  a n d  h < x < a + h .  

(3.33) 
No contaminant is lost from the system so that -  see (3.13a) - 

0
x

CD *
* =
∂
∂  a t  x = - a  a n d  x = a + h .    (3.34) 

At each interface (x = 0 and x =h) we have - see (3.15) and (3.18) - 

x
CD

x
CD *

* ∂
∂

=
∂
∂  and  C *  =  γC.     (3.35) 

F ina l ly  there  i s  the  normal  in i t i a l  condi t ion ,  v iz .  

C = C0 and C* = 0 at t  = 0 .     (3.36) 
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It  can then be shown after some algebra that  
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where M*∞ ,  β  and τ+  have their usual meanings and are defined in (3.24), 

(3.25) and (3.22) respectively,  and α  is  another non-dimensional constant 

defined by 
2
1

*D
D1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ

=α .     (3.38) 

F ina l ly ,  i t  i s  necessa ry  to  know tha t  the  q n   (n  =  1 ,2 , . . . )  in  (3 .37)  a re  

the posi t ive roots  in ascending order of magnitude of the equation 
0qtanqtan nn =αβ+α .     (3.39) 

One of  the outcomes of  the algebra leading to (3.37) is  an expression 

giving the dependence of C* on x (and t) .   This is  more complicated than 

(3 .37)  and  wi l l  no t  be  g iven  here .   I t  i s  su f f i c ien t  to  no te  now tha t  
the  average concentrat ion *C  of  contaminant  in  the food at  t ime t  i s  

M*/V* = M*/(2Aa). 

Whi l s t  i t  s eems  un l ike ly  tha t  (3 .37)  i s  an  o r ig ina l  r e su l t ,  we  a re  no t  

aware  of  a  previous  der ivat ion,  nor  has  i t  apparent ly  been used in  

work on migration.  (However Carslaw and Jaeger (1959) discuss many 

so lu t ions  o f  the  same  type  in  the  con tex t  o f  hea t  conduc t ion . )   I t  i s  

u s e f u l  b r i e f l y  t o  n o t e  c e r t a i n  p r o p e r t i e s  o f  ( 3 . 3 7 ) .   T h e  v a l u e  o f  

M*∞  i s ,  of  course,  given by the s imple theory of  §3.2 and is  independent  

of  D and D* .   For  smal l  va lues  of  τ+ ,  i t  can  be  shown that  
2
1

0
*

Dt
1

AC4M ⎟
⎠
⎞

⎜
⎝
⎛
πα+

≈ ;     (3.40) 

this result  is  given by Reid,  Sidman, Schwope and Till  (1980).   Compar- 

i son of  (3 .40)  wi th  (3 .29)  shows that  when D* /D is  la rge ,  i .e .  when 

α<<1,  these  resul ts  are  approximate ly  the  same as ,  indeed,  they should  

be .   For  l a rge r  va lues  o f  α ,  t he  d i f fus ion  in  the  food  i s  l e s s  rap id  

and M *  is  a  fac tor  (1+ α ) - 1  less  than when the  food is  wel l -s t i r red .   In  

the extreme case,  when α  is  very large,  the early t ime approximation 

(3.40) can i tself  be approximated by 
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2
1

*
0*

tDA)C(4M ⎟
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⎞

⎜
⎝
⎛
π

γ≈ ,     (3.41) 

and this is a result which forms an interesting counterpoint to (3.29) 
since, in this l imit,  the concentration in the plastic is uniform and 
the migrated contaminant (with concentration γC0) occupies a layer of 

thickness of order 2
1

* )tD(  within the food (Reid, Sidman, Schwope and 

Till 1980).  A possible practical application of (3.41) is to the 
migration of plasticiser from PVC film into cheese (Sandberg and Vaz 
1984; Ashby 1986).  In discussing (3.26) above, it was noted that it 
included many earlier results as special cases;  l ikewise (3.37) is 
the most general result so far obtained and can be shown to include 
(3.26) as a special case for α<<1. 
There is  a separate special  case of (3.37) that  is  given explicit ly by 
Reid, Sidman, Schwope and Till (1980, equations (23) to (25)*).  This 
specia l  case  i s  when the  p las t ic  i s  e f fec t ive ly  inf in i te  in  extent ,  
i .e .  the  se t -up a t  each in ter face  i s  as  in  Figure  2 ,  and can be  obta ined 
from (3.37) by lett ing β  →  0 appropriately.   (The reader should note 
once more that there are differences of notation between the present 
report and Reid, Sidman, Schwope and Till 's work.  In particular our 
parameter β  plays no role in their  1980 paper since the plastic is  there 
taken to be effectively infinite throughout,  and our parameter α  is  the 
reciprocal  of  what  they cal l  β . )   In  the present  notat ion,  the  special  
case of  (3 .37)  when the plast ic  is  effect ively inf ini te  (very small  β )  
is written in the following form by Reid, Sidman, Schwope and Till (1980): 
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where τ+ is another non-dimensional time defined by 

2
*

* a
tD

=τ ,      (3.43) 

and, for any quantity u (where, in (3.42), )/nu 2
1

*τ= ,  

uerfcue)u(f 2
1

u2

π−= − ,     (3.44) 
 

*Unfortunately this result  is  misquoted in equation (36) of Reid,  Schwope 
and Sidman (1983). 
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with the funct ion erfc  defined in  (2 .2) .  Actual ly ,  in  the course of  

deriving and investigating (3.37), an alternative (and more elegant) 

way of writing (3.42) was discovered, namely 
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∫
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∞ 0
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ucosu(sinu
usin21MM *

2
.  (3.45) 

(It may reassure the reader who is not a mathematician to learn that 

i t  is  not  obvious to a mathematician that  (3.42) and (3.45) are diff-  

erent ways of expressing the same result ,  or that  ei ther is  a special  

case of (3.37).   Establishing these results requires fairly sophisticated 

mathematical techniques.)  In practice, (3.42) and (3.45) are of com- 

plementary value since they will be useful for small and large values of 

τ+  respec t ive ly .  

Reid, Sidman, Schwope and Till (1980) discuss typical values of the 

parameter α ,  and argue that (3.37) - or (3.42) - should be used instead 

of (3.26) (or one of i ts  special  cases) for values of a greater  than 

about 0.1 or 0.2.  They base.this conclusion on graphs of (3.42) in 

Figure 2 of their paper and they remark that α is normally much less 

than 0.1 for solid oily foods, but that (because of low values of γ) 

values of α greater than 0.1 are often encountered with solid "watery" 

foods.  Time has not permitted use of a computer to obtain numerical 

results from (3.37) and it is recommended that this task should be under- 

taken, with the major aim of refining (if necessary) the estimates by 

Reid, Sidman, Schwope and Till (1980) of the values of a for which (3.37) 

should be used instead of (3.26).   (In this context i t  will  be noted 

that  the term in curly brackets in (3.37) is  a function of two non- 

dimensional constants α and β, as well as of non-dimensional time τ+, 

whereas - for geometrical reasons - (3.42) involves only one non-dimensional 

constant α .   I t  would therefore be expected in general that the values of 

α  for which (3.37) is significantly different from (3.26) would depend 

on β.) 

Models involving a mass transfer coefficient 

The concept of a "well-mixed" liquid food is discussed further by Reid, 

Sidman, Schwope and Till (1980) and by Reid, Schwope and Sidman (1983). 

On the basis of the immediately preceding work, it would seem natural to 

argue that  a l iquid food is "well-mixed" (in the sense that  the contaminant 
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within it can be regarded as being of uniform concentration) if 
2
1

*
1 )D/D(−γ=α   is less than about 0.1 or 0.2.  However these authors 

adopt another criterion.  They assume that the degree of resistance 

of the food to the migrating contaminant can be quantified by a constant 

mass transfer coefficient k (a quantity with the units of velocity).  

Suppose that the food occupies the region x > 0 and is of infinite 

extent so that ,  as discussed above before (3.19),  the concentration 

in  the  bulk  of  the  food can be  taken as  zero  for  a l l  t .   Then ins tead 

of  (3 .13a)  and  (3 .18) ,  the  in te r face  condi t ion  a t  x  =  0  i s  t aken  to  be  
Ck

x
CD γ−=
∂
∂  a t  x  =  0  fo r  a l l  t  .     (3.46) 

This  is  an empirical  relat ionship with l i t t le  support  from fundamental  

sc ien t i f i c  p r inc ip les .   I t  i s  exp la ined  by  re fe rence  to  the  mot ion  o f  

the  l iquid  food and,  in  par t icular ,  to  the  concept  of  a  boundary  layer  

of  thickness δ  adjoining the interface where k = D*/δ .   The size of  

δ  is  dependent on the l iquid motion in an unspecified way and i t  is  

stated that  "values of k are normally estimated from generalized 

correlations"(Reid, Schwope and Sidman 1983) .  The boundary layer inhibits 

the transfer  of  migrated contaminant  into the bulk of  the food so that  

l a rge  va lues  of  δ  ( smal l  va lues  of  k)  represent  the  case  of  la rge  re -  

sistance to migration.  Other authors who have used the same concept 

include Chan, Anselmo, Reynolds and Worman (1978), Sanchez, Chang and 

Smith (1980), and Zieminski and Peppas (1983a). 

For  the geometry of  Figure 6  ( inf ini te  plas t ic  and food with one inter-  

face) ,  use of  (3.46) gives (Crank 1979) 
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where the new non-dimensional time τk, is given by: 

D
tk 22

k
γ=τ .     (3.48) 

(In the notation of Reid,  Sidman, Schwope and Till  (1980) and Reid,  

Schwope and Sidman (1983) ,  our  τk  i s  their  γ2 . )   For  smal l  values  of  

τ k ,  i t  i s  e a s y  t o  s h o w  t h a t  ( 3 . 4 7 )  r e d u c e s  t o  
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AtCKM 0* γ≈ .     (3.49) 

The expression for M* for the geometry of Figure 7 (finite plastic 
and inf ini te  food with two interfaces)  is  a lso given but  wil l  not  
be  recorded  he re .   I t  i s  su f f i c ien t  to  no te  tha t  (3 .49)  aga in  ho lds  
(when multiplied by 2 because there are now two interfaces) for small 
values of τk .   For large τk ,  on the other hand, (3.47) becomes  

2
1

0*
DtAC2M ⎟
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⎞

⎜
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π

≈ ,     (3.50) 

which is  exact ly  (3 .19) .   For  large t imes therefore  the extent  of  the  
migration is  independent of the value of k.  
Reid, Schwope, Sidman and Till (1980) and Till, Reid, Schwartz, Sidman, 
Valentine and Whelan (1982) discuss some experimental evidence to 
support  (3.47) which,  in part icular ,  i l lustrates that  M* is  proport ion- 

a l  to  t ,  ra ther  than 2
1

t ,  for  smal l  τk ,  but  that  the  ra te  of  growth s lows 
down for  larger  τk ,  consistent  with (3.50).   On the basis  of this  l imit-  
ed evidence, Reid, Schwope and Sidman (1983) propose that solutions like 
(3.47) that  are derived by use of  (3.46) -  rather  than (3.13a) and 
(3.18) - should be employed for predicting migration in liquid foods 

on ly  fo r  va lues  fo r  τ k  such  tha t  102
1

k <τ .   They  ind ica te  tha t  th i s  con-  

di t ion is  rarely encountered in pract ice but  one important  exception is  
noted, namely aqueous food/plasticized PVC/adipate (or phthalate) esters. 
The numerical examples quoted show furthermore that the differences between 
(3.47) and the corresponding solutions based on (3.13a) and (3.18) are 
noticeable only when the concentrations of contaminant in the food are 
extremely low.  Given the empirical  nature of (3.46) and the difficulty 
of  a  pr ior i  es t imat ion of  k ,  the  authors  of  th is  repor t  conclude tha t  the  
use of  (3 .46)  in  pract ical  predict ions of  migrat ion into l iquid food for  
Class II systems simply introduces unnecessary complications, and we 
believe that  this conclusion could only be changed if  i t  were contra- 
dicted by substantial ly more data than are currently available* .  
 

*There can be no dispute in quali tat ive terms with the basic physical  idea 
that  motivates (3.46),  namely the influence of a l iquid boundary layer.  
Our scepticism is about the practical importance of this phenomenon and, 
incidental ly ,  about  the quant i ta t ive accuracy of  (3 .46) .   For  instance,  
the re  i s  l i t t l e  r eason  why  k  shou ld  be  a  cons tan t ;   th i s  i s  in  fac t  
acknowledged by Reid, Sidman, Schwope and Till (1980,p.586). 
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Concluding comments on models of Class II systems 
Essentially all  the mathematical models that have appeared in the li ter- 
ature have now been presented and discussed;  in addition a new solution, 
viz. (3.37), that includes many others as special cases has been derived. 
In concluding this section of the report ,  there are two recurrent 
points that,  even at the risk of undue repetition, we wish once more to 
emphasize.   In the f irs t  place,  al l  the solut ions are for  plane geometries  
only,  i .e.  they have quantitat ive relevance to very few real  migration 
problems since commercial plastic containers are rarely plane.  Exceptions 
exist, e.g. some flat packets of cooked meat and cheese;  furthermore 
the results of the models seem likely to apply reasonably well to migration 
in  many of  the  tes t  ce l l s  used in  labora tor ies .   Never theless  i t  i s  
difficult  to understand -  and impossible to condone -  the failure of 
mathematical modellers of migration to derive results for more realistic 
geometries.  The work in §§2.3 - 2.5 shows unambiguously that different 
geometries lead to significant differences in migration behaviour even 
when there are no changes in the materials involved.  Whilst there would 
be no real  dif f icul ty  in  der iving the analogues of  most  of  the resul ts  
in  this  sect ion for  cyl indr ical  and spherical  geometry,  these resul ts  
would also be special .   The real  need is for numerical  solutions of 
migration models for realist ic geometries.   Secondly,  most of the papers 
on migrat ion that  have been studied in preparing this  report  contain very 
l i t t le,  if  any, mathematics and, in general ,  the few to which this comment 
does not apply have inadequate connections between the mathematics and 
the experimental  resul ts .   The lat ter  are not  usually plot ted in non- 
dimensional form, and it deserves emphasis that this should be done even 
when the authors of the papers have no direct or immediate concern with 
mathematical  models.   Also insufficient details  are given to enable the 
reader to make his/her own comparison between theory and experiment. 
In some papers the situation is even worse;  some mathematical formulae 
are  given but  are  not  used,  nor  even referred to ,  subsequent ly!  
 

 

I n t r o d u c t o r y  r e ma r k s  
In §1.2 Class III  systems were defined (Katan 1971) as those in which the 
migrat ion of  the contaminant  is  control led by the food.   While the 



3/34/56 

i m p l i c a t i o n  o f  t h i s  d e f i n i t i o n  i s  t h a t  m i g r a t i o n  i s  n e g l i g i b l e  i n  t h e  
a b s e n c e  o f  f o o d ,  i t  i s  p o s s i b l e  i n  t h i s  r e p o r t  o n  ma t h e ma t i c a l  mo d e l s  
o f  mi g r a t i o n  t o  b e  s l i g h t l y  mor e  f l e x i b l e  b y  r e q u i r i n g  s i mp l y  t h a t  t h e  
p r e s e n c e  o f  t h e  f o o d  s u b s t a n t i a l l y  i n c r e a s e s  mi g r a t i o n .   I n  f a c t  a l l  
models  of  Class  I I I  sys tems  have  dea l t  wi th  one  type ,  namely  tha t  in  
which  the  food  (o r  food  s imulan t )  i s  l iqu id  and  pene t ra tes  the  p las t i c ,  
with consequent changes in i ts  physical  properties.   The penetration may, 
or may not,  be accompanied by substantial  swelling of the plastic.   In 
what  i s  apparent ly  the  f i r s t  paper  on  the  theory  of  Class  I I I  sys tems ,  
Knibbe (1971) describes the features that  al l  subsequent modellers have 
incorporated.   There  is  a  "sharp front"  between the par t  of  the  plas t ic  
(adjacent  to  the or iginal  food/plast ic  interface)  that  has  been penetrated 
by food, and the part  that  has not.   This front advances into the plastic 
as t ime increases,  and within the penetrated plastic ( i .e.  behind the 
front)  the transfer of contaminant is  greatly enhanced relative to what 
occurs in the original.   Whilst  Knibbe (1971) and Katan (1971) both 
assume that no migration takes place in the absence of penetration 
( i .e .  that  D = 0 or  γ  =  0  in  the notat ion of  §3.3) ,  th is  assumption is  un-  
necessarily restrictive and has not been made by some subsequent modellers. 
Other  useful  qual i ta t ive discussions of  migrat ion in  Class  I I I  systems 
are given by Figge (1980)* and Shepherd (1982). 
 

Mathematical models 
 

Figure 11 illustrates the situation considered by Knibbe (1971) and Katan 
( 1 9 7 1 ) ,  w h e r e  b ( t )  d e n o t e s  t h e  p e n e t r a t i o n  d i s t a n c e  a t  t i me  t  a f t e r  
migration starts†.   Both authors cite experimental evidence which is stated 
 
*However Figge's paper contains an instructive non-sequitur in its discussion 
of i ts  Figures 3 and 4 on i ts  pp.190-192.  On the abscissae are plotted 
times in units of hours and days, and not non-dimensional times.  Understand- 
ably therefore the graphs in these Figures of migration for different systems 
are different, but it cannot be judged from these Figures whether the graphs 
would be different if plotted in appropriate non-dimensional form.  Therefore 
these Figures cannot legitimately be used to claim that certain food simulants 
are unsuitable (although that conclusion may well be correct).                       

 

† I t  is  actually unclear what the precise definit ion of b(t)  is .   The point of 
this remark is that in certain circumstances the penetration front is not 
"sharp" in the mathematical sense, whereas in others it is.  See p. 122 of 
Crank (1979). 
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to  suppor t  the  theore t ica l  p red ic t ion  tha t  

    b(t)  2
1

)Kt(∞       (3.51) 

where K is  a  constant  with  the same uni ts  (m2s - 1 )  as  an ordinary diffusion 

coef f ic ien t .   Knibbe  assumes  wi thout  d i scuss ion  tha t  the  pene t ra t ion  i s 
a di f fus ion  process ,  and  emphas izes  tha t  the  d i f fus ion  coef f ic ien t  i s  

" s t r o n g l y  d e p e n d e n t "  o n  t h e  c o n c e n t r a t i o n  o f  t h e  f o o d  i n  t h e  p l a s t i c . 
He does not  s ta te  what  he assumes about  this  dependence but  wri tes  that 
K in (3.51) is proportional to the maximum value of the diffusion coeffic-  
ient.   It  seems unlikely that (3.51) holds for all  possible dependencies, 

especially in more realist ic geometries than that  of Figure 11,  but a full  

mathematical treatment of the point would be very difficult ,  if  not im-

possible.  Some of the later models use different formulae than (3.51). 

 

 

 
     FIGURE 11 

Knibbe now supposes that  the migration of contaminant in the penetrated 

plast ic  is  a  diffusion process  with diffusion coeff ic ient  D+,  where D+  

depends on the concentrat ion of  the food in  the plast ic .  He considers 
two poss ib i l i t i es .   When D +  i s  much less  than  K,  the  pene t ra t ion  f ront  

advances  much more  rap id ly  than  the  migra t ion  f ront  so  tha t  a l l  the  

migra ted  contaminant  or ig ina tes  in  the  pene t ra ted  reg ion .   Provided  D +  

c a n  b e  r e g a r d e d  a s  c o n s t a n t ,  i t  i s  t h e n  p o s s i b l e  t o  u s e  ( 3 . 1 9 )  s o  t h a t  
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⎛ +=    ( 3 . 5 2 )  

where - as usual – M* is the mass of contaminant in the non-penetrated 
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food  a t  t ime t .   (For  two-s ided  ex t rac t ion  (3 .52)  has  of  course  to  be  
doubled,  and i t  i s  assumed both that  the  food is  wel l -mixed and that  the  
food  and  the  p las t i c  a re  e f fec t ive ly  in f in i t e . )   Knibbe  d i scusses  the  
assumption that  D+ in  (3 .52)  is  constant ,  arguing that ,  a l though D+ 
increases with the quantity of penetrated food, so also does the thickness 
of the  pene t ra ted  p las t ic  due  to  "swel l ing"  and  tha t  these  two ef fec ts 
are in  balance so that  both D+ and the thickness  of  the  penetrated plas t ic  
can be regarded as constant.   Unfortunately when D+ << K the thickness of 
the  penetrated plas t ic  does  not  enter  the  expression for  M*  in  (3 .52)  and 
this argument seems invalid.  (Expansion does of course cause a reduction 
in the  concent ra t ion  of  the  contaminant  bu t  th i s  can  be  incorpora ted  
t r i v i a l l y  i n t o  ( 3 . 5 2 )  b y  r e d e f i n i n g  C 0  t o  b e  t h e  c o n c e n t r a t i o n  i n  t h e  
p e n e t r a t e d  p l a s t i c  r a t h e r  t h a n  t h e  o r i g i n a l  p l a s t i c . )   K a t a n  ( 1 9 7 1 )  
avoids  use  of  (3 .52)  by  a rguing  tha t  i t  i s  p rudent  for  sa fe ty  eva lua t ion 
to suppose  tha t  a l l  the  contaminant  in  the  reg ion  of  pene t ra ted  p las t ic 
has migrated into the food;  this gives 
     

,Ab(t)0C*M      (3.53) 

and is  obviously (and del iberately)  an over-est imate .   The second case 
considered by Knibbe is  when D+ is  comparable  with  or  greater  than K. 
In th is  case  migra t ion  occurs  re la t ive ly  fas t  and  contaminant  f rom a l l 
the penetrated plastic is  involved in migration.   Some graphs in Knibbe's 
paper il lustrate the type of migration behaviour then expected.  Penetration 
becomes unimportant for values of D+ much greater than K, and predictions 
can be made as for Class II systems. 
 
The basic ideas used in the work by Knibbe and Katan were incorporated 
in. two more complicated models by Frisch (1978) and Rudolph (1979).  These 
models  have differences  of  approach but ,  in  our  judgement ,  both meri t  
fur ther  a t tent ion here .   Unfortunately nei ther  Fr isch nor  Rudolph seems 
aware of the work of the other! 
 
Both authors  consider  the geometry of  Figure 11,  and suppose that  a l l 
the mass transfer processes are diffusion processes. Frisch (1978) assumes 
that  the  region occupied by pure food (x < 0)  is  wel l -mixed,  and also 
trea ts  the  reg ion  occupied  by  p las t ic ,  and  by  p las t ic  p lus  food ,  as  one  
s ing le  reg ion  wi th in  which  the  concent ra t ion  of  food  c  var ies  f rom i t s  
equi l ib r ium so lubi l i ty  va lue  c s   a t  the  in te r face  x  =  0  to  zero  fa r  away 
from the interface (i .e.  x ∞→  )  .   (Where necessary in this section lower 
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case  le t te rs  wi l l  be  used  to  denote  proper t ies  of  the  food  in  the  p las t ic  
that  have been denoted by the corresponding upper case letters for pro-
per t i e s  o f  the  con taminan t ;   in  pa r t i cu la r  c  and  d  wi l l  deno te  the  con-
cen t ra t ion  and  d i f fus ion  coef f i c ien t ,  r e spec t ive ly ,  o f  the  food  in  the  
p l a s t i c . )   T h u s  F r i s c h ' s  mo d e l  d o e s  n o t  i n c l u d e  t h e  s h a r p  f r o n t  a s  a n  
expl ic i t  fea ture .   However  i t  could  be  obta ined  f rom his  genera l  model  
equat ions by consider ing appropria te  l imits .   The model  includes  var iable  
d i f fu s i o n  c o e f f i c i e n t s  s o  t h a t  t h e  e q u a t i o n  fo r  c ( x , t )  i s  ( 3 . 8 )  i n  t h e  
p r e s e n t  r e p o r t ,  v i z .  
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with  the obvious boundary and ini t ia l  condi t ions  which are  
 
  0)0,x(c,0)t,(c,c)t,0(c S ==∞=     (3 .55)  

 
Similarly the equation used for the contaminant concentration C(x,t) is 
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With 
  

00 C)0,x(C,C)t,(C,0)t,0(C ==∞=    (3.57) 

 
The  f i r s t  condi t ion  in  (3 .57)  i s  the  same as  tha t  used  for  the  geometry 
of Figure 6  and appl ies  because C*  = 0 throughout  the food for  a l l  t  for the 
reason given in the discussion preceding (3.19).  Frisch now supposes 
that d and D are functions of c;  specifically he takes 
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−σ=    (3.58) 

where d0  is the value of d when c = C S , and νμσ ,,  are positive dimension- 

less  constants  whose values ,  l ike  d  ,  depend on the specif ic  mater ia ls  in 
the system.  (Frisch uses the notation DS , αβ,   and a for what in our 

no ta t ion  a re  νμ
σ and,

C
,d

S
0   r e spec t ive ly . )   Jus t i f i ca t ion  fo r  (3 .58)  i s  

given in the paper.  Wagner (1952) showed how the solution of (3.54) and 
(3.55) could be obtained numerically (no simple formula exists) ,  and 
Crank (1979, pp.112-117) gives a lengthy summary of Wagner's work with a 
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table (Table 7.3 on p.384) from which good approximations can be obtained. 
When c(x,t) is known so is D via the second equation in (3.58).  Hence 
(3.56)  can  be  so lved  for  C(x , t )  as  Fr i sch  shows;   o f  course  the  resu l t s 
are  ava i lab le  on ly  in  numer ica l  form.   I t  i s  then  poss ib le  to  de te rmine 
t h e  f l u x  ( i . e .  t h e  r a t e  o f  t r a n s f e r )  o f  con t aminan t  i n to  t he  food ,  and  
Frisch gives  an expression for  this .   By integrat ing this  expression with 
r e s p e c t  t o  t  i t  f o l l o w s  t h a t  

   ,)td(AC),,(M 2
1

00* νμσφ=            ( 3 . 5 9 )  

 
where the function φ  can be determined from Wagner's and Frisch's work 
for  any  va lues  o f  α ,  μ ,  v .   Whi l s t  i t  i s  no t  appropr ia te  nor  necessa ry  to  
g ive  numer ica l  de ta i l s  he re ,  the re  i s  one  in te res t ing  spec ia l  case  tha t 
is worth attention.  Frisch suggests that  contaminant molecules are some-
times much larger than food molecules so that D/d = μ  is small;   he there-
fore  s ta tes  tha t ,  in  cer ta in  spec ia l  cases ,  μ  i s  l ess  than  10 2− ,  and  shows 

that  2
1

)/(2),,( πμ≈νμσφ   for  such small  values  of  μ ,  so  that  (3 .59)  reduces 
to 
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 Since,  according to  (3 .58) ,  0dμ  i s  the value of  D at  the interface (where 
C = C S  ) ,  th i s  resu l t  i s  very  reminiscent  of  (3 .52)  and  of  ear l ie r  resu l t s  
for  Class  I I  sys tems l ike  (3 .19) ,  as  would  be  expec ted .   Fr i sch  shows 
further that (3.60) can be written 

    ,2
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where  0*M  is  the  va lue  of  M *  when the  food  i s  inso luble  in  the  p las t ic ,  

i . e .  w h e n  t h e  s y s t e m  i s  b e h a v i n g  a s  a  C l a s s  I I  s y s t e m .   S i n c e  1e 2
1

>
σ   

fo r  a l l  pos i t ive  α ,  (3 .61)  shows  c lea r ly  tha t  food  pene t ra t ion  enhances  
the  migra t ion ,  and  th i s  p rov ides  a  cons i s tency  check  on  h i s  mode l .  
Frisch considers some other special  cases in his paper but gives no com-
parison with any data ,  and we are  not  aware of  any subsequent  a t tempt  -
which seems unfortunate.  
 
There are several differences between Frisch's work and that of Rudolph 
(1979),  but,  as already noted, Rudolph also assumes the geometry is  



3/39/56 
that in Figure 11.  However Rudolph supposes that the diffusion coefficient
d  o f  the  food  in  the  p las t i c  i s  a  cons tan t  and  the  appropr ia te  so lu t ion 
of (3.54) then has the well-known form 

   ,k
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=     (3.62) 

where k1 and k2 are constants to be determined by the boundary conditions. 
Rudolph supposes that at x = 0, the concentration of the food in the plastic 
is  a  constant ,  say ,0γ  t imes the concentrat ion,  say C0   ,  of  the uncon-  

taminated food.  He thus extends the parti t ion coefficient concept of 
( 3 . 18 )  t o  t he  food .   Th i s  y i e ld s  k 2  =  Y O C Q  o n  s u b s t i t u t i o n  i n  ( 3 . 6 2 ) .  
The position of the sharp front at x = b(t) - see Figure 11 - is determined 
by assuming that there is an abrupt discontinuity there at which c falls 
from  C1    to  zero.     This   leads   to )exp( 2

11 λπλCk −=  where  the  non-dimensional  

constant λ  is the solution of the equation 

  ,erf)exp(CCC 22
1

1100 λλλπ=−γ     (3.63) 

 
and  the position of   the  front  is   given  in  terms  of  λ   by 
 

    .)dt(2)t(b 2
1

λ=     (3.64) 

 
Before  proceeding  i t  i s  impor tan t  to  make  two comments .   F i r s t ,  there 
is a  s ign error  in  equat ion (20)  of  Rudolph 's  paper;   th is  is  the equat ion 
in his  paper  that  corresponds to  (3 .63)  .   Secondly,  while  (3 .63)  has  to 
be solved numerically for λ  for given values of c0  and c1 ,  Rudolph does 
not  ind ica te  how c 1  i s  to  be  de te rmined .   (Of  course  c 0  i s  f ixed  by  the  
food.)   This  seems to  us  to  be a  severe shortcoming of  his  work.   I t  i s 
more sat isfactory to  adopt  a  second possibi l i ty  which Rudolph refers  to 
on p.1710 of his paper, namely to suppose there is no jump in concentration. 
This means that c1  = 0 and that 
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*The differences in  notat ion between Rudolph 's  or iginal  paper  and this  
r e p o r t  a r e  s o  n u me r o u s  t h a t  t h e y  a r e  n o t  l i s t e d  h e r e ;   i t  i s  h o p e d  t h a t   
no confusion results. 
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In mathematical  terms there is  now no sharp front.   However,  in practical  
t e rms ,  the re  i s  a t  any  t ime  t  on ly  a  reg ion  o f  f in i t e  th ickness  wi th in  
which c is  effectively non-zero.   The point is  that  for any given method 
of chemical  analysis  there  is  a  l imit ,  say cL ,  such that  concentrat ions 
below cL  are undetectable and are therefore recorded as zero.  From (3.65) 
it now follows that c is detectably  non-zero only for x < bL (t) , where 
 

    ,)dt(2)t(b 2
1

LL λ=      (3.66) 
 
and   the  non-dimensional   quantity  Lλ     is   the   solution  of   the   equation 
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Therefore ,  even  when there  i s  no  sharp  f ront ,  measurements  would ,  in  
e f f ec t ,  i n d i ca t e  t he  ex i s t ence  o f  one ,  and  i t s  r a t e  o f  advance  depends 
on d and t  exact ly  as  i f  there  were a  sharp front  and (3.64)  held.   (The 
reader  may wish  to  re fer  aga in  to  the  footnote  assoc ia ted  wi th  the  tex t  
immediately before (3.51).)   In summary, the question of whether a sharp 
f r o n t  e x i s t s  i s  m u c h  l e s s  i m p o r t a n t  t h a n  t h e  o r d e r  o f  m a g n i t u d e  i n  
pract ical  terms of  the thickness  of  the penetrated region,  and al l  models 
s o  f a r  c o n s i d e r e d  p r e d i c t  t h a t  t h i s  i s  p r o p o r t i o n a l  t o  t  ,  a s  i n  ( 3 . 5 1 )  
and (3.64). 
 
Rudolph (1979) now deals with the concentration of contaminant.   He 
assumes standard diffusion processes, with constant diffusion coefficients 
in the non-penetrated food and in the unpenetrated plastic,  and a diffusion 
coef f ic ien t  in  the  pene t ra ted  p las t ic  tha t  depends  on  c (x , t ) ,  the  concen-
trat ion of  food in  the plast ic  discussed above.   His  boundary and ini t ia l  
condi t ions are  s tandard,  i .e .  they are  based on (3.18)  and conservat ion 
of mass.   In formal mathematical  terms the distribution of contaminant 
concentration can be found everywhere;  naturally the formula contains an 
in tegra l  involv ing  the  var iab le  d i f fus ion  coef f ic ien t  in  the  pene t ra ted  
plastic which can be evaluated only when the dependence of this coefficient 
on c  i s  p rescr ibed .   The  a lgebra ic  de ta i l s  a re  rou t ine ,  bu t  fa i r ly  lengthy  
and  compl ica ted ,  and  re ference  can  be  made  to  the  or ig ina l  paper  i f  
r equ i red .   F rom the  po in t  o f  v iew of  migra t ion ,  the  impor tan t  r esu l t  i s  
that M*, the mass of migrated contaminant at time t, satisfies 
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where  D i s  as  usua l  the  d i f fus ion  coef f ic ien t  of  the  contaminant  in  the  
pure plastic,  and ψ  is  a non-dimensional constant which depends on all 
the mater ia l  p roper t ies  (e .g .  d i f fus ion  and  par t i t ion  coeff ic ien ts , 10 C/C ) 
and can be determined when these are known (and when the dependence of 
the  d i f fu s ion  coe f f i c i en t  on  c  i s  p r e sc r i bed )  by  t he  me thods  g iven  by  
Rudolph.   Some typical  graphs are  given in  Rudolph 's  paper .  
 
More importantly the Hamburg group to which Rudolph belongs has made 
extensive comparisons of  his  theory with their  experimental  data  (vom 
Bruck, Rudolph, Figge and Eckert 1979;  Figge and Rudolph 1979;  Figge 
1980;   vom Bruck ,  F igge  and  Rudolph  1981) .   I t  was  found tha t  the  
migrat ion resul ts  for  a  wide range of  systems in  which the food penetrated 
the  p las t i c  cou ld  be  f i t t ed  by  curves  p red ic ted  f rom Rudolph ' s  theory .  
F igge  (1980)  expla ins  tha t  the  measurements  were  used  to  se lec t  the  un-
k n o w n  c o n s t a n t s  i n  R u d o l p h ’ s  t h e o r y ,  u s i n g  t r i a l  a n d  e r r o r ,  s o  t h a t  
t h e  r e s u l t a n t  t h e o r e t i c a l  c u r v e s  g a v e  a  g o o d  f i t  t o  t h e  d a t a .   S u c h  
c o n s t a n t s  i n c l u d e d  t h e  p a r t i t i o n  c o e f f i c i e n t s ,  t h e  d i f fu s i o n  c o e f f i c i e n t s 
of the  food  and  the  con taminan t  in  the  unpene t ra ted  p las t i c ,  and  the  con-
stant  λ  in  (3 .63) .   Of  course this  method of  select ing unknown theoret ical  
parameters from data is commonly used, but it  does nothing to solve the 
major problem of how the theory can be used subsequently to make acceptably 
accurate predictions for new systems.  In particular the method, when 
adopted in  the present  s i tuat ion,  does nothing to  explain how the con-
cent ra t ion  c 1   in  (3 .63)  i s  de te rmined .   Carefu l  s tudy  of  F igure  34  in  
F igge  (1980)  shows in  fac t  l i t t l e  ev idence  tha t  there  i s  a  sharp  f ront  
between the penetrated and unpenetrated plastics,  thus providing support 
f o r  t h e  e a r l i e r  r e ma r k s  a s s o c i a t e d  w i t h  ( 3 . 6 5 )  a n d  ( 3 . 6 7 ) .   I n  p a r t i c u l a r ,  
Rudolph's algebra, like that of Knibbe (1971), Katan (1971) and Frisch 
(1978), supports the comment after (3.67) above that what matters in 
pract ice  is  the order  of  magni tude of  the thickness  of  the penetrated 
region,  not  whether  there  is  a  sharp front .   There is  one other  general 
point that ought to be made, namely that the number of unknown constants 
that have to be selected is  so high that reasonable agreement between 
theory and experiment is  almost guaranteed.  Figge (1980) does not explain 
how the  dependence  of  D,  the  d i f fus ion  coef f ic ien t  of  the  contaminant 
in the  pene t ra ted  p las t ic ,  on  c ,  the  concent ra t ion  of  food ,  i s  de te rmined ,  
but he indicates that the curves shown in his Figure 34, for the system 
tricaprylin/HDPE/BHT, were obtained by using the formula 
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    ,kcDD 0 +=     (3.69) 
 
where  the  va lues  of  the  cons tan ts  D Q  ( the  d i f fus ion  coef f ic ien t  of  BHT 
in the unpenetrated HDPE) and k were determined from the data.   The 
express ion  in  (3 .69)  i s  o f  course  der ived  in  s tandard  fash ion  f rom the  
Tay lor  se r ies  expans ion  o f  D about  c  =  0 ;   th i s  t echn ique  i s  wide ly 
u s e d  t h r o u g h o u t  p h y s i c s ,  e . g .  i n  u s i n g  v i r i a l  c o e f f i c i e n t s  f o r  g a s e s .  
All the data of the Hamburg group using tricaprylin/HDPE or plasticized 
PVC/additive could be fitted by Rudolph's theory. 
 
However Figge (1980) notes that  the theory could not f i t  data taken with 
any system of the form tr icapryl in/HIPS/addi t ive,  a  system in which 
penetrat ion of  the food was s ta ted to  be accompanied by s ignif icant  
swel l ing of  the plast ic .   (See Figure 32 and the bot tom of  p .  234 of 
Figge’s  paper . )   In  a  la te r  theore t ica l  paper  Rudolph  (1980)  ex tended 
his  ear l ie r  work  to  a l low the  pene t ra ted  p las t ic  to  swel l  in to  the  reg ion  
originally occupied by pure food.  Mathematically,  the model has very 
s imi la r  s t ruc ture  to  the  ear l ie r  one  by  Rudolph  tha t  was  summar ized  
immediately above, and it  can be criticized in the same way.  Vom Bruck, 
Figge and Rudolph (1981) appear to indicate (although the wording is not 
c lear)  that  Rudolph 's  (1980)  model  can be f i t ted to  the data  f rom the 
tr icaprylin/HIPS/additive system that the earlier model could not allegedly 
cope with. 
 
In  essence  a l l  au thors  s ince  1971  have  ex tended ,  bu t  no t  deve loped  in  
any s ignif icant  way» the basic  f ramework la id  down then by Knibbe and 
Katan.   For  completeness ,  i t  should also be noted that  some papers  
(Pe ter l in  1977;   Enscore ,  Hopfenberg  and  Stannet t  1977;   As tar i ta  and  
Sar t i  1978 ;   Josh i  and  As ta r i t a  1979)  have  dea l t  wi th  the  pene t ra t ion 
of the  p las t i c  by  the  food  and  the  consequen t  swel l ing ,  bu t  d id  no t  
cons ide r  the  impl ica t ions  fo r  migra t ion .   I t  seems  to  the  au thors  o f 
this report  that  the work in some of these papers may ult imately provide 
a more useful framework for predicting migration in Class III  systems 
than does,  for example,  that  of Rudolph, but much more research (both 
theore t i ca l  and  exper imenta l )  needs  to  be  done  to  es tab l i sh  the  t ru th 
(or otherwise) of this opinion. 
 
A phenomenon, not strictly in Class III behaviour as defined above, that 
has cer ta in  s imi la r i t i es  wi th  pene t ra t ion  of  the  p las t ic  by  the  food  i s  
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change  in  the  p las t ic  s t ruc ture  due  en t i re ly  to  migra t ion  of  an  addi t ive ;  
any  penet ra t ion  of  the  p las t ic  by  food  i s  re la t ive ly  minor ,  o r  a  secondary  
effect  which can be considered separately.   The phenomenon is important 
because  i t  occurs  wi th  p las t i c  so f teners  (p las t i c ize r s ,  impac t  modi f i e r s  
e tc . ) ,  e .g .  PVC f l ex ib le  f i lm and  RCF,  bu t  i s  sc ien t i f i ca l ly  excep t iona l  
and should not be allowed to influence unduly development of a model (or 
models )  appl icab le  to  a l l  Class  I I I  sys tems.Zieminski  and  Peppas  (1983a)  
pos tu la te  the  ex is tence  of  an  advancing  in te r face  in  the  p las t ic  separa t ing  
a  g lassy  reg ion  (p las t ic  f rom which  the  p las t ic izer  has  migra ted  in to 
the  food)  f rom a  rubbery  reg ion  (p las t i c  tha t  r e ta ins  i t s  p las t i c ize r 
either  whol ly  or  subs tan t ia l ly) .   Migra t ion  i s  model led  by  an  equat ion  
w i th  a  va r i ab l e  d i f fu s ion  coe f f i c i en t ,  i . e .  ( 3 . 56 ) ,  bu t ,  i n  add i t i on ,  
migra t ion  in  the  g lassy  reg ion  conta ins  a  convec t ion  te rm.   This  i s  d i f f -
icult  to understand.  Zieminski and Peppas (1983a) present some numerical  
so lu t ions  of  the i r  model  equat ions  and  some exper imenta l  da ta  for  water /  
PVC/DEHP (d i (2-e thyl  hexyDphtha la te )  or  BBP (benzyl  bu ty l  ph tha la te )  
sys tems.   Unfor tuna te ly  they  a re  unable  to  compare  the i r  theory  wi th 
the i r  da ta .  
 

 

 
Work undertaken at the PIRA Laboratories (Adcock, Hope and Paine 1980a, 
1980b; Adcock, Hope, Sullivan and Warner 1984) included the development 
of an extremely novel physical model ("pictorial concept") for the 
assessment of the migration of additive(s) in Class III  systems.  This 
model, described fully in Adcock,  Hope and Paine (1980b), is based on 
the representa t ion  of  the  p las t ic  as  a  mat r ix  of  molecules  of  d i f fe ren t  
s izes .   A typ ica l  molecular  weight  d i s t r ibu t ion  curve  for  p las t ics  pro-
duced by free-radical  polymerizat ion is  represented by a  his togram with 
19 groups  conta in ing  a  to ta l  o f  857  molecules .   (These  f igures  a re  a rb-
i t rary.)   Molecules  in  each group are  model led as  squares  whose area is  
p ropor t iona l  to  the  molecular  weight  for  tha t  g roup;   the  857  squares 
are then arranged randomly in  a  rectangle ,  but  the precise  method of  
a r r a n g e m e n t  i s  s u c h  t h a t  t h e  s q u a r e s  o f  d i f f e r e n t  a r e a s  f i t  t i g h t l y  
toge ther  wi th in  th i s  rec tangle .   I t  i s  then  assumed tha t  one  of  the  longer  
edges of  the rectangle  is  the interface between the plast ic  and the food. 
A food is divided into 19 groups, one for each range of molecular weights.  
Food group 1 is  capable of "penetrating" all  molecules in group 1,  but 
not those in any higher group;  food group 2 can penetrate all  molecules 
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in  groups 1 and 2 but  not  those in  any higher  group,  and so on.   (Group
1  cons i s t s  o f  the  l igh tes t  molecu les ,  g roup  2  o f .  the  nex t  l igh tes t  e t c . )  
Food of a given group actually penetrates all  those molecules which (a) it  i s  
capable  of  pene t ra t ing ,  and  (b)  a re  reachable  f rom the  in te r face  by  
pathway(s)  through penetrable  molecules .   Given a  par t icular  rectangle  
representation of the plastic,  i t  is then a simple (but very time-consuming) 
task to evaluate,  for each of the 19 groups of food, the proportion of the 
area of  the rectangle  that  is  penetrated.   Note  that  the model  contains 
no prescription for predicting time evolution so that the 19 proportions 
a r e  e s t i ma t e s  o f  e q u i l i b r i u m p e n e t r a t i o n .  
 
I t  is  assumed that the contaminant (additive) molecules (which play no 
part in the rectangular representation of the polymer matrix) are distributed 
uniformly within the rectangle and that  all  those within the penetrated 
region migrate into the uncontaminated food.  I t  follows that the mass 
of contaminant that ultimately migrates, denoted elsewhere in the present 
report by M*∞ ,  is proportional to the area of the penetrated region accord- ing 
to the PIRA model.  A graph of M*∞  against group number is stated to  
be of the "same shape" as curves obtained from data, and given in Adcock, 
Hope and Paine (1980a). 
 
Unfortunately no attempt is  made to quantify the shape similari ty or to 
calibrate the model against  data.   I t  appears that  i t  can be used for 
predictive purposes only if  the following information is known (or can be 
estimated): 
 
 (a)  the initial concentration C0 of contaminant within the plastic; 
 (b)  the true molecular weight distribution within the plastic; 
 (c)  the "group" to which the food belongs; 
 ( d ) t h e  c o r r e c t i o n s  n e e d e d  t o  t h e  m o d e l  t o  a c c o u n t  f o r  t h e  f a c t   
  that migration really occurs in three dimensions not two, 
  i . e .  c u b e s  a n d  c u b o i d s  s h o u l d  r e p l a c e  t h e  s q u a r e s  a n d  r e c t a n g l e s  
 of the model. 
 (e)  h o w  t o  a c c o u n t  f o r  o t h e r  s t r u c t u r a l  f a c t o r s  s u c h  a s  p o l a r i t y   
 a n d  c r y s t a l l i n i t y  w h i c h  a f f e c t  p e n e t r a t i o n ,  i . e .  r e p l a c e m e n t   
 of molecular weight by compatibility/solubility. 
 
Nevertheless the PIRA model provides an interesting quali tative explan-
at ion of  the l ikely role  of  the plast ic  s t ructure  on migrat ion,  an explan-
at ion that  is  lacking in  other  accounts .  



3/45/56 

 
 

Introduction 
 

Some complications like temperature dependence and spatial inhomogeneity 
due to  penetrat ion have been discussed above.  For  completeness ,  i t  i s  
desirable to mention others that  are important and which, in some cases,  
have received attention. 
 

Chemical change 
 
None of the "mainstream" models of Class II and III systems that have 
been summarized earlier consider the possibility of chemical change either 
wi th in  the  p las t ic  (before  migra t ion)  or  in  the  food  (a f te r  migra t ion) . 
We are unaware of any mathematical treatment of the former important aspect 
of migra t ion .  Severa l  workers  a l lude  to  the  l a t t e r ;  fo r  example 
Schönert and Monshausen (1978) model certain "abnormal diffusion patterns" 
of a polyacid in aqueous solution by assuming a step change in the diff- 
usion coefficient as the polyacid structure changes suddenly from a 
sta t i s t ica l  co i l  formula t ion  to  one  involv ing  the  α -he l ix .  I t  i s  our  
opinion, however, that for practical purposes the abrupt change in the 
value  o f  the  d i f fus ion  coef f i c ien t  in  s i tua t ions  o f  th i s  so r t  p robab ly 
has  re la t ive ly  l i t t l e  e f fec t  on  behav iour  in  the  sense  tha t  sa t i s fac to ry  
predictions could be obtained using standard Class II models with an 
appropriate average (but constant and uniform) diffusion coefficient.  
 
Reid, Schwope and Sidman (1983) discuss some experiments with more serious 
implications for mathematical modelling. They noted that the migration 
of BHT and of Irganox 1010 from polyolefines into certain aqueous solutions 
showed no sign of approaching any asymptotic limit,  such as that i l lus- 
trated by their Figures 9 and 10 for large values of τ+,  even though such 
behaviour had been anticipated.  Analysis of the aqueous solution after 
the experiments had terminated showed significantly less BHT or Irganox 
1010 there than had been lost from the plastic so that chemical degradation 
of the contaminant must have occurred in the solution after migration. 
Thus the concentration *C (t) of contaminant in the aqueous solution was 
always less than the equilibrium value of oCγ predicted by (3.18) for 
effectively infinite plastic but f inite food. Hence the aqueous solution 
was never saturated with the original contaminant.  This effect was modeled 
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by assuming that the degradation occurred by a first-order mechanism 
with  *C  sa t i s fy ing  *r* ckdt/dc −=  fo r  some chemica l  reac t ion  ra te  con-  

s tan t  .kr  A s l igh t ly  d i f fe ren t  model  was  presented  in  a  la te r  paper  

(Schwope, Till ,  Ehntholt ,  Sidman, Whelan, Schwartz and Reid 1987) and 
fur ther  data  were presented and discussed.  However ,  mainly because of  
subs tan t i a l  exper imenta l  sca t t e r  ( see  nex t  pa ragraph) ,  the  ava i l ab le 
d a t a  w e r e  n o t  s u f f i c i e n t  t o  t e s t  e i t h e r  mo d e l  a d e q u a t e l y .  I t  s h o u l d  b e  
noted  tha t ,  even  in  th i s  s i tua t ion ,  migra t ion  must  eventua l ly  approach 
a l imi t  because ,  in  p rac t i ce ,  the re  i s  on ly  a  f in i t e  amount  o f  con tamin-
ant  within the plast ic .  Hence ∞*M  can never  exceed VC0  (where V is  the 

volume of  the  p las t ic ) ,  bu t  th i s  may of  course  be  a  subs tan t ia l  over -
est imate ,  a l though the l imit  is  reached very near ly  in  some important  
prac t ica l  cases .   Note  f ina l ly  tha t  the  occur rence  of  chemica l  change  
requires separate assessment of the degradation products for hazard.  
 

Repea tab i l i ty ,  r eproduc ib i l i ty  and  var iab i l i ty  
 

Many workers have noted that the results of several ,  nominally identical ,  
migration experiments are not the same and that the differences between 
the resul ts  of  separate  experiments  are  unpredictable  even when the 
whole set  of  experiments  is  conducted within a  s ingle  laboratory.  For  
example,  in the last  paper referred to in the previous paragraph Schwope, 
Till, Ehntholt, Sidman, Whelan, Schwartz and Reid (1987) comment (p.320) 
tha t  "sa t i s fac tory  rep l ica t ion  of  resu l t s  could  not  be  achieved  in 
migrat ion measurements of BHT from LDPE into water at 49°C" and "the 
resul t s  show a  d isconcer t ing  sca t te r" .  The  degree  of  sca t te r  i s  ev ident 
in the i r  F igure  4 .  
 
A major  s tudy  of  the  repea tab i l i ty  (which  re fers  to  exper iments  wi th in 
a single  labora tory)  and  reproducib i l i ty  (which  re fers  to  exper iments  
in  d i f fe ren t  l abora to r ies )  o f  the  resu l t s  o f  migra t ion  t es t s  was  under -
taken under  the auspices  of  the EEC with the work centred at  their  Joint  
Research  Cent re ,  Pe t ten  in  the  Nether lands .  A fu l l  repor t  o f  the  s tudy 
is given in Karcher, Haesen and Le Goff (1983), and the main findings
are  a l so  in  Haesen ,  Le  Goff  and  Karcher  (1984) .  A to ta l  o f  n ine  labor-
ator ies  ( including that  a t  Pet ten)  par t ic ipated in  the work which included 
four  phases .  For  p resen t  purposes  i t  i s  su f f i c ien t  to  concen t ra te  on 
the f indings of  the f i rs t  two phases .  In  the f i rs t  phase eight  laborator ies  
from six European countries (including Switzerland) analysed, using high 
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performance liquid chromatography, samples (centrally prepared at Petten) 
of two test l iquids (water and HB307) containing two plastic additives 
(Irganox 1010 and DHBP) at three different concentrations. The con-
cent ra t ions  were  in  the  p .p .m.  range ,  i . e .  o f  the  order  of  10 - 3 kgm- 3 . 
There was considerable scatter in the results with standard deviations 
ranging from 10 - 16% for DHBP in HB307 to greater than 70% for Irganox 
1010 in HB307. Haesen, Le Goff and Karcher (1984) summarize the con-
c lus ions  of  th i s  phase  as  fo l lows:  "The  cons iderable  sca t te r  observed  
showed a  major  problem.  I t  was  c lear  tha t  the  overa l l  ob jec t ive  was 
n o t  being achieved, and another identification method had to be found to 
obtain sat isfactory repeatabi l i ty  and reproducibi l i ty"*.  A second phase 
was undertaken with the principal aim of determining the repeatabil i ty 
and reproducibi l i ty  of  migrat ion data .  (The f i rs t  phase did not  deal  with 
migrat ion.)  Analyt ical  problems ar is ing in  the f i rs t  phase of  the s tudy 
were  sa id  to  be  "e l imina ted"  by  use  of  1 4 C -  l abe l led  addi t ives .  The  
laboratory at  Petten distributed samples of centrally prepared HDPE, 
each sample containing one of the same two additives used in phase one, 
to the  pa r t i c ipa t ing  l abora to r ies .  Migra t ion  t e s t s ,  each  fo r  10  days
at  40°C (313K),  were conducted in  Petr i  dishes  with three tes t  l iquids 
(90:  10  v /v  wa te r -e thano l ;  HB 307;  o l ive  o i l ) .  Samples  o f  the  resu l t ing  
l iqu id  were ,  in  each  case ,  ana lysed  both  a t  the  labora tory  conduct ing 
the tes t ,  and at  Pet ten.  There were some problems with evaporat ion of  
e thanol  for  the water-ethanol  mixture ,  and some "out lying" resul ts  were 
r e j e c t e d .  ( I t  i s  n o t e d  l a t e r  t h a t  t h e  p r o p e r  s t a t i s t i c a l  t r e a t m e n t  o f  
o u t l y i n g  r e s u l t s  -  o u t l i e r s  -  i s  a  c o n t r o v e r s i a l  t o p i c ,  a n d  n o t  o n e  t o 
be taken  l igh t ly . )  The  s t andard  dev ia t ions  fo r  r epea tab i l i ty  (wi th in  
laboratory) ranged from 2 -  9% and this was judged to be acceptable.  
However the standard deviations for reproducibility (between laboratory) 
were generally much higher, ranging from 5 - 47% with an average of about 
28% (Haesen, Le Goff and Karcher (1984), Table 3). Karcher, Haesen and 
Le Goff  (1983)  f ind these values  surpr is ingly high.  Further  phases  of 
the s tudy were concerned with one-sided tes t  cel ls  ( in  phase two the 
 
*No comment was made on an even more striking feature of the results 
than the degree of  scat ter ,  namely that  in  a l l  cases  the average measured 
concentration was below the actual (nominal) concentration by amounts 
between 10 and 50%. 
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plas t ic  laminates  were total ly  immersed in  the tes t  l iquid)  and with 
measurements of migration under t ightly controlled conditions.  The 
resul t s  of  these  phases  a re  l ike  those  of  phase  two,  in  te rms  of  the 
orders of magnitude of the standard deviations for repeatabil i ty and 
reproducibi l i ty .  
 
This important study, and earlier ones conducted under EEC auspices 
(Rossi,  Waibel and Vom Bruck 1980), have serious implications both for 
d rawing  up  l eg i s la t ion  and  fo r  su rve i l l ance  o f  foods .  For  one  th ing , 
the reductions in standard deviations between phases one and two were 
achieved  by  use  of  sc in t i l l a t ion  counters  wi th  rad ioac t ive ly  labe l led  
addi t ives ,  and  th i s  technique  cannot  be  used  for  prac t ica l  surve i l lance .  
 
I t  f o l l o w s ,  f o r  t h e  a u t h o r s  o f  t h i s  r e p o r t  a t  l e a s t ,  t h a t  l e g i s l a t i v e  
standards for migration in foods, and consequent monitoring procedures, 
shou ld  t ake  exp l ic i t  accoun t  o f  s t a t i s t i ca l  f luc tua t ions  i f  they  a re  to 
be scientifically satisfactory. The EEC studies provide abundant evidence 
of the existence of such fluctuations even when test  conditions are care-
ful ly  control led.  In  real  l i fe  the f luctuat ions wil l  have much greater  
magnitudes. There is an important point to be made here. Much scientific 
work (both experimental and theoretical) is conducted on the basis of an 
implicit  premise, namely that the process(es) being investigated is(are) 
deterministic and that,  consequently,  f luctuations of any sort  must be
no more than annoying imperfections. Occasionally this view may be 
accep tab le  in  p rac t i ce ,  bu t  th i s  i s  r a re .  Mos t  sc ien t i f i c  p rocesses  o f 
any degree of complexity have associated with them unavoidable and 
inheren t  va r iab i l i ty .  The  causes  o f  such  var iab i l i ty  may  be  in t r ins ic 
to the process  (e .g .  turbulent  f low in the a tmosphere)  or  they may ar ise 
for  prac t ica l  reasons .  For  example ,  in  migra t ion  in  rea l  food  wi th  rea l  
packaging, the amount of migration occurring for any one package will 
depend on a  host  of  factors  such as  the exact  s t ructure  of  both media, 
the  exac t  o r ig ina l  d i s t r ibu t ion  o f  the  con taminan t  in  the  p las t i c ,  the  
detai led geometry ( including air  pockets  for  example)  of  the contact 
region between food and plastic,  the history (including temperature) of 
the package between containment and consumption etc.  It is obvious that, 
pract ical ly  (or  even ideal ly) ,  these factors  cannot  be precisely quant i f ied 
nor, since each package is unique, would there be any point in attempting 
such quant i f icat ion.  I t  inevi tably fol lows that ,  pract ical ly  a t  least ,  
migration has to be regarded as a statistical phenomenon, a stochastic 
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(or  random) process .  I t  may be,  for  cer ta in  foods in  cer ta in  packages, 
that  the degree of  var iabi l i ty ,  as  measured by the magni tude (e .g .  the  
s tandard  devia t ion)  of  the  f luc tua t ions ,  i s  so  smal l  tha t  i t  i s  negl ig ib le 
in pract ice ,  but  the evidence of  the EEC studies  suggests  that  this  wil l 
be rare .  S ince  the  u l t imate  a im of  a l l  migra t ion  es t imat ion  i s  hea l th  
safety,  i t  should also be noted that  the degree of  var iabi l i ty  associated 
wi th  tox ic i ty  da ta  i s  as  la rge  as  ( i f  no t  la rger  than)  tha t  assoc ia ted 
with migrat ion data . 
 
One  of  the  major  recommendat ions  of  th i s  repor t  i s  therefore  tha t ,  in  
o rder  to  es tab l i sh  l eg i s la t ion  and  moni to r ing  p rocedures  tha t  a re  
s c i e n t i f i c a l l y  s a t i s f a c t o r y ,  a s s e s s m e n t  o f  t h e  d e g r e e  o f  v a r i a b i l i t y 
in  the  migra t ion  occur r ing  in  rea l  l i f e  shou ld  be  under taken .  Fur the r -
mor e  s u c c e s s  i n  t h i s  ma j o r  t a s k  w i l l  r e q u i r e  s t a t i s t i c a l  e x p e r t i s e  t o 
be ava i lab le  a t  a l l  s tages  f rom planning  onwards .  Unfor tuna te ly  th i s  
d id  no t  occur  in  the  EEC s tud ies* ;  consequen t ly  the  fu l l  po ten t i a l  o f  
these was not  real ized.  
 
I n  v i e w  o f  t h e s e  c o n c l u s i o n s  i t  i s  p r o p e r  t o  e n q u i r e  i n t o  t h e  s t a t u s 
of the mathematical  models  discussed elsewhere in  this  Chapter .  With 
the exception of the PIRA model (§3.5) these have all  been deterministic.  
Indeed ,  the  fac t  tha t  th i s  i s  so  i s  one  example  of  the  impl ic i t  assumpt ion  
o f  d e t e r mi n i s m r e fe r r e d  t o  e a r l i e r .  M o r e  p o s i t i v e l y ,  t h e  p r e d i c t i o n s 
of such models  can be regarded as  predict ions of  the mean (expected)  
migrat ion over  a  populat ion of  migrat ion phenomena or ,  less  specif ical ly , 
as  es t imates  of  the  order  of  magni tude  of  the  expec ted  migra t ion .  I t  i s  
very l ikely,  in  any case,  that  such models  provide accurate  indicat ions 
of the dependence of  the order  of  magnitude of  the migrat ion on key 
parameters  l ike  D and  key  var iab les  l ike  t .  Only  fur ther  exper iments 
w i l l  t e l l  w h e t h e r  t h e s e  b e l i e f s  a r e  c o r r e c t .  
 
 
 
*This  is  immediately apparent  f rom perusal  of  the c i ted references .  For  
examples  ( there  a re  many) ,  no te  tha t  there  i s  no  d iscuss ion  of  the  
s t a t i s t i c a l  s i g n i f i c a n c e  ( a  t e c h n i c a l  t e r m )  o f  t h e  r e s u l t s  n o r  o f  t h e  
d e c i s i o n s  t a k e n  a b o u t  o u t l i e r s .  T h e  l a t t e r  p o i n t  i s  b o t h  i m p o r t a n t 
and controversia l  (see e .g .  Barnet t  and Lewis  1984) .  
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At the end of this Chapter i t  is  appropriate to emphasize that  among its  
conclusions are that,  hitherto, the mathematical modelling of migration 
has been  ra ther  res t r ic ted  in  i t s  range .  Rea l i s t ic  geometr ies  have , 
wrongly, been ignored and almost all models have assumed that migration 
is,  for  pract ical  purposes ,  a  determinis t ic  process .  Given these provisos , 
it may be cla imed that  there  is  substant ia l  theoret ical  support  for  the 
model l ing of  Class  I I  systems but  ra ther  less  for  that  of  Class  I I I 
systems and those in which there are additional complications. However 
there has been inadequate comparison between the predictions of existing 
models and experimental data; systematic use of non-dimensional numbers 
and variables would facilitate such comparisons and also enhance their 
value. 
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CHAPTER   FOUR:    RECOMMENDED  FUTURE  WORK   AND  CONCLUSIONS 

§4 .1    In t roduc t ion  

The previous Chapters of this report have dealt with the features required 

for a successful practical model of migration, and have critically summar- 

ized what appear to be the most promising existing models with this in 

mind.  That work responded directly to the first part of the remit for 

this report.   The selection of models for discussion, the relative 

emphasis paid to them, and the comments made on them also took into 

account legislative need as expressed in the second part of our remit, 

namely "It is hoped that a limited number of models will cover the behaviour 

of most cases of practical  interest  leading to a basis for legislation".  

However some further attention to this need is appropriate. 

 

In fact the points to be made in this context are closely linked both 

with our recommendations for future work, and with our conclusions.  More- 

over there is no clear or natural separation between the latter two points. 

Hence i t  is  best  to deal with all  three matters in a single (and final)  

Chapter  of  the report .  

§4.2     The use of  mathematical  models  in  formulating  legislation 

The scientific input to legislation 

A fundamental assumption is central to the views expressed in this section, 

namely that legislation on matters (like migration) that involve science 

should be framed in terms that make sense, scientifically speaking. 

Obviously other factors, such as legal practicality, and mode and cost 

of implementation, are also important.  Although we are not competent to 

express a profesional view on such matters, we are entitled to assert, 

both as scientists and as citizens, that we would never support legislation 

that was scientifically nonsensical.  (An example of nonsensical legis- 

lation would be any that insisted that there should be zero migration 

in all  circumstances.)  

The first conclusion, of the present investigation (that should not be 

surprising) is that further work is needed before mathematical models 

can be used to anything like their full potential in framing (and monitoring) 
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legislation.   Nevertheless there are many posit ive points that  can 
already be made about the proper place of mathematics (and physics) 
i n  t h i s  r e g a r d .  
 
Perhaps the most immediate such point is that legislation must take 
account of  the geometry,  i .e .  the shape and size,  of  the plast ic  package 
and the food it contains.  Work in Chapters 2 and 3 shows why these 
factors are important,  but further numerical  examples will  reinforce this 
very well-known argument.  A draft proposal from the EEC (1978) (quoted 
for example by Ashby (1979)) is  that  "the value of the overall  migration 
l imit  shal l  be equal  to 10mg/dm2  of  the surface of  the art icle in the 
fo l lowing  cases : -   ( a )  con ta ine rs  g rea te r  than  250ml ;   (b )  . . . . . " .   For  
specificity suppose the food has a density of 103kg m- 3 ( the density of 
water),  and consider two containers of different shape each containing 
250ml, one a sphere (of radius about 0.039m) and one a cube (of side 
about 0.063m).  Routine calculations, using equation (4.1) below, show 
that an overall migration limit of 10mg/dm2 gives an overall average 
concentration *θ  in the food of 77mg/kg*  for the sphere and 95mg/kg for 
the cube.   The difference is  due entirely to the difference in shape of  
the containers.   Lest  i t  be argued that the difference between 77 and 
95 is so small  that  the effect  of the shape of the container can be 
ignored in practice,  i t  should be noted that  shapes that  are more 
realistic for actual packages give much higher values of *θ .   For example 
a cuboid containing 250ml with length, width and depth in the ratio 10:5:1 
gives *θ  = 152mg/kg.  Changing the size of the container without changing 
 

* In  th is  sec t ion i t  seems appropr ia te  in  v iew of  exis t ing  and draf t  legis-  
lat ion to express concentration as a mass-ratio (mass of contaminant per 
unit  mass of food).   Elsewhere in this report  the symbol C (with suffixes 
etc. where appropriate) has always been used to denote concentration 
expressed in the units  of  mass per  unit  volume.  This  explains the use 
of the new symbol θ .   Consistent with Table 1, the Greek symbol indicates 
that  concentrat ion,  expressed as a  mass-rat io,  is  a  non-dimensional  
quantity.  The conversion from θ  to C is simple since C = θρ*  as explained 
on page 2/2/14, where *ρ  is  the density of the food.  As usual the 

asterisk suffix on θ  in  *θ  denotes concentrat ion in the food and the 

overbar denotes the average over the whole volume occupied by the food. 
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i ts  shape also changes *θ  by,  as i t  happens,  a factor equal to the 

reciprocal cube root of the volume ratio (i .e.  inversely proportional 
to the ratio of corresponding l inear dimensions).   Thus,  st i l l  with 
the overall migration limit of 10mg/dm2 and with the food density that 

of water,  *θ  is ≈)10/77( 3
1

 36mg/kg for a spherical container holding 

2500ml and ≈× )1077( 3
1

 166mg/kg for one holding 25ml.  (The draft 

proposal does not of course apply to containers holding less than 250ml 
but that fact in no way negates the point of principle.) 
 
Further  discussion of  the i l logical  effects  of  a  migrat ion l imit  of  
10mg/dm2 is given by Katan (1980).  Table 3 is taken from this refer- 
ence,  and applies to foods with densit ies equal to that  of water.  
 

Volume of cube (ml) Concentration (mg/l) 
   200 103 
   250   95 
  1000   60 
10000   28 

 
TABLE 3:  The concentration of contaminant in 
food for cubes of different volumes with a 
migration limit of 10mg/dm2 (Katan 1980). 

 
These numerical examples also illustrate another fundamental point, 
namely that the reporting of scientific investigations of migration -  
and, therefore,  the wording of legislation on migration -  should be in 
terms that  are dimensionally sensible.  (This point has recurred frequently 
in  th is  repor t  in  the  d i f ferent ,  but  equivalent ,  guise  of  the  impor tance  
and usefulness of non-dimensional quantit ies.)   For this reason, the use 
of  a  quant i ty  wi th  uni ts  of  mass  per  uni t  a rea ,  i .e .  the  overa l l  migra t ion 
l imit  of  10mg/dm2,  in draft  legislat ion is  scientif ic  nonsense since the 
size and shape of the container (and the food) to which i t  applies are 
not precisely specified*.  The following arguments demonstrate the validity 
of this severe cri t icism. 
 

*But were such precise specification to be provided, the legislation would 
be totally impractical  since separate specification would be required for 
each separate container shape and size (as well  as -  perhaps -  for each 
food  and  p las t ic ) .  
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Suppose a package contains a volume V* of food of density *ρ  and that 

there  is  a  surface area A of  the package in  contact  with the food.   Let  

the transfer of contaminant from the plastic to the food be S (where S = 
10mg/dm2 for the numerical examples above).  Then *θ  is obviously given 

by the formula 

*ρ*V
AS

*θ = .     (4.1) 

The aim of  legis la t ion is  to  ensure that ,  for  each harmful  contaminant ,  

*θ  i s  be low a  l imi t  de termined by heal th  safe ty  considera t ions .   Legis-  

la t ion which at tempts  to  ensure this  by control l ing S is  doomed to  

fa i lu re  s ince ,  whatever  lega l  l imi t  i s  imposed  on  S ,  the  shape of  a  
container of fixed volume V*  can always be found so that *θ  is  arbitrari ly 

high.   In  fact ,  consider  a  cuboid of  square base of  s ide b and of  depth d;  

then V* = b2d and A = 2b2  + 4bd (assuming both top and base are in contact 

with the food but, otherwise, A = b2 + 4bd and the argument is changed 

only  in  a lgebra ic  deta i l  but  not  in  i t s  impor tant  conclus ion) .   Use  of  
(4 .1)  then  leads ,  a f te r  a  few l ines  of  e lementary  a lgebra ,  to  
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Thus *θ  tends to  infini ty  for  f ixed S,  *ρ  and V* both when b tends to  

inf in i ty  and  d  tends  to  zero  ( shor t  f la t  cuboid) ,  and  when b  tends  to  

zero and d tends to  inf ini ty  ( ta l l  narrow cuboid) .   The same conclusion 

i s  r e a c h e d  i f  a  c i r c u l a r  c y l i n d e r  ( l i k e  a  b o t t l e ) ,  o r  -  i n d e e d  -  a n y  o n e  

of  a  set  of  more complicated geometr ical  s t ructures  -  is  invest igated 

ins tead  o f  a  cubo id .  

 

This fault ,  which is fundamental ,  has been exposed previously and i ts  

continued tolerance is  inexcusable.  

 

Before  d i scuss ing  poss ib le  fo rmats  o f  sa t i s fac to ry  l eg i s la t ion ,  i t  i s  

necessary to make a further cri t ical  comment about the wording in the 

par t  o f  the  draf t  p roposa l  tha t  was  quoted  above ,  and  which  i s  s t i l l  

present  in  many current  legis la t ive instruments  and proposals .   These 

assume that  the transfer  S of  contaminant  (e.g.  10mg/dm2 for  global  

mi g r a t i o n )  i s  t h e  s a me  a t  a l l  p o i n t s  o n  t h a t  p a r t  o f  t h e  s u r f a c e  o f  t h e  

p l a s t i c  t h a t  i s  i n  c o n t a c t  w i t h  f o o d .   T h i s  i s  t r u e  o n l y  i n  i d e a l i z e d  
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mathematical models such as those in §3.3. and §3.4, and may be approx- 
imately true in some migration test cells (in the sense that those parts 
of the plastic/food interface where the transfer differs markedly from 
the average form a small proportion of the total interfacial area).  In 
real packages the implied assumption is unlikely to be true because of 
factors like changes in surface curvature and the occurrence of an air/ 
food interface.  The proposal should therefore refer to an average 
migration limit, where the average is over the area of plastic in contact 
with the food.  (For this reason, it would have been more correct to 
have replaced S in (4.1) by S ;  this was not done because replacement 
might have caused confusion.) 
 
Much legislation includes reference to a "limit value" expressed as a 
mass ratio (e.g. mg/kg).  For the reason given above, it should have been 
made clear that this also can only be an average concentration (in this 
case over the volume occupied by food or uniformly mixed food simulant)., 
and this omission has led to confusion in at least one case highlighted 
by Ashby 1986.  In fact,  such a limit is a limit value of *θ  and there 

is no objection on dimensional grounds to legislation expressed (exclusively) 
in terms of this non-dimensional quantity.  It is therefore recommended 
that  all  legislation be framed in terms of *θ ,  and the remainder of this 

Chapter will assume the acceptance of this recommendation*.  (Use of a 
concentration expressed in other, not non-dimensional, units in legislation 
can be criticized on the same scientific grounds as those adduced against 
use of 10mg/dm2.  The detailed argument will not be given here but involves 
the fact  that  different foods have different densit ies.   Although the vari-  
ation of density across the range of food and drink is small enough for 
this  point  to  have rela t ively minor  pract ical  s ignif icance,  the  scient i f ic  
argument is important enough for the use of concentrations expressed as 
mass per unit volume (e.g. 60mg/l) in (draft) legislation to be discouraged.) 
 
Before discussing frameworks for legislation it is necessary to state one 
further assumption that will be made in this report.  This is that when 
two (or more) contaminants migrate  from a single container, they do so 
 

*I t  is  recognized that  the precise value of the legal l imit  on *θ  will  

have to recognize, for semi-solid foods, that there are great variations 
in concentration within the food.  See the earlier discussion on immobile 
foods beginning on p3/29/56. 
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independently.  This may well be a good assumption when each migration 

process  i s  as  in  a  Class  I I  sys tem.   But  in  a  Class  I I I  sys tem,  i t  i s  

much less clear that the assumption will be valid since most models are 

non-l inear ,  and there is  l i t t le  experimental  evidence available.   Further  

laboratory studies are desirable.  

Mathematical models and legislation 

Consider as before a plastic package of given shape containing food, and 

suppose that containment occurs at t ime t = 0 when a contaminant is dis- 

tributed uniformly throughout the plastic with concentration C0 (where as 

throughout this report  the units of C0 are mass per unit  volume).   Suppose 

that  there is  no contaminant within the food at  t ime t  = 0 and (for sim- 

plicity and safety) that  subsequently no contaminant is  lost  to the 

environment outside the food/package system.  After containment the con- 

taminant migrates into the food.  Let C* denote the concentration of the 

contaminant in the food in units of mass per unit volume, and let θ* denote 

the same concentration as a mass-ratio.  As noted above, C* and θ* are very 

simply related by the equation 

*
*

* ρ
θ

C
= .     (4.3) 

In general C* and θ* vary both with time and with position in the food. 

It was advocated above that legislation should be framed in terms of *θ ,  

the average of θ* over the region occupied by food.  Obviously 

**
*

*
**

V
MC
ρρ

θ == ,     (4.4) 

where M* is the mass of contaminant that has migrated into the food and 

V* is the volume occupied by food (so that **Vρ  is the mass of the food). 

In (4.4),  *θ  (and M*) depend on t ime t;   this can, and will ,  be emphasized 

when required by writing *θ  (t) .  For the same reason the notation θ*( x,t) 

or  θ * (x ,y ,z , t )  wil l  be  used to  highl ight  the dependence of  θ *  on posi t ion 

in the food when required,  where the vector ~x  (or -  equivalently – the 

Car tes ian  coordinates  x ,  y ,  z )  p inpoints  a  par t icular  point  in  the  food.  
 
A mathematical model, as defined in §3.1, is capable of predicting θ*( x,t),  
and then *θ  by averaging ( integrat ing) over al l  x,  provided:  
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(a)  The set of equations, including both differential equations 

  and boundary and initial conditions, that constitutes the 
model is an adequate (in practical terms) representation of 
the important physical and chemical processes. 

 
(b)  The values of the relevant parameters are known.  Which para- 

meters are relevant depends on the model but important examples 
a r e  d i f fu s i o n  a n d  p a r t i t i o n  c o e f f i c i e n t s  a n d  t h o s e  t h a t  d e f i n e  
t h e  s i z e  a n d  s h a p e  ( i . e .  t h e  g e o me t r y )  o f  t h e  s y s t e m.  

 
(c)   The model is sufficiently simple (in mathematical structure) 

fo r  i t  t o  b e  s o l v a b l e ,  e i t h e r  i n  t h e  fo r m o f  a n  e x a c t  fo r mu l a  
or by use of a computer,  and hence to be capable of giving 
n u me r i c a l  p r e d i c t i o n s  o f  *θ  ( t ) .  

 
Most mathematical models discussed in this report do not conform with 
one or more of the above conditions, especially (b) .  
 
There are two related roles for mathematical modelling in framing and 
obeying legislation on migration.  These are: 
 
(i)     formulat ing legis la t ion and,  speci f ica l ly ,  providing the  means  of  

calculat ing the composit ion of a  plast ic  in terms of *θ ;  

 
( i i )   ass is t ing in  conforming with legis la t ion and,  specif ical ly ,  

(1)  design of food/package systems; 
(2)  quality control;  
(3)  surveillance and policing. 

 
Provided condi t ions (a) ,  (b)  and (c)  above are  sat isf ied i t  i s  possible  
to test any proposed design for a food/package system to ensure, or show 
otherwise,  that ,  if  the design is implemented, the value of *θ  will  be 

l e s s  than  the  l eg i s l a t ive  l imi t  fo r  a l l  t imes  t  o f  p rac t i ca l  in te res t .  
This  test  wil l  in general  require use of a  computer  to solve the ful l  
set of model equations for the proposed geometry.  In certain circumstances 
however this will be unnecessary. 
 
I t  will  be recalled that ,  in §3.2,  some simple formulae for the equilibrium 
value of C*  were derived.  In equilibrium the concentration in the food is 
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un i form so  tha t   ∗∗ = CC  and ∗∗ θ=θ .   I t  then  fo l lows  f rom (3 .2) ,  (3 .5) 
and (4 .3)  tha t   )t(=θ∗ sa t i s f ies  

,
*V*ρ

V0C

/V)*(V1γ

)*/ρ0(C(t)*θ <
+−≤     (4.5) 

where γ  is the true partit ion coefficient and V is the volume of the plastic 
in the package.  The procedure to be adopted is to calculate (C0V) /(ρ*V*) 
for the proposed design.  If  this is less than the legislative limit,
the design can be accepted forthwith.  If not, and if it is known that             
chemical changes do not occur, the second term in (4.5) should be calculated. 
Once more no further testing is required if this is less than the legislative 
limit.   However further work is necessary if both of the limits in (4.5)             
a re  grea te r  than  the  leg is la t ive  l imi t .  
 
Several sets of workers (Katan 1971;  Chang, Senich and Smith 1982; 
Reid, Schwope and Sidman 1983) have argued that the type of testing dis-
cussed here should be conducted via a decision tree or algorithm, and this 
approach is endorsed by the authors of this report.  The previous paragraph 
has discussed the first  two branches or gates in this decision-tree. 
Unfortunately the later branches in existing schemes all assume one-dimensional 
diffusion and this is not adequate for realistic geometries.  However there 
is no doubt of the structure of the next gate, at least for Class II systems. 
All the models discussed in §3.3 predict the same type of behaviour for 
M*  (t),  the mass of contaminant that has migrated into the food after time 
t, for sufficiently small values of non-dimensional time.  The most general 
formula for this behaviour is obtained from (3.40) by dividing by 2 since 
extraction from real closed packages is one-sided.  Hence for sufficiently 
small values of non-dimensional time, 
 

,Dt
)1(

AC2)t(M
2
1

0 ⎟
⎠
⎞

⎜
⎝
⎛
πα+

≈∗      (4.6) 

 
where  D i s  the  d i f fus ion  coef f ic ien t  of  the  contaminant  in  the  p las t ic , 
A is  the  sur face  a rea  of  the  package  tha t  i s  exposed  to  food ,  and  α  i s  



4/9/11 

 

the non-dimensional parameter defined in (3.38)*. Use of (4.4) then gives 

 

   .Dt
V)1(

AC2)t(θ
2
1

0 ⎟
⎠
⎞

⎜
⎝
⎛
πρα+

≈
∗∗

∗     (4.7) 

 

(The distinction between *θ  and *θ  is important in (4.7); when (4.6) applies 

the contaminant is less likely to be distributed uniformly within 

the food.) Arguments given following (3.14) and (3.29) in §3.3 show that 
(4.7) can be used only when h/)Dt( 2

1
 is sufficiently small. Whilst Reid, 

Schwope and Sidman (1983) derive precise criteria for assessing what con-

stitutes "sufficiently small" in one-dimensional geometry, there is no 

justif ication for assuming that these cri teria are correct  for real  package 

situations. The same comment applies even more forcibly to later gates

in the Reid, Schwope and Sidman (1983) scheme, where decisions are all 
based on formulae derived from the one-dimensional solutions discussed in 

§3.3. 

 

I t  wi l l  be  c lear  a lso from work in  §3.4 and §3.6 that  there  is  a t  present  

inadequate knowledge for a precise decision tree approach to be adopted 
now, even in one-dimensional geometries, for Class III systems and for 

situations where chemical change and/or variability are important.  Note 

however that Katan (1971) describes a complete decision tree aimed not           

at  precise estimates of migration but at safe upper limits.  

 

*To avoid interrupting the development of the argument, several small 

but important points about (4.6) are considered in this footnote. Although 

(3.40) was derived only for one-dimensional geometry, i t  is clear that 
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§4.3   Recommendations for future work and conclusions   
 
Many isolated recommendations and conclusions have been made in the body          

of this report.   In this final brief section the authors attempt a coherent 

summary of these points. 

 

Our principal overall recommendation is that further research be undertaken 

with the aim of using mathematical models to their full potential in: 

 

(a)  planning experiments and analysing data; 

(b)   formulating legislation; 

(c)  designing food/package systems that meet legal limits. 

 

Several shortcomings of previous work on migration that uses mathematics 
have been identified.  It  is recommended that these should be rectified in 
all future work.  The most serious faults are (i)  exclusive emphasis in 
both experiments and mathematical modelling on one-dimensional geometries 

which are  not  representat ive of  real  packages;   ( i i )   a  fa i lure  to .  express  

experimental results and legislative proposals in terms of non-dimensional 

var iables  and parameters ;   ( i i i )   the  re luctance of  some experimental is ts 
to  g ive  su f f i c ien t  de ta i l s  fo r  i t  to  be  poss ib le  to  assess  whe ther  the i r  

resul ts  are  consis tent ,  or  otherwise,  with  a  proposed model ;   ( iv)  l imit-

at ion,  e i ther  of  model  or  of  experimental  ver i f icat ion,  to  a  narrow range 
of applicability. 

 

The work in §3.3 suggested that,  on available evidence, an adequate set of 

equations for predicting migration in Class II systems exists.   Following 

comments in the previous paragraph, it  is important to develop solutions 
for more realistic geometries and to compare these solutions with data. 
Other  urgent  needs are  to  tes t  the  val idi ty  of  (3 .18)  experimental ly  and 
to develop a data base for parameters such as diffusion and partition co-

efficients.   The situation with Class III systems, and with those exhibiting 

other complications such as chemical change or variability, is much less 

satisfactory, and we recommend that (relatively) more attention be given 
to such systems in future by both experimentalists and modellers.  We hope 

that  this  report  gives  c lear  guidel ines  for  such s tudies .  
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