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This paper reviews the literature on survival estimates for different species of raptors and 

owls, examines the methods used to obtain the estimates, and draws out some general 

patterns arising. Estimating survival usually involves the marking of birds so that they can be 

recognised as individuals on subsequent encounters. Annual survival can then be estimated 

from: (1) birds ringed at known age (usually as nestlings) and subsequently reported by 

members of the public (usually as found dead), the ratio of recoveries at different ages being 

used to calculate annual survival;  (2) marked breeding adults, trapped or re-sighted in 

subsequent years in particular study areas, with the proportion re-trapped (or re-sighted) in 

each year being taken as the minimum annual survival; (3) the same, but with the application 

of capture-mark-recapture (or re-sighting) methods to estimate annual survival; (4) a 

combination of reports of known-age dead birds and re-trapping/re-sighting of live birds, (5) 

use of radio- or satellite-tracking to follow the fates of individuals; and (6) the integration of 

these methods with other information, such as change in numbers between years, to derive 

estimates of survival and other demographic parameters. Studies confined to particular areas 
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usually give estimates of ‘apparent annual survival’, because they take no account of birds 

that leave the area. However, radio- or satellite-tracking makes it possible to estimate true 

survival, including for pre-breeders that have low natal-site fidelity (this usually requires 

satellite telemetry). As in other birds, the preferred method for estimating survival has 

changed over time, as new and more robust methods of estimation have been developed. 

Methods 1-2 were the first be developed, but without statistical under-pinning, while 3-6 

were developed later on the basis of formal statistical models. This difference has to be borne 

in mind in comparing older with newer estimates for particular species. Published survival 

estimates were found for three species of Cathartidae, one of Pandionidae, 29 Accipitridae, 

12 Falconidae, one Tytonidae and nine Strigidae, almost all from northern hemisphere, 

temperate species. In most of these species more than one estimate was available, and in 

some separate estimates for different age or sex groups. The main patterns to emerge 

included: (1) a significant tendency for annual adult survival to increase with body weight, 

smaller species having annual survival rates mainly of 60-70%, medium sized species mainly 

in the range 70-90% and the largest of more than 90%, in the absence of obvious human-

caused losses; (2) a lower survival in the first or pre-breeding years of life than in subsequent 

years; (3) a lack of obvious or consistent differences in survival between the sexes, where 

these could be distinguished; and (4) in the few species for which enough data were available, 

a decline in annual survival rates in the later years of life. 

 

Keywords: Birds of prey, bird ringing, capture-mark-recapture, demography, mortality, 

radio-tracking, survival estimation methods 

The study of raptors has contributed substantially to our knowledge of basic and applied 

ecology, knowledge that can be transferred to many other species of birds and mammals 

(Newton 1979). As top predators, raptors can perform an important ecological role in limiting 

some prey populations, and their own numbers are in turn often influenced by the numbers of 

their prey (Newton 1979, 2013). Additionally, raptors require a variety of habitats for 

breeding and hunting, and serve as important biological indicators of the state of ecosystems 

(Sergio et al. 2005, 2006, 2008), for example with respect to chemical contamination 

(Ratcliffe 1970, 1993, Newton 1974, 1986, Newton & Wyllie 1992).  Although some of the 

best examples of successful single species conservation programmes involve raptors (Cade et 

al. 1988, Newton & Wyllie 1992, Bretagnolle et al. 2008, Sulawa et al. 2010), the ecological 

processes influencing survival and other demographic rates for most species remain poorly 

understood.  
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Compared to many other birds, raptors generally occur at low densities, so sample-size 

problems are often difficult to avoid (Newton 1979). Furthermore, many species place their 

nests in sites that are difficult to access, which in turn makes adults hard to catch; 

consequently, marking of both nestlings and breeding adults in sufficient numbers requires a 

substantial investment of time, money and effort. 

The growth rate of many raptor populations is proportionately more sensitive to adult 

survival rates than it is to reproductive parameters (Mertz 1971, Stahl & Oli 2006, Sergio et 

al. 2011). This means that identifying factors and processes that affect age- or life-stage 

specific survival rates is important for understanding raptor population dynamics. Typically, 

estimation of survival requires marking animals so that they can be individually identified 

and their fates monitored over time (Lebreton et al. 1992, Williams et al. 2002). Whatever 

method is used for marking, assumptions are that the marking method itself does not 

influence the survival of the individuals concerned, and that these individuals are 

representative of their population. For raptors, marking methods have included metal or 

coloured plastic rings, wing-tags, radio-tags and Passive Integrated Transponder (PIT) tags; 

while analytical methods have included models based on ring recoveries, capture-mark-

recapture (or re-sight), age-composition (e.g. of museum specimens or samples of dead 

birds), combinations of live-recaptures and dead-recoveries (Brownie et al. 1985, Pollock et 

al. 1989, Lebreton et al. 1992, Burnham 1993, Conn et al. 2004, Skalski et al. 2005) and, 

more recently, integrated population models (Besbeas et al. 2002, Schaub & Abadi 2011).  

Monitoring and statistical methods to estimate survival from various data types have evolved 

over time, potentially affecting the accuracy and precision of survival estimates (Clobert & 

Lebreton 1991, Williams et al. 2002, Craig et al. 2004, Nasution et al. 2004). 

 

We review the literature on survival estimates for different species of raptors and owls, 

discuss the methods used to obtain the estimates, and identify some general patterns arising. 

Study species were drawn from the families Cathartidae, Pandionidae, Accipitridae, 

Falconidae, Tytonidae and Strigidae, and sources searched for information included papers, 

technical reports, books and book chapters published over seven decades (1946-2015) that 

gave survival estimates of raptors and owls.  
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METHODS 

Methods used to find relevant literature 

 

To locate relevant publications, we searched Web of Science 

(http://apps.webofknowledge.com/) and Google Scholar (https://scholar.google.com/), 

using a combination of key words (survival, demography, population ecology, population 

dynamics, owl, raptor), and common and scientific names of different species. We also 

searched books and theses in the English language with titles suggesting that raptor survival 

may have been reported. Finally, we examined the references listed in those publications that 

had not been found in other ways. However, we cannot claim to have found every relevant 

publication in English, and for various reasons (such as small or obviously biased samples) 

some of those found are not included in this review. 

 

Methods used to estimate survival  

The methods used for survival estimation in birds have changed over time as different 

approaches have been developed and more sophisticated models have become available. The 

main methods are listed below, in approximate order of their development, and their strengths 

and limitations are discussed (Table 1). Methods 1 and 2 were the first to be used and can be 

classed as informal in that they lack statistical underpinning, whereas the later-developed 

methods 3-6 are all based on formal statistical models (as are later modifications of method 

1). 

 

1. Informal methods based on ring-recovery data from dead birds 

Ring recovery data come from birds that have been marked (for raptors, typically as 

nestlings), released and subsequently found and reported dead, usually by members of the 

public. Under this sampling method, birds are normally encountered only once after ringing. 

In some countries, many species of birds, including raptors, have been ringed over many 

years, and databases of their initial marking and subsequent recovery have been maintained 

by national organizations (e.g. British Trust for Ornithology [BTO, http://www.bto.org] in the 

UK, United States Geological Survey [USGS, http://www.usgs.gov] Bird Banding Lab in the 

USA). Data from ring recovery studies allow estimates of survival probabilities and other 

parameters among birds of different sex and age classes, regardless of their dispersal 

distances, and may also provide information on causes of death (Newton 1979). 
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Estimating survival based on dead recoveries entails comparing, for a given cohort of 

nestlings, the number recovered dead in each year after ringing to give a ‘static life table’. 

The rate at which recoveries decline with time since ringing reflects mortality.  Usually, the 

samples for particular years are small, so the data for multiple years are pooled, and treated as 

a single cohort. Any time trends in survival and recovery parameters are thereby masked. 

Many estimates of survival have been made for raptors and other birds by this ‘age ratio 

method’, assuming no significant variation in survival or reporting rates over time or between 

age and sex groups, and no loss of rings during the lives of the birds (e.g. Haukioja & 

Haukioja 1970, Anderson et al. 1985, Newton & Rothery 1997). However, these assumptions 

are often rejected when tested, including in studies of raptors (Anderson et al. 1985). For 

these and other reasons, more statistically robust ring recovery models (e.g. Brownie et al. 

1985) were developed to estimate bird survival, and their use for raptors has increased in 

recent years (Francis & Saurola 2002, Sulawa et al. 2010) (Supporting Online Table S1).  

 

When used either with appropriate models or in conjunction with live-encounter (CMR) data, 

ring-recovery data offer opportunities to estimate true survival (see below), and to examine 

trends in survival over time. 

 

2. Informal methods based on live encounters  

These methods are based on re-trapping or re-sighting the same marked individuals, usually 

at nest sites, in the same study area in successive years. Minimum annual survival is 

estimated from the proportion of marked territorial birds present in one year that were also 

found to be present in a subsequent year – the ‘return rate’, or its complement ‘turnover’ 

(Newton 1979, Newton et al. 1983, Sandercock 2006, Hernández-Matías et al. 2011). The 

method does not distinguish between death and emigration, nor does it adequately account for 

detection (or recovery) probabilities that are <1 and vary over time during the study 

(Sandercock 2006). Survival estimates based on this method may, however, be acceptable for 

species that show high site fidelity and in which all (or almost all) individuals still in the 

study area can be detected each year. It has been used to estimate survival in Peregrine 

Falcons (Newton & Mearns 1988, Tordoff & Redig 1997), Eurasian Sparrowhawks Accipiter 

nisus (Newton & Rothery 1997) and various eagle species (Green et al. 1996, Carrete et al. 

2002, Hernández-Matías et al. 2011), among others (Table S1). 
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This method of regular sampling can be challenging for species in which individuals are 

difficult to capture. Some of these challenges have been partially addressed by: (1) marking 

nestlings, or trapping and marking adults, in a way that they can be identified later without re-

catching them (e.g. Craig & Enderson 2004, Cadahía et al. 2005, Rosenfield et al. 2009); 

some recent studies have used PIT tags, allowing the ‘electronic recapture’ of birds at nests 

(Smith et al. 2015); (2) using non-invasive methods such as moulted feather patterns or DNA 

extracted from feathers found at nests to identify individuals (Newton 1986, Wink et al. 

1999, Rudnick et al. 2005, Kenward & Katzner 2007); or (3) using individual recognition 

through plumage features (Hernández-Matías et al. 2011). 

 

Annual adult survival has also been estimated in other ways from this type of data. In a 

breeding population (where breeding necessitates territory occupancy) with zero population 

growth, annual adult mortality is equal to the annual recruitment of new adults into the 

breeding population (Newton 1979, Newton & Mearns 1988). If all adults in the breeding 

population in previous years have been marked, so that, in any one year, they can be 

distinguished from new recruits, the proportion that new recruits form of the total breeders in 

that year reflects the annual mortality of established breeders. Once a study has continued 

long enough for all individuals to be of known age, the ratio of each age group to the next can 

be used to estimate the average annual survival, as in method 1 above.   

 

3. Methods based on Capture-Mark-Recapture (CMR)  

Like Method 2, CMR studies involve capturing, marking and releasing individuals over time, 

and keeping track of marked individuals so that an individual capture history can be 

constructed. The main difference is that formal statistical models are used to analyse the 

resulting data. For territorial raptor populations, multistate CMR models provide a flexible 

means of dealing with the related age-specific phenomena of survival and recruitment to a 

breeding population (Williams et al. 2002). Specifically, birds ringed as nestlings may have 

no chance of being detected (re-sighted) until they join the territorial breeding population, 

leading to biased estimates based on standard age-specific CMR models. More generally, 

individuals of the same age may have both different detection probabilities and different 

survival rates according to whether or not they have acquired a nesting territory, the latter 

birds often being termed ‘floaters’. An appropriate multistate model structure for birds ringed 

as nestlings in these situations considers a pre-recruitment state with detection probability 

fixed to zero, together with age-specific recruitment probabilities reflecting the likelihood 
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that a pre-recruit will enter the breeding population and thereafter be subject to breeder 

detection probabilities.  In this way, CMR models provide a means of dealing with floaters.  

 

These open population CMR models have been used to estimate survival of raptors, 

permitting gains from births and immigration, and losses from deaths and permanent 

emigration to be estimated between sampling occasions (Gould & Fuller 1995, Brown et al. 

2006, Steenhof et al. 2006, Faccio et al. 2011, Altwegg et al. 2014). Examples are given in 

Tables 2 and S1.  

 

Like Method 2 above, CMR-based approaches have limited use for estimating survival 

probabilities of  species that show low site fidelity (i.e. when dispersal distances are long 

relative to the size of the study area), or for dispersing sex and age classes (Sandercock 

2006), in which permanent emigration is a major cause of the disappearance of birds from a 

study area. However, open population CMR models can be used together with radio-tracking 

data to estimate true survival, or with ring-recovery or other ancillary data to estimate true 

survival and other population parameters (see below) (Burnham 1993, Williams et al. 2002, 

Kendall et al. 2006). 

 

4. Formal methods based on joint live encounters and ring recoveries  

Studies involving a combination of live encounters and ring recoveries also involve the 

capture, marking and release of individuals. Subsequent live-encounters usually derive from 

the area of initial release, but ring recoveries can come from a much larger geographical 

region, providing information on permanent emigration (Burnham 1993, Barker 1997, 

Williams et al. 2002). The main advantage of combining live encounter and dead recovery 

models is that apparent survival can be decomposed into the probabilities of true survival and 

site fidelity (to the area in which live encounters are made) (Burnham 1993, Barker 1997, 

Williams et al. 2002). Additionally, joint models can be used to test explicitly for the effects 

of age, sex, and environmental conditions on site fidelity and true survival.  

 

Statistical models for joint analysis of live-encounter and dead-recovery data to estimate 

survival are well developed (Table 1), but have been used rarely on raptors, except for 

Peregrine Falcons Falco peregrinus (e.g. Kauffman et al. 2003, Craig & Enderson 2004, 

Smith et al. 2015) (Table S1).  
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5. Formal methods based on tracking data 

Radio-tracking studies involve capturing birds, fitting them with tags, and monitoring their 

fates (Kenward 1987).  Tracking devices can be ‘conventional’ (VHF, UHF) or satellite-

based (e.g. Argos, GPS or Globalstar) (Fuller et al. 2005).  Radio-tagging is one of the best 

methods for monitoring the fates of individuals because, using this method, all tagged birds 

can be detected with near-certainty if they are present within the search area, and their fates 

determined unambiguously. Using satellite-received tags, the fates of many individuals can 

be monitored simultaneously wherever in the world they travel (Bowman et al. 1995, 

Whitfield et al. 2004, McIntyre 2005). Technical advances through time have made radio-

tracking more flexible and increasingly reliable in application. 

 

Use of radio-tags sometimes allows researchers better to distinguish between losses attributed 

to death and permanent emigration, and hence to estimate true survival as opposed to 

apparent survival (the combination of mortality and permanent emigration) (Kenward 1999, 

Williams et al. 2002, Fuller et al. 2005), as well as to identify the cause of mortality when 

dead animals can be retrieved (Heisey & Patterson 2006).  Radio-tracking data can also be 

used in conjunction with other data types (see below) to estimate survival rates from capture-

recapture data. Consequently, statistical models have been developed to use both live-

encounter and radio-tracking data to estimate true survival (Powell et al. 2000, Nasution et al. 

2004).  

 

Tracking data have provided estimates of survival in large raptors, such as eagles (Ferrer & 

Calderón 1990, Bowman et al. 1995, Harmata et al. 1999, Hunt 2002, McIntyre 2005) and 

hawks (Zelenak et al. 1997, Kenward 1999), that are difficult to monitor using other methods 

(Table S1). Tracking also provides the most reliable way to estimate juvenile (first-year) 

survival in species with low natal-site fidelity, or age-class survival among pre-breeders of 

long-lived species with delayed maturity (Ferrer & Calderón 1990, Bowman et al. 1995, 

Kenward 1999, Mannan & Matter 2004, McIntyre 2005, Davies & Restani 2006)  (Table S1).  

 

Set against these advantages, tracking studies can be prohibitively costly due to the expense 

of deploying sufficient numbers of tags and monitoring the individuals concerned. There can 

also be problems caused by the short life-spans of most transmitters, possible reduction in 

survival associated with the transmitters (Steenhof et al. 2005), and the effects of right-

censoring when fate and censoring are not independent events (Bennetts et al. 1999, Williams 
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et al. 2002, Zens & Peart 2003).  An additional difficulty arises when mortality cannot be 

distinguished from transmitter failure, a situation more likely in studies that track wide-

ranging species via satellites. Signals that become irregular before stopping altogether are 

usually taken to signify tag failure, but signal characteristics and onboard sensors of some 

satellite tags can suggest whether a tag has failed, become detached or its carrier has died. 

Such tags are therefore especially useful in the study of survival. 

 

6. Integrated Population Models 

These models provide a framework that can use multiple types of data (typically, time series 

of abundance, productivity, and CMR and/or tag recovery data) to estimate demographic 

parameters and make statistical inferences about these parameters (Besbeas et al. 2002, 

Schaub & Abadi 2011, Kéry & Schaub 2012, Tenan et al. 2012).  Developing integrated 

population models involves three steps (Schaub & Abadi 2011, Kéry & Schaub 2012): (1) the 

development of a model that links multiple data types that pertain to the same demographic 

process(es); (2) development of likelihoods for individual datasets; and (3) integration of 

these likelihoods to form a joint likelihood for all data types, permitting estimation of 

relevant parameters and statistical inferences using either frequentist or Bayesian analytical 

frameworks.   

 

The advantages of integrated population models include: (1) the combination of information 

contained in several separate datasets, so that parameters estimated using this approach are 

generally more precise and statistical inference is stronger than would be possible using 

independent analyses of individual datasets; (2)  the estimation of more demographic 

parameters than would be possible if each dataset were analysed separately; and (3) the direct 

estimation of standard errors (or credible intervals) for all estimable parameters (Besbeas et 

al. 2002, Schaub & Abadi 2011, Kéry & Schaub 2012). So far, integrated population models 

have been used to estimate survival probabilities (and other demographic parameters) among 

raptors for Eurasian Eagle Owl Bubo bubo, California Spotted Owl Strix o. occidentalis and 

Red Kite Milvus milvus (Schaub et al. 2010, Tenan et al. 2012, Tempel et al. 2014). 

 

Methods used to examine survival in relation to body mass and sex in different species 

To estimate survival in relation to body mass for different species, we used only data for 

adult birds explicitly obtained by the statistically formalised methods 3-6 above, thus 

excluding estimates from methods 1-2 which were most open to bias. Where separate 
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estimates were available for the sexes, we used gender-specific masses; where estimates were 

for males and females combined, or where the sexes of the birds in the study were not known, 

we used the arithmetic mean of the male and female masses. Where separate estimates were 

available for different years in the same study of a species or when estimates were made for 

different ages of adult birds, we took the geometric mean of those estimates. Where estimates 

were available for different areas or circumstances in the same study, we used separate 

estimates for each area or circumstance (e. g. low versus high prey abundance, one habitat 

versus another). This meant that variable numbers of estimates were available for different 

species, which we allowed for statistically by treating species as a random effect in linear 

mixed effect models (Zuur et al. 2009). All estimates used to calculate relationships between 

survival and body mass or sex are given in Table 2, and the full data are summarised in Table 

S1. Table 2 lists 45 published survival estimates for 30 species of diurnal raptors, and 23 for 

nine species of owls. Table S1 lists survival estimates of 45 species of diurnal raptors from 

130 publications, and ten species of owl from 29 sources.  

 

RESULTS  

Species studied and constraints in data 

 

We found survival estimates for three species of Cathartidae, one of Pandionidae, 29 of 

Accipitridae, 12 of Falconidae, one of Tytonidae and nine of Strigidae (Table S1). In most of 

these species, more than one estimate was available from different areas or time periods. 

Almost all of the 159 studies were from the temperate region of the northern hemisphere. 

Most attention has been directed to species that suffered severe population declines or were 

considered threatened or endangered for other reasons (e.g. Newton 1986, Ratcliffe 1993, 

Anthony et al. 2006, Forsman et al. 2011, Ganey et al. 2014).  

 

Among these studies, some reported sex-, age-, region- or time-specific variation in survival 

(Newton & Rothery 1997, Newton et al. 1997, Martin et al. 2006, Karell et al. 2009, 

Forsman et al. 2011, Ganey et al. 2014), while others simply provided estimates of overall, or 

pre-breeder and breeder survival (Table S1). Owing to difficulties of recapturing, re-sighting 

or tracking birds until they become breeding adults, and the limited use of the relatively new 

statistical models developed to deal with such difficulties, estimates of juvenile and pre-

breeding survival were fewer, more variable and probably less reliable than estimates of adult 

survival, especially for species with delayed maturity (see below).  Furthermore, some of the 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

studies listed in Table S1 refer to populations in which survival rates were lower than 

expected because of human behaviour of one form or another: for example, lead poisoning of 

California Condors Gymnogyps californianus or direct persecution of Hen Harriers Circus 

cyaneus (Etheridge et al. 1997, Meretsky et al. 2000). These were obvious cases, but many 

other studies, especially in the early years, may have involved populations subject to human 

killing. Despite some variability and inconsistencies among estimates, some general patterns 

in the survival rates of raptors and owls were evident.  

 

Body-size and survival 

In line with well-established allometric relationships (Calder 1984, Gaillard et al. 1989, 

Charnov 1993, Dobson & Jouventin 2010), adult survival among different raptor species was 

positively related to log-transformed adult body mass in both diurnal raptors and owls (Fig. 

1), although with much additional variation within and between species. Analysis of 

covariance with species as a random effect in a linear mixed model (implemented using R 

package nlme; Pinheiro et al. 2014) provided no evidence of different slopes for diurnal 

raptors and owls (t = 0.806, P = 0.422).  In populations largely free of human-induced 

mortality, small species, such as Eurasian Sparrowhawk and Common Kestrel Falco 

tinnunculus, typically showed annual adult survival rates of around 60-70%, while medium 

sized falcons and hawks showed adult survival rates around 80-90%, and large eagles and 

vultures of more than 90%, although exceptions occurred among the estimates for all three 

groups (Tables 2, S1). 

 

Age differences in survival 

It would be expected that young birds, because of their inexperience and low social status, 

would survive less well than older individuals. Most studies reporting age-specific estimates 

indicated that annual survival rates of juveniles or sub-adults were substantially lower than 

those of adults of the same species (for exceptions see Bowman et al. 1995 for Bald Eagle 

Haliaeetus leucocephalus, Sulawa et al. 2010 for White-tailed Eagle H. albicilla). 

Furthermore, in studies in which adult age-classes were distinguished, survival of the very 

oldest age groups among breeders tended to decline, presumably reflecting senescence or 

relegation to floater status (e. g. Newton et al. 1997, Sergio et al. 2011, Tenan et al. 2012, 

Ganey et al. 2014).  In populations of long-lived eagles, in which competition for places in 

the breeding population is often high, mortality rates amongst late-aged sub-adults may also 

be high (e. g. Saurola et al. 2003), a situation attributed to aggressive interactions between 
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territory seekers and territory holders (Haller 1996, Sulawa et al. 2010).  Such competition 

may result in some adults being killed, but the effect on the overall rate of adult mortality 

may be less obvious if it disproportionately affects senescent birds.  Evans et al. (2009) found 

no increase in mortality in White-tailed Eagles as they approached adulthood in an 

environment in which potential but unoccupied breeding habitat was abundantly available, 

although adults survived generally better than non-adults. 

 

The degree of difference in estimated survival between juvenile and adult raptors depends 

largely on estimation method (Table S1). Because juveniles disperse in greater proportion 

and over longer distances than adults, any method based on a confined study area that does 

not distinguish between death and emigration leads to under-estimation of juvenile survival, 

and enhances the difference in estimated survival between juveniles and adults. In theory, 

ring recoveries could provide reliable estimates of survival in different age groups, including 

first-year birds, but it has long been suspected that dead first-year birds are more likely to fall 

into human hands than dead older birds, which based on Method 1 would overestimate first-

year mortality (Newton 1979, Frances & Saurola 2002). Juveniles are more likely to be shot 

or trapped, or to venture near human habitation.  For these reasons, estimates for juveniles 

based on radio-tracking are probably the most reliable available, providing that the tags do 

not affect survival, that right censoring is independent of bird fate, that they function properly 

for long enough and that attempts are made to follow each individual wherever it goes. We 

judge that at least four of the radio-tracking studies in Table S1 meet these criteria 

sufficiently well to provide reliable estimates of first-year survival. These studies gave 

estimates of adult and first-year survival in the Bald Eagle of 88% and 71% respectively, and 

in the Common Buzzard Buteo buteo of 88-91% and 66-73% respectively (Bowman et al. 

1995, Kenward et al. 2000). In the Snail Kite Rostrhamus sociabilis, estimates of adult 

survival in three different years were given as 89%, 86% and 82%, and of juvenile survival in 

the same years as 67%, 45% and 44% respectively (Bennetts et al. 1999). In the Goshawk 

Accipiter gentilis, with an adult survival of 83% in both sexes, estimated first-year survival 

was 71% in females and 59% in males, the only study to separate the sexes of first year birds 

(Kenward et al. 1999). Finally, in a study of the Red Kite that used an integrated population 

model to provide the estimates, adult and first-year survival were calculated at 96% and 89%, 

respectively (Tenan et al. 2012). So in these various estimates, first-year survival emerged as 

7-48 percentage points lower than adult survival in the same population. Other estimates in 

Table S1 obtained by radio-tracking refer to adult and first-year survival in different 
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populations of a species, so are less strictly comparable, while some of the estimates obtained 

by other methods could be acceptably accurate, but the methodology leaves them open to 

doubt.  

 

Sex differences in survival 

In raptors and owls, females are bigger than males. In most species this difference is small, 

but in others females can weigh up to twice as much as males (Newton 1979). Particular 

interest therefore attaches to any sex differences in survival, and on the basis of weight, 

females would be expected to show higher annual survival rates than males. For 32 

comparisons involving seven species of diurnal raptors and four species of owls listed in 

Table S1, separate survival estimates with standard errors were available for adults of both 

sexes. In most of these comparisons, the estimates for each sex varied by no more than a few 

percentage points, and either males or females could show higher survival. However, 

differences exceeding five percentage points were found in 12 comparisons. In diurnal 

raptors these large differences were in highly dimorphic species, but they were not consistent 

within species (see the different estimates for Peregrine Falcon and Eurasian Sparrowhawk in 

Table S1). Among owls, sex differences greater than five percentage points were found in 

one study of Tawny Owls Strix aluco (females showing higher survival), and in three studies 

of Burrowing Owls Athene cunicularia (males showing higher survival in two, females in 

one). Sufficient information was provided using methods 3-6 to test the statistical 

significance of apparent sex differences in seven studies of diurnal raptors, and in 23 studies 

of owls, including 16 of Spotted Owls. Only four were statistically significant (program 

CONTRAST; Hines & Sauer 1989): Southern Crested Caracara Caracara plancus: χ
2 

= 

69.230, female 3% higher than male, P < 0.0001, Morrison 2003; Hen Harrier, χ
2 

= 5.586, 

female 18% higher than male, P = 0.018, Picozzi 1984; two of three studies of Burrowing 

Owl, χ
2 

= 4.5, male 12% higher than female, P = 0.034, Millsap 2002; χ
2 

= 15.56, male 23% 

higher than female, P = 0.0001, Wellicome et al. 2014).   

 

Finally, we tested the relationship between the ratios of female:male survival and body mass. 

With species included as a random effect, no evidence of a relationship emerged, either for 

diurnal raptors alone (t = -1.536, P = 0.199), owls alone (t = 1.240, P = 0.341) or both groups 

combined (t = -0.647, P = 0.524). Sex differences in survival of owls and raptors might be 

expected for reasons other than body size: for example, human persecution (in which females 

suffer higher mortality because they are more easily killed at the nest), and differential 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

migration (in which the sexes winter in partly different regions imposing different mortality 

rates).  In view of these findings and possibilities, we conclude that the data provide no 

convincing or consistent evidence for differential survival between the sexes of adult raptors 

and owls linked to size dimorphism. 

 

Possible methodological differences in survival estimates 

Examination of survival rates of Eurasian Sparrowhawks and Peregrine Falcons studied in 

different time periods hinted that survival rate estimates may often have been lower in earlier 

than in later periods.  This apparent temporal trend was not statistically significant in either 

species, and could in any case be influenced by change in estimation methods. Nevertheless, 

a change in survival over the years could have been expected in response to legal protection 

and banning of organochlorine pesticides, as the various survival estimates for these species 

spanned the period before and after these events (e.g. Newton 1986, Cade et al. 1988, Wyllie 

& Newton 1991, Newton & Wyllie 1992).  

 

It is accepted that estimation methods alone can cause substantial variation in survival 

estimates (Clobert & Lebreton 1991). For example, Francis and Saurola (2002) compared 

estimates of age-specific survival among Tawny Owls from the same population using formal 

estimation approaches based on alternative data types: (1) recoveries of birds ringed as 

nestlings; (2) recoveries of birds tagged as juveniles and adults; (3) recaptures of birds tagged 

as juveniles; (4) recaptures of birds tagged as juveniles and adults; (5) recoveries and 

recaptures of birds tagged as juveniles; and (6) recoveries and recaptures of birds tagged as 

juveniles and adults. Depending on the data type and analytical method, estimated survival of 

first-year birds ranged from 10.1% to 47.8%, while that for adults was effectively the same at 

69.9-72.2%. First-year survival based on recoveries of birds ringed as nestlings was biased 

high because of violation of the assumption of age-independent recovery rates: juveniles were 

recovered disproportionately more often than older birds. Differences in survival caused 

primarily by estimation method or data type have also been reported for the Peregrine Falcon 

(Gould & Fuller 1995), Eurasian Sparrowhawk (Newton 1986), Bonelli’s Eagle Aquila 

fasciata (Hernández-Matías et al. 2011), Snail Kite (Bennetts et al. 1999) and Red Kite 

(Tenan et al. 2012).   
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DISCUSSION 

Apparent survival versus true survival 

 

In studies based on specific study areas, most published estimates of survival also include 

permanent emigration. In effect, they estimate the product of true survival and site fidelity. 

The degree to which true and apparent survival in adults differs depends on the proportion of 

adults that leave the area, and in some species, such as Peregrine Falcon and Bald Eagle, this 

proportion seems so low that apparent survival could closely approximate true survival.  

Although estimating true survival is desirable, it may be sufficient to estimate apparent 

survival when comparing rates among different groups of birds of the same species 

(treatments, management options, habitats, or other factors), if permanent emigration is 

similar among the groups being compared. For studies directed at changes in abundance on a 

study area, it may not be necessary to split losses into deaths versus emigration, or gains into 

local reproduction versus immigration (see Appendix 3 of Franklin et al. 2004). However, 

true survival estimates are required when the objective is to test life-history theory based on 

comparative studies, to estimate population growth rates using projection matrix approaches 

or to develop recovery plans for imperilled species. In all these cases, assessment of 

population status, or population growth rate based on apparent survival without appropriately 

accounting for immigration may result in misleading conclusions (e.g. Cooch et al. 2001, 

Gerber 2005). In particular, it is common practice to assess the conservation status of species 

by computing asymptotic population growth rates using population projection matrices (e.g. 

Caswell 2001). When such matrices use apparent survival, then population losses include 

movement, while the recruitment information used in such matrices typically includes 

reproduction (clutch size, nest success, etc.), but not immigration. Such matrices are therefore 

asymmetric with respect to movements, typically including movement in estimates of losses 

(emigration) but not in estimates of gains (immigration), and thereby leading to under-

estimates of projected growth rates (e.g. Nichols & Hines 2002). This is a methodological 

deficiency which is by no means specific to raptors and owls.  

 

Demographic analyses of, for example, Spotted Owls (e. g. Franklin et al. 2004, Forsman et 

al. 2011) use CMR methods (e.g. Pradel 1996) at specific study sites to estimate realized (as 

contrasted with asymptotic) population growth rates directly. These growth rates estimate 

changes in numbers of birds on specific study sites, with losses including both permanent 

emigration and death, and gains including recruitment from both local reproduction and 
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immigration.  These growth rates are symmetric with respect to movement and are intended 

to reflect true changes in numbers in the landscape, rather than theoretical changes that would 

occur if there were no movement. 

 

The question of whether variation in survival detected in comparative analyses reflects true 

variation in survival or variation in methodology is also relevant to many other groups of 

birds. Historically, investigations of waterfowl were among the first to use probabilistic 

methods that considered the detection process (e.g. Johnson et al. 1992). Critiques such as 

those of Clobert and Lebreton (1991) and Boulinier et al. (1997) led to accelerating adoption 

of CMR methods for survival studies of birds.  Some studies of raptors provide examples of 

cutting-edge research in demography and population dynamics. Examples include studies on 

the Spotted Owl (e.g., Blakesley et al. 2010, Forsman et al. 2011, Ganey et al. 2014), Red 

Kite (Tavecchia et al. 2012, Tenan et al. 2012) and Eagle Owl (Schaub et al. 2010).  

Although raptors are generally rarer than many other birds, study of this group has 

contributed substantially to our understanding of avian population dynamics, in part because 

many raptor species are relatively conspicuous and long-lived, and can carry large visual 

identification marks or transmitters. They are also highly territorial which, together with site 

fidelity in most species, gives high re-encounter rates. 

 

Territorial breeders and floating non-breeders 

Estimates of adult survival in raptors are mostly based on breeding birds, and so do not 

include floating (non-breeding) adults. This is true of many other birds, including some that 

move from breeder to floater status in different years in response to factors such as 

fluctuations in food supply. Non-breeding adults could survive better or worse than breeding 

adults, depending on the conditions in which they find themselves.  For example, in a 

landscape which is filled to capacity with territorial breeding pairs, floaters may be 

constrained to occupy less favourable areas where their mortality rates are higher. 

Alternatively, in landscapes where food is plentiful but breeding sites are limiting, floaters 

may be able to survive as well or better than breeders, though unable to obtain a nesting 

territory (e. g. Hunt et al. 1998, Newton 1998). In addition, survival of breeding adult raptors 

may be lower than that of floaters in areas where adults are often shot at the nest, a common 

occurrence in some species in some areas (e. g. Etheridge et al. 1997, Whitfield et al. 2004).  
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Continuing threats to raptors 

Although raptor populations have generally recovered from the global declines caused by 

organochlorine pesticides during the 1950-1960’s (e. g. Newton 1998, Banks et al. 2010), 

there is no shortage of new threats.  Inadvertent diclofenac poisoning has caused a 

catastrophic collapse of populations of several species of south Asian vultures (Oaks et al. 

2003, Green et al. 2006), and the toxic effects of lead ingestion have had adverse impacts on 

the critically endangered California Condor, the rare Steller’s Sea Eagle Haliaeetus pelagicus 

and other raptors (Watson et al. 2009). Organophosphate insecticides have caused mass 

mortality of Swainson’s Hawks Buteo swainsoni and other raptors in South America 

(Goldstein et al. 1996). Illegal poisoning or other killing affected 40% of 103 Red Kites 

found dead in Scotland (Smart et al. 2010), and was the most important recent cause of 

mortality of Red Kites in Spain, suppressing population growth rate by 20% (Tenan et al. 

2012); it is also an ongoing problem in parts of Africa greatly reducing vulture numbers 

(Ogada et al. 2012, 2015). Those raptors that are predators of game birds or racing pigeons 

have long been subject in Britain and elsewhere to shooting, poisoning and other forms of 

persecution (e. g. Etheridge et al. 1997, Whitfield et al. 2004, 2008, Newton 2013). Other 

relatively new threats to raptors include collisions and electrocutions related to power 

generation and distribution (including wind turbines), and communication towers 

(Subramanian 2012, Tavecchia et al. 2012, Angelov et al. 2013), and the unsustainable 

harvest of some species in some regions for falconry (Kovács et al. 2014). As with previous 

threats, mortality due to these anthropogenic causes is often partly or entirely additive to 

natural mortality, and frequently leads to population declines. Those raptor species that 

migrate are thereby exposed to different mortality threats in different regions.  

 

Future studies 

In addition to providing data necessary to estimate survival probabilities, radio-tracking 

studies can provide a wealth of other information (e. g. local movements, dispersal and 

migration routes, space and habitat use, abundance) unattainable in other ways (Fuller et al. 

2005). We can therefore expect that radio-tracking will continue to play an important role in 

raptor research. However, it is expensive, requires high investment of time and effort, and 

radio-transmitters can affect survival (Steenhof et al. 2006). In most analyses of radio-

tracking data, individual birds are censored for one reason or another, and a challenge in such 

analyses is to ensure that censoring is independent of bird fate, as dependence can produce 

biased survival estimates (Bennetts et al. 1999).   
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In future, we can also expect to see an increase in the number of studies that use multiple data 

types, including time series of annual counts, radio-tracking, live-recaptures, mark-resighting, 

and dead-recoveries (from a larger area), all incorporated within a single analytical 

framework (Burnham 1993, Barker 1997, 1999, Williams et al. 2002, Nasution et al. 2004, 

Schaub et al. 2010, Tenan et al. 2012).  The use of financial incentives can improve rates of 

ring-reporting by members of the general public in hunted species (Nichols et al. 1991, 

1995), as can a shift from standard mail to telephone and web-based reporting (Royle & 

Garrettson 2005, Boomer et al. 2013). In addition, the use of electronic recaptures using 

technologies such as Passive Integrated Transponders can potentially improve recapture rates 

and quality of monitoring data (Barbour et al. 2013). Recent developments in GPS tracking 

technology that allow the precise location of an animal at frequent intervals, can provide data 

necessary for accurate and precise estimates of survival and other demographic measures, as 

well as pin-pointing the time and place of death (McIntyre 2012). Data sharing and 

collaborative initiatives (e.g. Movebank; Kranstauber et al. 2011) offer opportunities to 

overcome sample size limitations, extend temporal and spatial scales of inference, harness 

analytical skills of other researchers and potentially facilitate analyses of older data using 

new methods. 

Future research should be driven mostly by conservation concerns, perceived challenges and 

available funding.  However, studies on relatively common species may continue to fill gaps 

in understanding, while improved survival estimation procedures and advances in technology 

make population studies of some hitherto ‘difficult’ species feasible.  Whereas species such 

as the Common Kestrel and Eurasian Sparrowhawk provided initial insight into raptor 

ecology, it is now possible to effectively study other species that, for example, are larger, 

longer-lived and have delayed maturity, and also to accumulate information on sex- and age-

specific survival. Given the critical roles of raptors in a variety of ecosystems and their roles 

as indicator and flagship species, investment in raptor research that uses state-of-the-art 

methods to estimate mortality may be well justified. 

We thank all those researchers who have published estimates of survival in raptors and owls. Data 

collected by Richard Mearns, George Smith, Chris Rollie and a large number of volunteers in 

southern Scotland and northern England permitted us to undertake some analyses reported in this 

manuscript. We are greatly indebted to Dr. Jim Nichols who offered much insightful advice through 

the preparation of this paper, and also Drs. B. Arroyo, B. Sandercock, G. Tavecchia, G. Hunt and an 

anonymous reviewer for many helpful comments and feedback at various stages.  
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SUPPORTING INFORMATION 

Additional Supporting Information may be found in the online version of this article 

Table S1. Survival estimates for diurnal raptors and owls. 

 

FIGURE LEGEND 

Figure 1. The relationship between body mass and adult survival in diurnal raptors, owls and 

both diurnal raptors and owls combined. See Table 2 for a detailed description of data. 
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Table 1. Summary of methods for estimating survival appropriate to different data types, with their pros and cons. 

 

Method (data type) Analytical 

procedures 

Estimate of 

survival 

Advantages Disavantages 

1. Ring-

recovery  

Informal based on 

age ratios among 

recoveries, or formal 

using Seber and 

Brownie 

parameterizations of 

ring recovery models  

True, usually. 

Apparent, if 

recovery occurs 

only in local areas 

Less expensive than CMR or radio-

tracking studies 

 

Offer a cost-effective way of 

monitoring raptor vital rates over the 

long-term 

  

Informal models do not allow for 

variations of recovery and 

reporting rates.  

Models with fewest assumptions 

require releases or re-sightings of 

both adult and young birds. Adults 

are often difficult to catch or re-

observe.  

Low recovery and/or reporting 

rates often lead to inadequate 

sample size 

2. Observationa

l data with 

and without 

individual 

identification 

Informal methods: 

territory turnover, age 

ratio  

Bias can be in 

either direction, 

depending on 

methodological 

details  

Cheapest and easiest method to 

estimate survival 

Several assumptions are difficult 

to meet, including: equal 

detectability for age classes; stable 

age distribution; stationary  

population 
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Estimates do not distinguish 

between permanent emigration 

and death 

3. Capture-

Mark-

Recapture or 

Resight 

(CMR) 

Cormack-Jolly-Seber, 

multistate models 

Apparent Less costly and more efficient 

sampling than  radio-tacking studies. 

Allows monitoring of a large number 

of individuals simultaneously 

  

Does  not distinguish between 

death and emigration 

 

Limited use for raptor species that 

exhibit low site fidelity  

  

4. Joint live 

encounters – 

ring 

recoveries  

Burnham and Barker 

models 

True  Distinguish between permanent 

emigration and death by 

estimating fidelity and survival 

rates spearately 

Multiple sources of information 

are unlikely to be available for 

many species. Sample size 

often small 

  

5. Radio-

tracking  

Kaplan-Meier, Cox 

Proportional Hazard 

or discrete time 

analogues, CMR 

models (if detection 

rates are <1) 

Can be true – 

depends on 

whether birds leave 

the area, and 

become immune to 

sampling efforts  

Distinguishes between death and 

permanent emigration 

 

Allows cause-specific mortality 

analysis  

 

Provides additional ecological 

High financial cost and time-

consuming sampling 

 

Short lifespans of most radio 

transmitters 

 

Possible effects of radio-tags on 
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information (e.g., movement, space 

and resource use patterns) 

 

survival 

 

Potential problems with non-

independence of censoring and 

fate 

6. Multiple data 

types (e.g., 

time series of 

counts, live 

encounter, 

ring 

recoveries, 

radio-

tracking)  

Integrated population 

models 

True, usually. 

Apparent, if data 

permitting 

separation of loss 

into emigration and 

death are not 

available 

Distinguishes between permanent 

emigration and death, given 

appropriate data 

 

Permit estimation of important 

demographic parameters, including 

survival and population growth rates 

 

Estimates generally more precise 

Requires multiple data types, 

which may not available for many 

species 

 

Bias induced by inappropriate 

modelling of one parameter can 

translate into biases in multiple 

parameter estimators 

 

Requires strong statistical and 

programming skills 
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Table 2. Annual adult survival estimates (SE in parentheses when available) and body mass for 30 species of diurnal raptors and nine species of 

owls used to examine the relationship between body mass and adult survival. When survival was reported for males (M) or females (F), adult 

body mass is given for that sex. When survival is reported for both sexes (B), average male and female body mass is given for males and 

females.  Estimation methods are described in Table 1, and body masses are from Dunning (1992, 2007). Notes indicate specific circumstances 

(if any) under which survival rates were estimated.  

 

Species Sex Mass (g.) 

Annual adult 

survival (SE) Method Reference Notes 

A. Diurnal raptors 

      

       Andean Condor  

Vultur gryphus  

 

B 

 

 

11300 

 

 

0.94 

 

 

5 

 

 

Temple & Wallace  

(1989) 

 

 

       Osprey  Pandion haliaetus  B 1505.5 0.64 5 Klaassen et al. (2014) 

 

       Egyptian Vulture 

Neophron percnopterus  

B 

 

2082 

 

0.75 (0.02) 

 

3 

 

Grande et al. (2009) 

 

non-breeding 

 

 

B 2082 0.833 (0.022) 

  

breeding 

       European Honey-buzzard  

Pernis apivorus  

B 

 

758 

 

0.813 (0.023)* 

 

3 

 

Bijlsma et al. (2012) 

 

multiple adult ages 

 

       Eurasian Griffon  

Gyps fulvus  

B 

 

7436 

 

0.987 (0.006) 

 

3 

 

Sarrazin et al. (1994) 

 

released birds 
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       Golden Eagle  

 Aquila chrysaetos  

B 

 

4263.5 

 

0.896 (0.371) 

 

5 

 

Hunt et al. (1998) 

 

windfarm, breeders 

 

 

B 4263.5 0.909 (0.025) 

 

Hunt et al. (2002) windfarm, breeders 

       Bonelli's Eagle  A. fasciata  

 

B 

 

2000 

 

0.87 

 

3 

 

Hernández‐Matías et 

al. (2011) 

 

       Eurasian Sparrowhawk  

Accipiter nisus  

F 

 

325 

 

0.586 (0.103)* 

 

3 

 

Newton et al. (1997) 

 

multiple adult ages 

 

 

F 325 0.567 (0.091)* 

   

 

F 325 0.656 (0.089)* 

   

 

F 325 0.574 (0.081)* 

   

       Northern Goshawk  

 A. gentilis  

M 

 

1137 

 

0.83 (0.09) 

 

5 

 

Kenward (1999) 

 

 

 

F 912 0.83 (0.09) 

   

       Western Marsh Harrier  Circus 

aeruginosus  

B 

 

711.5 

 

0.56 

 

5 

 

Klaassen et al. (2014) 

 

 

       Hen Harrier  C. cyaneus  M 430 0.72 (0.07) 3 Picozzi (1984) 

 

 

F 430 0.90 (0.03) 

   

 

F 430 0.397 3 

Etheridge et al. 

(1997) grouse moor 

 

F 300 0.778 

  

other moor 

       Montagu's Harrier   

C. pygargus  

B 

 

315.5 

 

0.59 

 

5 

 

Klaassen et al. (2014) 
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Red Kite  Milvus milvus  B 1080 0.87 (0.12) 3 Smart et al. (2010) wild-bred birds 

 

B 1080 0.85 (0.20) 

  

released birds 

 

B 

 

1080 

 

0.77 (0.03) 

 

3 

 

Tavecchia et al. 

(2012) 

 

 

B 1080 0.955 6 Tenan et al. (2012) poison free 

       Black Kite  M. migrans  B 567 0.789 (0.008) 3 Sergio et al. (2011) 

 

       White-tailed Eagle  Haliaeetus  

albicilla  

B 

 

4793 

 

0.715 (0.046) 

 

3 

 

Saurola et al. (2003) 

 

 

 

B 4793 0.966 (0.014) 3 Evans et al. (2009) wild-bred birds 

 

B 4793 0.942 (0.022) 

  

released birds 

       Bald Eagle 

H. leucocephalus  

M 

 

5350 

 

0.86 (0.05) 

 

5 

 

Bowman et al. (1995) 

 

 

 

 

F 4130 0.90 (0.04) 

   

 

B 4740 0.766* 5 Harmata et al. (1999) multiple adult ages 

       Snail Kite 

Rostrhamus sociabilis  

B 

 

420 

 

0.861 (0.034) 

 

3 

 

Bennetts et al. (1999) 

 

Cormack-Jolly-Seber 

 

 

B 420 0.822 (0.034) 3 

 

multi-strata models 

 

B 420 0.894 (0.029) 5 

 

radio telemetry 

       Swainson's Hawk 

Buteo swainsoni  

B 

 

958.5 

 

0.843 (0.019) 

 

4 

 

Schmutz et al. (2006) 

 

 

       Galapagos Hawk 

B. galapagoensis  

B 

 

1099 

 

0.94 

 

3 

 

Rivera Parra et al. 

(2012) 

before goat eradication 

 

 

B 

 

1099 

 

0.84 

 

  

after goat eradication 
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Ferruginous Hawk 

B. regalis  

B 

 

1468.5 

 

0.708 (0.024) 

 

4 

 

Schmutz et al. (2008) 

 

 

       Eurasian Buzzard  B. buteo  B 875 0.88 (0.03) 5 Kenward et al. (2000) 

 

       Northern Crested Caracara 

Caracara cheriway  

M 

 

1220 

 

0.876 (0.003) 

 

5 

 

Morrison (2003) 

 

 

 

F 1117 0.906 (0.002) 

   

       Lesser Kestrel 

Falco naumanni  

B 

 

152.5 

 

0.706* 

 

3 

 

Hiraldo et al. (1996) 

 

multiple annual estimates 

 

 

B 

 

152.5 

 

0.67 (0.06) 

 

3 

 

Prugnolle et al.  

(2003) 

 

 

B 152.5 0.72 (0.015) 3 Serrano et al. (2005) large colonies 

 

B 152.5 0.653 (0.019) 

  

medium colonies 

 

B 152.5 0.647 (0.019) 

  

small colonies 

 

B 152.5 0.718 (0.013) 3 Mihoub et al. (2010) 

 

       Mauritius Kestrel 

F. punctatus  

B 

 

119.5 

 

0.782 

 

3 

 

Nicoll et al. (2003) 

 

 

 

B 119.5 0.8 (0.04) 3 Nicoll et al. (2004) hacked birds 

 

B 119.5 0.8 (0.04) 

  

fostered birds 

 

B 119.5 0.75 (0.03) 

  

wild-bred birds 

       American Kestrel 

F. sparvarius  

 

M 

 

 

120 

 

 

0.75 (0.05) 

 

 

3 

 

 

Hinnebusch et al.  

(2010) 

 

 

 

F 

 

 

111 

 

 

0.74 (0.04) 
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       Sooty Falcon 

F. concolor  

 

B 

 

235 

 

0.656 (0.069) 

 

3 

 

McGrady et al. 

(2015)  

       

Aplomado Falcon 

F. femoralis  

B 

 

341.5 

 

0.91 

 

3 

 
Brown et al. (2006) 
 

wild-bred breeder 

 

 

B 341.5 0.91 

  

hacked breeder 

 

B 341.5 0.872 

  

wild-bred non-breeder 

 

B 341.5 0.303 

  

hacked non-breeder 

       Merlin  F. columbarius  B 117 0.62 (0.11) 3 Lieske et al. (2000) 

 

       Prairie Falcon  F. mexicanus  F 908 0.87 3 Steenhof et al. (2006) without transmitters 

 

F 908 0.49 

  

with transmitters 

       Peregrine Falcon 

F. peregrinus  

F 

 

959 

 

0.788 (0.031) 

 

3 

 

Gould & Fuller 

(1995) 

 

 

B 598 0.725 (0.023) 3 Johnstone (1997) 
 

 

M 598 0.765 (0.038) 3 

  

 

F 959 0.701 (0.032) 3 

  

 

B 814.5 0.859 (0.025) 4 

Kauffman et al. 

(2003) 

 

 

B 814.5 0.800 (0.054) 4 Craig et al. (2004) 

 

 

M 598 0.73 (0.02) 3 Franke et al. (2011) 

 

 

F 959 0.73 (0.02) 

   

 

B 824.5 0.81 3 Faccio et al. (2013) 

 

 

B 650 0.852 6 Altwegg et al. (2014) 

 

 

B 697.5 0.810 (0.034) 4 Smith et al. (2015) 
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       B. Owls 

      

       Common Barn Owl 

Tyto alba 

B 

 

403 

 

0.720 (0.044) 

 

4 

 

Altwegg et al. (2003) 

 

 

 

B 
 

403 
 

0.570 (0.023) 
 

4 
 

Altwegg et al. (2006) 
 

 

       Snowy Owl  

Bubo scandiacus  

F 

 

2279 

 

0.923 (0.057) 

 

5 

 
Therrien et al. (2012) 
 

best case 

 

 

F 
 

2279 
 

0.852 (0.07) 
 

  

worst case 
 

       Eagle owl  B. bubo  B 2686 0.606 6 Schaub et al. (2010) 

 

       Tawny Owl  Strix aluco  

 

B 

 

475 

 

0.755 (0.026)* 

 

4 

 

Francis & Saurola 

(2002) 

capture-mark-recapture models 

 

 

B 475 0.760 (0.020)* 

  

hierarchical 

model 

 

B 475 0.683 (0.035)* 

  

capture-mark-recapture models, 

poor vole years 

 

B 475 0.727 (0.039) 

  

hierarchical model, poor vole 

years 

 

B 475 0.736 (0.035)* 

  

capture-mark-recapture models, 

medium vole years 

 

B 475 0.780 (0.035) 

  

hierarchical model, medium 

vole years 

 

B 475 0.846 (0.025)* 

  

capture-mark-recapture models, 

good vole years 

 

B 475 0.780 (0.036) 

  

hierarchical model, good vole 

years 
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B 475 0.739 (0.059)* 3 Karell et al. (2009) experienced breeders ** 

 

B 475 0.570 (0.070)* 

  

first-time breeders**  

 

M 524 0.79 (0.03) 3 Millon et al. (2010) 

 

 

F 426 0.86 (0.03)* 

 

  

       

 

B 
 

475 
 

0.710 (0.029) 
 

3 
 

Pavón-Jordán et al. 

(2013) 

two yrs old and >3 yrs old 
 

       Spotted Owl  S. occidentalis  F 646 0.814 (0.050) 3 Seamans et al. (1999) 

 

 

F 646 0.832 (0.029) 

   

 

B 0.86 0.86 3 Bond et al. (2002) 

 

 

B 606 0.82 (0.03) 3 

Zimmerman et al. 

(2007) 

 

 

M 566 0.843 (0.020) 3 

Blakesley et al. 

(2010) 

 

 

F 646 0.811 (0.021) 

   

 

M 566 0.840 (0.017) 

   

 

F 646 0.848 (0.016) 

   

 

M 566 0.890 (0.016) 

   

 

F 646 0.885 (0.016) 

   

 

M 566 0.848 (0.015) 

   

 

F 646 0.848 (0.015) 

   

 

M 566 0.819 (0.013) 3 Forsman et al. (2011) 

 

 

F 646 0.819 (0.013) 

   

 

M 566 0.863 (0.008) 

   

 

F 646 0.859 (0.009) 

   

 

M 566 0.851 (0.007) 

   

 

F 646 0.853 (0.007) 

   

 

M 566 0.864 (0.010) 
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F 646 0.865 (0.010) 

   

 

M 566 0.857 (0.013) 

   

 

F 646 0.854 (0.014) 

   

 

M 566 0.847 (0.080) 

   

 

F 646 0.848 (0.080) 

   

 

M 566 0.846 (0.009) 

   

 

F 646 0.844 (0.009) 

   

 

M 566 0.852 (0.014) 

   

 

F 646 0.828 (0.016) 

   

 

M 566 0.844 (0.018) 

   

 

F 646 0.841 (0.019) 

   

 

M 566 0.853 (0.010) 

   

 

F 646 0.851 (0.010) 

   

 

M 566 0.857 (0.008) 

   

 

F 646 0.856 (0.008) 

   

 

M 566 0.847 (0.040)* 3 Ganey et al. (2014) annual estimates 2004-2009 

 

F 646 0.859 (0.036)* 

  

annual estimates 2004-2009 

 

B 606 0.828 6 Tempel et al. (2014) 

 

       Ural Owl  S. uralensis  
 

B 
 

785 
 

0.80 (0.016) 
 

3 
 

Pavón-Jordán et al. 

(2013) 

 
 

      Little Owl  Athene noctua  M 164 0.651 (0.043) 3 Schaub et al. (2006) 

 

 

F 164 0.610 (0.042) 

   

 

M 164 0.673 (0.033) 

   

 

F 164 0.674 (0.026) 

   

 

F 164 0.687 (0.068) 

   

 

M 164 0.740 (0.057) 
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F 164 0.659 (0.051) 

   

 

B 164 0.753 (0.019) 3 

Le Gouar et al. 

(2011) 

 

 

B 164 0.66 5 Thorup et al. (2013) 

 

       

Burrowing Owl  A. cunicularia  

M 

 

146 

 

0.81 (0.04) 

 

3 

 
Millsap (2002) 
 

highly developed area 

 

 

F 156 0.69 (0.04) 

  

highly developed area 

 

M 146 0.62 (0.05) 

  

moderately developed area 

 

F 156 0.69 (0.04) 

  

moderately developed area 

 

B 151 0.545 4 Barclay et al. (2011) 

 

 

B 151 0.71 

  

increasing population 

 

B 151 0.465 

  

decreasing population 

 

M 

 

146 

 

0.44 (0.05) 

 

3 

 

Wellicome et al. 

(2014) 

 

 

F 
 

156 
 

0.21 (0.03) 
 

   

       

Boreal Owl  Aegolius funereus  
B 
 

142 
 

0.46 
 

5 
 

Hayward et al. (1993) 
 

 

  

      

 

*geometric mean of different estimates (see text) 
    

 

**during periods of low, 

increasing and decreasing 

population 
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Figure 1 
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