
Title: Transparent Live Migration of Container Deployments in Userspace

Author: Carlos Segarra González

Advisor: Jordi Guitart Fernández

Department: Departament d’Arquitectura de Computadors

Academic year: 2019-2020

Master of Science in
 Advanced Mathematics and
Mathematical Engineering

Technical University of Catalonia

School of Mathematics and Statistics - FME UPC

Transparent Live Migration of Container

Deployments in Userspace

Spring Semester - July 2020

Author:

Carlos Segarra González1

carlos.segarra@estudiant.upc.edu

Supervisor:

Jordi Guitart1,2

jguitart@ac.upc.edu

1 Universitat Politècnica de Catalunya BarcelonaTech, Barcelona, Spain
2 Barcelona Supercomputing Center, Barcelona, Spain

In partial fulfillment of the requirements for the

Master in Advanced Mathematics and Mathematical Engineering

iv

Like most of my generation, I was brought up on

the saying: ’Satan finds some mischief for idle hands

to do.’ Being a highly virtuous child, I believed all

that I was told, and acquired a conscience which has

kept me working hard down to the present moment.

But although my conscience has controlled my

actions, my opinions have undergone a revolution. I

think that there is far too much work done in the

world, that immense harm is caused by the belief

that work is virtuous, and that what needs to be

preached in modern industrial countries is quite

different from what always has been preached.

Everyone knows the story of the traveler in Naples

who saw twelve beggars lying in the sun (it was

before the days of Mussolini), and offered a lira to

the laziest of them. Eleven of them jumped up to

claim it, so he gave it to the twelfth. This traveler

was on the right lines. But in countries which do

not enjoy Mediterranean sunshine idleness is more

difficult, and a great public propaganda will be

required to inaugurate it. I hope that, after reading

the following pages, the leaders of the YMCA will

start a campaign to induce good young men to do

nothing. If so, I shall not have lived in vain.

Bertrand Russell, In Praise of Idleness

vi

Note from the Author

The work here presented is my Master’s Thesis for the Master in Advanced Mathematics and

Mathematical Engineering (MAMME), from the School of Mathematics in the Technical Univer-

sity of Catalonia (FME-UPC). It has been developed during a year-long collaboration with Jordi

Guitart, from the Computer Architecture Department, who has lead the development and ad-

vised my research. Part of this work has been funded by a research collaboration grant ”Beca

de col·laboració en departaments universitaris - Curs 2019-2020” funded by the ”Ministerio de

eduación y formación profesional”.

viii

Declaration of Authorship

I hereby declare that, except where specific reference is made to the work of others, this

Master’s thesis has been composed by me and it is based on my own work. None of the contents of

this dissertation have been previously published nor submitted, in whole or in part, to any other

examination in this or any other university.

Signed:

Date:

x

Acknowledgments

This work ends my Master in Advanced Mathematics and Mathematical Engineering and, at

least for some years, my time at the Technical University of Catalonia. I must admit that it does

not feel as special as almost a year ago, when I was submitting my Bachelor’s thesis. It must be

that I am getting used to it, or getting old, or maybe both.

In every personal success there’s always a long list of people to be grateful, and I will try my

best not to leave anyone out.

I will start the list with non-other than Jordi Guitart, my advisor. I cold-emailed him a year ago

and in the subsequent months he: has been flexible to adapt to my, sometimes picky, preferences.

Has helped me receive a grant to fund my work with him. Has helped me in the arduous task

of finding a PhD. And overall has been a great advisor. On the same line, I would like to thank

the ”Agencia de Gestión de Ayudas Universitarias y de Investigación” for the project funding.

Lastly, I must add some words for Juanjo Rué, the Master’s coordinator. Right from the day I

pre-enrolled he has always been welcoming, flexible, and responsive to all my concerns.

I would also like to take this moment to thank my parents for their relentless support, year

in and year out. This work ends a six-year-long chapter of my life, and kickstarts a new one at

a different university, different city, and different country. My last acknowledgment goes to those

whose love I have learnt to appreciate thanks to a virus. And sure they know who they are.

Carlos Segarra González

Barcelona, June 25, 2020

xii

Abstract

Transparent Live Migration of Container Deployments in Userspace

by Carlos Segarra González

Containers have become the go-to technology for managing application’s lifecycle in the cloud.

As a consequence, cloud-tenants are becoming increasingly interested in advanced load-balancing

strategies to optimize resource usage and guarantee good quality of service. Live migration is a

technique to halt the execution of a program and resume it in the same state in a different location

without disrupting the program’s availability. It relies on checkpoint-restore tools to snapshot an

application’s state. Checkpoint-Restore in Userspace (CRIU) is one of such tools, designed to work

transparently to the user, entirely from userspace, and specialized for containers.

In this Master thesis we present a tool to perform live migration of runC containers using CRIU.

Our solution is efficient in terms of resource utilization, memory and disk, and minimizes downtime

when compared to naive migration through checkpoint-transfer-restore and native virtual machine

(VM) migration. We also provide support to checkpoint memory and network intensive containers

with established TCP connections and external namespaces. The implementation is accompanied

by a thorough background research, together with a set of micro benchmarks to justify each of our

design choices. It is open sourced and available in the project’s repository.

Our evaluation results show that, by adding a very small overhead (0.1s to the baseline of

checkpoint-transfer-restore) we improve scalability with regard to allocated memory by a factor

of 10. Additionally, all our results are an order of magnitude faster than traditional virtual ma-

chine migration. Lastly, our benchmarking of network intensive server-side application’s migration

reported a < 0.1s throughput downtime, negligible with more moderate workloads. As a conse-

quence, we believe our migration technique for CRIU and runC is a feasible replacement for VM

migration and, as the technology matures, will be ready for deployment in production.

Keywords: checkpoint, restore, live migration, CRIU, runc, container, load-balancing

xiii

Resum

Transparent Live Migration of Container Deployments in Userspace

per Carlos Segarra González

Els contenidors de programari han esdevingut la tecnologia referent per gestionar aplicacions al

núvol. Com a conseqüència, els principals provëıdors de servei estan cada vegada més interessats en

solucions per gestionar dits contenidors, i oferir garanties de qualitat als seus usuaris. La migració

d’aplicacions consisteix en aturar un procés i reiniciar-lo a un altre entorn d’execució en el mateix

punt en el que s’havia aturat sense interrompre’n el procés d’execució. Es basa en la capacitat de

generar captures de l’estat d’execució d’un procés. Checkpoint-Restore in Userspace (CRIU) és un

projecte de codi obert que permet obtenir dites captures de manera transparent a l’usuari, sense

modificar-ne el kernel, i especialitzada en contenidors.

En aquesta tèsis de Màster, presentem una eina per realitzar migracions de contenidors tipus

runC emprant CRIU. La nostre solució és eficient en termes d’utilització de recursos, memòria i

disc, i minimitza el temps de migració quan comparada amb una migració basada en capturar-

transferir-reiniciar i amb la migració nativa de màquines virtuals oferida pels seus provëıdors. En

afegit, la nostra eina permet migrar aplicacions que fan ús intensiu tant de memòria com de xarxa,

amb connexions TCP establertes, i namespaces externs. La implementació està acompanyada

d’una recerca bibliogràfica en profunditat, aix́ı com d’una sèrie d’experiments que motiven els

nostres criteris de disseny. El codi és de lliure accés i es pot trobar a la pàgina web del projecte.

Els nostres resultats mostren que, afegint una petita redundància (0.1s al temps de referència de

capturar-transferir-reiniciar) millorem l’escalabilitat del sistema en termes d’utilització de memòria

en un factor 10. En afegit, tots els nostres resultats són un ordre de magnitud més ràpids que les

migracions tradicionals de màquines virtuals. Per últim, els nostres experiments amb aplicacions

que fan ús intensiu de xarxa mostren una caiguda del servei inferior als 0.1 segons, imperceptible

per clients amb càrregues de treball més moderades. A mode de conclusió, creiem que la tècnica de

migració que proposem en aquest projecte per CRIU i runC és una alternativa viable a la migració

de màquines virtuals i, a mesura que la tecnologia maduri, estarà llesta per entorns de producció.

Paraules Clau: migracio, contenidor, CRIU, runc, captura d’estats, checkpoint

xv

Contents

Note from the Author vi

Declaration of Authorship viii

Acknowledgments x

Abstract xii

List of Figures xvii

List of Tables xxi

List of Listings xxiii

List of Acronyms xxv

1 Introduction 3

1.1 Objectives, Tasks, and Contributions . 4

1.2 Project Structure . 5

2 Background Concepts 7

2.1 Containers . 7

2.1.1 An Introduction to Virtualization . 7

2.1.2 Working Principles of Containers . 8

2.2 Checkpointing . 12

2.2.1 Checkpoint/Restore . 12

2.2.2 Live Migration . 13

2.2.3 Distributed Checkpointing . 13

2.3 CRIU: Checkpoint Restore in Userspace . 14

2.3.1 A Technical Overview on CRIU . 14

2.3.2 Comparison with Other C/R Tools . 16

xvi

3 Related Work 17

3.1 Containers: Overview, Internals, and Terminology 17

3.2 Checkpoint Restore and CRIU . 18

3.3 Applications of C/R and Live Migration . 19

4 Implementing Efficient Live Migration 21

4.1 Building Blocks . 21

4.1.1 Diskless Migration . 21

4.1.2 Iterative Migration . 24

4.1.3 Checkpointing TCP Connections . 27

4.2 Putting it All Together . 31

4.2.1 High Level Specification . 31

4.2.2 Implementation Details . 32

4.2.3 Usage . 36

5 Evaluation 37

5.1 Application Downtime . 37

5.2 Scalability regarding the Container’s Memory Size 38

6 Conclusions and Future Work 43

6.1 Conclusions and Lessons Learnt . 43

6.2 Future Work . 44

Appendix A Implementation Code Snippets 53

Appendix B Evaluation Code Snippets 63

xvii

xviii

xix

List of Figures

4.1 Size of the memory image for iterative dumps. 23

4.2 Size of the memory image for iterative dumps. 26

4.3 Architecture of three different namespaces connected through virtual ethernet pairs. 28

4.4 Throughput over time after a long off period . 30

4.5 Throughput over time and reactivity to sudden C/R. 30

5.1 Application Downtime Relative to Threshold . 38

5.2 Scalability with respect to the memory to transfer. 39

5.3 Scalability comparison with VirtualBox Teleport. 40

xx

xxi

List of Tables

2.1 List of the different namespaces supported in Kernel 5.6. 9

4.1 Output of running iptables -t filter -L -n. 27

xxii

xxiii

List of Listings

2.1 Snippet to unshare the calling thread from a namespace using unshare. 10

2.2 Snippet to attach to an existing network namespace. 10

4.1 Mounting and dismounting a tmpfs file system. 22

4.2 Commands to perform a checkpoint in runC using a page server. 23

4.3 Commands to perform a checkpoint in CRIU using a page server. 23

4.4 Scripts to perform two pre-dumps and a dump of a running process using CRIU. . 25

4.5 Scripts to perform two pre-dumps and a dump of a running container using runC. . 25

4.6 Checkpoint and restore an established TCP connection using CRIU and runC. . . . 29

4.7 Excerpt of a script to checkpoint a connection within an existing namespace. 29

4.8 Commands to generate an OCI bundle to run a container using runC. 31

4.9 Iterative migration internal loop. 33

4.10 Snippet for the last (stopping) checkpoint and remote restore. 34

5.1 Snippet for bulk data upload to a Redis database. 38

5.2 Script to teleport a VirtualBox VM, and run the macro-benchmark. 40

A.1 Simple counter in C. 53

A.2 Signature and schematic implementation of remote execution methods. 54

B.1 Full evaluation script for the diskless migration micro-benchmark. 63

B.2 Full evaluation script for the iterative migration micro-benchmark. 63

B.3 Evaluation script for the TCP connection downtime micro-benchmark using CRIU. 64

B.4 Evaluation script for the TCP connection reactivity micro-benchmark using CRIU. 65

B.5 Full evaluation script for the TCP connection downtime micro-benchmark using runC. 66

B.6 Full evaluation script for the TCP connection reactivity micro-benchmark using runC. 67

xxiv

xxv

List of Acronyms

API Application Programing Interface.

BLCR Berkeley Lab Checkpoint/Restart.

CRIU Checkpoint Restore in Userspace.

DMTCP Distributed Multi-Threaded CheckPointing.

GID Group Identifier.

HPC High Performance Computing.

ISA Instruction Set Architecture.

KVM Kernel-based Virtual Machine.

LXC Linux Containers.

NFS Network File System.

OCI Open Container Initiative.

OS Operating System.

PID Process ID.

PIE Position Independent Code.

PTE Page Table Entry.

QoS Quality of Service.

RPC Remote Procedure Call.

xxvi

TCP Transmission Control Protocol.

UID User Identifier.

VM Virtual Machine.

VMM Virtual Machine Monitor.

1 List of Acronyms

List of Acronyms 2

3

Chapter 1

Introduction

Containers have become the de-facto alternative for managing application’s life cycle in the cloud.

With the progressive shift from bare-metal, to virtualized servers, and now with containerization,

cloud tenants aim to find the balance between optimal resource usage and quality of service (QoS)

perceived by the user. A key aspect to achieving a good QoS is the ability to manage resources

efficiently, in particular load-balancing. Having the ability to manage workloads efficiently, cloud

providers can provide high-priority tasks the resources they demand, and starve less important

ones until other resources become available. Additionally, sharing and managing physical resources

utilization, in particular ensuring that there are no severe imbalance among computing nodes, yet

only the necessary ones are not idle, has a direct impact on energy savings for the data center.

The virtual machine (VM) placement problem [1, 2] has studied this same issue for decades, the

appearance of containers includes yet another variable to the optimization task.

Checkpoint-Restore is, through live migration, a technique to provide application-level load-

balancing capabilities to cloud tenants transparently to the user. By dumping the state of an

application and restoring it in another physical instance, it will resume from the exact point it

was dumped at. As a consequence, the user will perceive a minimal downtime and the tenant will

have re-allocated resources. Originally developed for the High Performance Computing (HPC)

domain, checkpointing was used to save intermediate long-running job’s state. In the event of an

unexpected failure, the job could be restarted from the last stored checkpoint, rather than restart

and effectively lose several hours or days worth of work [3]. Checkpoint-Restore in Userspace

(CRIU) [4] is a software tool to dump and restore processes transparently to the user. It does

so entirely from userspace, by strongly leveraging interfaces exposed by the Linux kernel. If such

interfaces do not exist, the project’s contributors have a long history of accepted kernel patches [5].

CRIU is an open-source project and it targets specially applications running inside containers. As

of June 2020, most container engines offering checkpoint-restore functionalities such as Docker,

Podman, or LXC, rely on CRIU at a lower level. In the cloud-computing and load-balancing

domain, the project is used in a variety of companies such as Google [6] within their Borg project [7].

Chapter 1. Introduction 4

This Master thesis is an initial approach to efficient transparent live migration of container

deployments from userspace using CRIU. We study the different tools to checkpoint and restore

containers and their integration with different container engines. Then, we provide a library

implementing live migration of running and connected containers transparently to the end user

using CRIU and runC [8] as our container runtime of choice. Our implementation is very easy to

use, has minimal dependencies, requires minimal set up, and differs from other existing solutions [9]

in the fact that no listening process needs to be running in the remote end. We support diskless,

iterative (pre-copy) migration of memory intensive containers with established TCP connections

and external namespaces. Moreover, we back all of our design choices with an extensive evaluation

in the form of micro and macro benchmarks and a comparison with traditional virtual machine

migration. Our system is open-source, still under development, and available at https://github.

com/live-containers/live-migration.

1.1 Objectives, Tasks, and Contributions

The main goal of this work is to implement efficient live migration of running containers. The

terms efficient and live are vague in the absence of concise metrics, and the variety of running

containers is also huge, as a consequence we specify a set of objectives we want our system to fulfill.

In particular, our key metric of success is downtime. Downtime measures for how long a migrated

application is not running, and as a consequence it is a direct indicator of liveness. Additionally,

we measure efficiency as the (lack of) redundancy and overhead our system introduces, usually in

terms of allocated (and duplicated) memory and disk usage. We evaluate it on absolute terms,

and also relatively when compared with virtual machine migration and native (manual) container

migration. Our main objectives for the project can be summarized in the following list:

O1 Implement a fully-featured live migration library for containers.

O2 Support memory-intensive server-oriented containers.

O3 Have live migration be: efficient, live, transparent, and easy to use.

In order to achieve O1, O2, and O3, we define a series of tasks our implementation presented

in §4 must fulfil. Note that these objectives and tasks are only implementation-oriented. Part

of the contribution of this work is also bibliographical in the sense that we cover all the relevant

material that helps us in the process of achieving the objectives. These non-tangible tasks and

objectives are included in the final list of contributions.

T1 Implement support to migrate interactive, memory-intensive, containers.

T2 Implement support to migrate containers with established TCP connections and external

namespaces.

https://github.com/live-containers/live-migration
https://github.com/live-containers/live-migration

5 1.2. Project Structure

T3 Minimize downtime and resource utilization by using diskless and iterative migration tech-

niques.

T4 Motivate each of our design choices with detailed micro-benchmarks to ensure we are aligned

with O3.

Contributions

To put it in a nutshell, the main contributions of the work here presented are listed beneath:

C1 An exhaustive micro-benchmark of different CRIU features, their performance, and their

integration with runC.

C2 An open-source library for live migration of runC containers using CRIU.

C3 An easy to use binary to transparently migrate containers from one host to another with

minimal dependencies and set up.

C4 An evaluation of our solution and a comparison with virtual machine migration.

1.2 Project Structure

The structure of the rest of this document is as follows. In Chapter 2 we introduce the foundational

background concepts required to understand our contributions. We do a deep dive in the topics of

containers (§2.1), checkpointing (§2.2), and CRIU in particular (§2.3). Note that runC is covered

in detail when discussing different container engines and container runtimes.

In Chapter 3, we cover relevant bibliography and related work. As the goal of a Master’s thesis

is educational in nature, we have decided to include not only other scientific contributions related

to container checkpointing and live container migration, but also all the bibliographical material

that we have used. These references are both informative and educational, and will enable an

interested reader to follow our same learning process which, in a document of this sort, is not to

be underestimated. In particular, we cover relevant bibliography on containers (§3.1), CRIU and

C/R (§3.2), and applications in live migration (§3.3).

In Chapter 4 we present the building blocks of our system (§4.1): diskless migration, iterative

migration, and TCP sockets and namespace migration. For each concept, we present it’s underlying

theory together with a shell script to leverage it, it’s implementation details in CRIU, and the

integration with runC. Additionally, we micro-benchmark it’s functionality comparing the vanilla

performance with CRIU’s and runC’s. Then, in §4.2 we cover in detail the implementation details

of our solution, covering the most relevant code snippets, motivating our design choices (mostly

with results from the previous section) and covering some helper modules we also implemented.

Chapter 1. Introduction 6

In Chapter 5 we put our system to work and, instead of micro-benchmarking particular features,

we evaluate it as a whole through two different macro-benchmarks. First, in §5.1, we assess the

impact different design choices have on the overall application downtime. Downtime is the key

metric in live migration as it assesses the time the application is not running. Minimizing it is,

in turn, the ultimate goal of efficient live migration. Secondly, in §5.2, we measure our system’s

scalability with regard to the memory allocated by the container. If downtime is the key metric to

optimize, memory dumps and network latency are the two biggest bottlenecks. Efficient network

transport is out of the scope for this project, hence in this second macro-benchmark we focus on

the efficiency of memory dumps.

Lastly, in Chapter 6, we cover the most relevant conclusions and lessons learnt from the project,

together with future lines of work we would like to continue in the coming months.

7

Chapter 2

Background Concepts

The main goal of this project is to implement live migration of running containers. It builds on

the concepts of containers, checkpointing, and its implementation in the CRIU project. This

chapter provides a detailed introduction to these concepts as they are necessary to understand the

contributions we present later on.

2.1 Containers

A Linux container is a set of isolated processes with a limited view of their environment. They

build on traditional concepts of virtualization, and provide an alternative to virtual machines

(VM). A container is usually faster, lighter, and more flexible than a VM. As a consequence they

are becoming the technology of choice in multi-tenant settings, such as data centers.

2.1.1 An Introduction to Virtualization

Virtualization is a recurrent technique in systems design in computer science which aims to provide

processes the illusion that they interact with a defined interface, hiding the real implementation

behind. Some of the most relevant features facilitated by virtualization are: process isolation

from other processes and the underlying system, fine-grained dynamic resource provisioning, mul-

tiple virtually dedicated subsystems on the same physical instance, among others. We classify

virtualization techniques according to the type of interface being virtualized.

Emulation. Emulators allow applications written for a certain computer architecture to run

on a different one. They do so by translating (i.e. virtualizing) the Instruction Set Architecture

(ISA). An example of such a system is Qemu (https://www.qemu.org/).

Hardware Virtualization. Hardware virtualization interfaces a complete system which en-

ables to run a fully-featured operating system within a different one. It has traditionally been one of

the most user-friendly virtualization tools in the form of virtual machines such as the Linux-Kernel

https://www.qemu.org/

Chapter 2. Background Concepts 8

Virtual Machine KVM (https://www.linux-kvm.org/page/Main_Page, VMWare Worksta-

tion (https://www.vmware.com/) or Oracle’s VirtualBox (https://www.virtualbox.org/).

We differentiate between full virtualization and paravirtualization. The former adds an hypervisor

or virtual machine monitor (VMM) which creates the illusion of multiple virtual machines, which

are multiplexed across the physical resources, and allow to run an unmodified guest OS. The latter

modifies the guest OS’ source code and replaces sensitive calls with hypercalls, which are direct

calls to the hypervisor.

OS-level Virtualization. Operating System-level virtualization allows for multiple isolated

userspace instances, called containers which share a single operating system. In comparison

to traditional virtual machines, containers add little overhead, require minimal startup, and

have a low resource requirement, these factors make them highly scalable. Containers have

experienced an exponential increase in usage, specially with the advent of open-source highly-

available container engines such as Docker (https://www.docker.com/), Linux Containers LXC

(https://linuxcontainers.org/), Podman (https://podman.io/, among others. Given that

the goal of this project is to perform efficient live migration of running containers, the following

section provides further technical details on containerization.

2.1.2 Working Principles of Containers

As previously introduced, a Linux container is a set of processes that are isolated from the rest

of the machine. To achieve this isolation, they rely on two kernel features: control groups and

namespaces [10].

Namespaces

As greatly phrased by Michael Kerrisk in his series of articles on namespaces [11], the purpose of

namespaces is to wrap a global system resource and abstract it in a way that each process within

the namespace thinks it has its own isolated instance of such resource. As of Kernel 5.6, there are

eight different types of namespaces, which we present together with a brief description in Table 2.1.

In order to create a new namespace of a given type, we can follow two approaches. With the clone

system call, we can create a new child process, in a similar way to fork but with higher control

of what pieces of execution context are inherited [12]. More specifically, with the unshare system

call we can unshare a namespace from it’s parent process [13]. To join an existing namespace,

we can use the setns syscall, which, given a file descriptor referring to a namespace, it links the

calling process to it [14]. These operations require the CAP SYS ADMIN capability. In Listings 2.1

and 2.2 we include examples of usage of unshare and setns respectively.

https://www.linux-kvm.org/page/Main_Page
https://www.vmware.com/
https://www.virtualbox.org/
https://www.docker.com/
https://linuxcontainers.org/
https://podman.io/

9 2.1. Containers

Kind Description

mnt Mount namespaces provide isolation of the list of mount points seen
by the process in each namespace instance. It allow processes to have
their own root file system and mount and unmount file systems without
affecting the rest of the system.

pid The process ID namespace isolates the PID number space. This
means that two processes in different PID namespaces can have the same
identifier. It is very useful in container migration as it allows to restore
the processes with the same PID they were dumped with regardless of
whether that ID might be taken in the target machine or not.

net Network namespaces provide isolation of the whole network stack. In
particular network devices, interfaces, routing tables, iptables rules, and
sockets.

ipc The Interprocess Communication namespace provides isolation for
POSIX semaphore queues, semaphore sets and shared memory segments.

uts The UNIX Time Sharing namespace allows processes to set a host-
name or domain name for that particular namespace without affecting
the rest of the system.

user User namespaces isolate security-related identifiers such as user and
group identifiers (UID, GID) and capabilities. This allows for a process
to have privileges within a certain namespace but not outside its scope.

cgroup The Control Group namespace virtualizes the contents of /proc/-

self/cgroup. As a consequence, each different namespace has a different
cgroup root directory.

time The time namespace has been the latest addition to the group. In-
cluded in Kernel 5.6, it allows different namespaces to have different
offsets to the system monotonic and boot-time clock.

Table 2.1: List of the different namespaces supported in Kernel 5.6. and a brief description of the
isolation they provide.

Control Groups

Control groups (cgroups) are a resource management kernel feature that allows handling of pro-

cesses in hierarchical groups. This way, fine-grained resource metering and limiting can be applied

on a per-group basis. Typical resources monitored using this technique are memory, CPU usage,

I/O network, among others.

These constraints are enforced through the usage of kernel subsystems. Each different subsys-

tem, mapped to one of the resources to manage, has an independent hierarchy. Each process then

belongs to exactly one group per subsystem. For instance, the memory control group keeps track

of the pages used and imposes different limits for physical, kernel, and total memory.

Chapter 2. Background Concepts 10

1 #define _GNU_SOURCE

2 #include <errno.h>

3 #include <sched.h>

4 #include <stdio.h>

5

6 // Unshare from parent namespace

7 int main(int argc , char *argv [])

8 {

9 // Specify the required flags

10 // (bit -wise or)

11 flags = CLONE_NEWNET || CLONE_NEWPID;

12

13 // Dettach from parent namespace

14 if (unshare(flags) == -1)

15 {

16 perror("unshare failed");

17 exit(EXIT_FAILURE);

18 }

19

20 return 0;

21 }

Listing 2.1: Snippet to unshare the calling
thread from a namespace using unshare.

1 #define _GNU_SOURCE

2 #include <errno.h>

3 #include <sched.h>

4 #include <stdio.h>

5

6 // Attach calling process to an existing

7 // network namespace.

8 int main(int argc , char *argv [])

9 {

10 // Get namespace FD

11 fd = open("/proc /330/ns/net", O_RDONLY);

12

13 // Join the namespace

14 if (setns(fd, CLONE_NEWNET) == -1)

15 {

16 perror("setns failed");

17 exit(EXIT_FAILURE);

18 }

19

20 return 0;

21 }

Listing 2.2: Snippet to attach to an existing
network namespace.

Container Terminology

With the rapid increase in popularity, a wide-range of terminology has also been introduced in the

container ecosystem. These terms are commonly misused [15] and, even though they don’t cover

the technical principles, are useful to differentiate the services different tools offer.

A container is the (set of) isolated Linux process. It is a running instance of a container image,

a (set of) files that are used locally as a mount point. To enhance portability and vendor interop-

erability, images are stored using a standardized format by the Open Container Initiative (OCI,

https://opencontainers.org/), an open governance structure for container-related standards.

The container engine turns the image into a running container and acts as the interaction point

with the user. However, engines don’t tend to actually instantiate the containers themselves, and

rather rely on a container runtime. The runtime is the lower level component that interacts with

the kernel, its specification [16] is also maintained and developed by the OCI. runC is its reference

implementation, and our tool of choice to implement live migration. We have chosen to skip the

engine layer and interact with the runtime as support for advanced CRIU features is lacking in

higher-level tools (more details on CRIU are presented in §2.3).

Different Container Engines and Runtimes

There are a variety of container engines available. Docker was the company that started exploiting

containers commercially. It is most likely the best-known tool and the main responsible for the

rapid adoption of the technology. However, there are several alternatives.

Given its pivotal importance, we differentiate between container engines that rely on runC as

https://opencontainers.org/

11 2.1. Containers

their runtime of choice, and those which don’t.

runC-based Container Engines.

Other than Docker, cri-O (https://cri-o.io/) is a container engine focused on the inte-

gration of lightweight containers with the Kubernetes orchestrator. Podman (https://podman.

io/getting-started/) is another alternative to Docker. Its main distinguishing factor is that it

is a daemonless container engine. Lastly, rkt (https://github.com/rkt/rkt) is a project with

pluggability, interoperability, and customization in mind. Unfortunately, it has reached end-of-life

and is not currently maintained.

Non-runC Container Engines.

Katacontainers (https://katacontainers.io/) is a container runtime that runs on lightweight

virtual machines. This is, instead of relying on standard container isolation techniques, they use

VM-native isolation (hardware-backed) to provide further security guarantees. In particular, each

container is hypervisor-isolated, meaning two different containers have different kernels. crun

(https://github.com/containers/crun) is a re-implementation of runC in C. Its main focus

is on performance and reduced memory footprint. In both cases crun surpasses runC. rail-

car (https://github.com/oracle/railcar) is another runtime implementation born from the

idea that Go might not be the best programming language to implement a container runtime.

With memory safety in mind, Oracle, the company behind railcar, decided to implement an

OCI-compliant runtime in Rust. Unfortunately, the project is nowadays archived.

runC: the reference runtime implementation

Originally developed at Docker, runC is a lightweight container runtime aimed to provide low-level

interaction with containers. In 2015 [8], Docker open-sourced the component and transferred own-

ership to the Open Container Initiative (OCI), who has since then lead the project in a fashion

similar to that of the Linux Foundation. Since then, several container engines such as Pod-

man (https://podman.io/) and CRI-O (https://cri-o.io/) have made runC their runtime of

choice.

The OCI releases specifications for container runtimes, engines, images, and image distribution.

runC is nowadays an OCI-compliant container runtime (it is, in fact, the reference implementation).

Users are encouraged to interact with containers through container engines, but runC itself

provides an interface to create, run, and manage containers natively. Integration with CRIU

has to be done on a per-project basis, and runC has the most advanced and stable integration.

Therefore, we decided to use it to manage our containers.

Running a container with runC is slightly different than doing it in, let’s say, Docker, as the

user’s interaction with the underlying system is more direct. In particular, in runC there is no

notion of images. To run a container, a user must provide a specification file (config.json) and

a root file system in a directory (rootfs). Through the specification file several low-level options

https://cri-o.io/
https://podman.io/getting-started/
https://podman.io/getting-started/
https://github.com/rkt/rkt
https://katacontainers.io/
https://github.com/containers/crun
https://github.com/oracle/railcar
https://podman.io/
https://cri-o.io/

Chapter 2. Background Concepts 12

such as namespaces, control groups, and capabilities can be configured. The pair config.json

and rootfs is referred to as OCI bundle.

2.2 Checkpointing

Imagine a long-running job in a cluster or in the cloud. Several hours into execution, the job

unreasonably fails. Even in bug-free software, programs may crash from time to time due to, for

instance, hardware failures. This happens even more in multi-tenant environments where different

users are sharing the same physical resources [3].

Losing hours worth of computation is not only a loss of time for developers and scientists, but

also a loss of money. A possible solution would be programatically saving data every certain time,

or every certain number of iterations. This approach requires additional work by the developer, who

has to implement not only the saving procedure, but the resuming one, in the event the application

needs to be started from an intermediate state. Alternatively, highly parallel workloads could run

processes separately on different chunks of data, and aggregate results afterwards. However, these

solutions are ad-hoc, error-prone, and most importantly require additional work from the developer.

2.2.1 Checkpoint/Restore

Checkpointing refers to the ability of storing the state of a computation such that it can be

continued later at that same state without covering the preceding ones. The saved state is called

a checkpoint and the resumed process a restart or restore [17]. It provides systems with additional

fault-tolerance and fast rollback times. C/R tools snapshot an application’s state regardless of

the software running and without requiring, in general, any additional work from the application

developer. Even though they originated in the High Performance Computing environment, these

tools are also useful for debugging, skipping long initialization times, and, as in this work, live

process migration.

During checkpoint, and in order to save the process’ state, all the essential information such as

the program’s memory, file descriptors, sockets and pipes, among others are dumped. In the dis-

tributed scenario, additional logic is required to coordinate the checkpoint across all processes [18].

Checkpoint-Restore became popular in the setting of virtual machines [19], but had already

been thoroughly studied in the context of rollback and recovery strategies [20]. VM checkpointing is

easier when compared to arbitrary process checkpointing as VMs are already isolated. Nowadays,

and other than CRIU which is our tool of choice, there are several mature C/R projects that

checkpoint virtually any running process transparently to the user. A comparison among some of

them is presented later in §2.3.

13 2.2. Checkpointing

2.2.2 Live Migration

A prominent application of Checkpoint/Restore is live migration. Live migration allows moving

a running process from a physical host to another with negligible downtime and transparently to

the end user. It is clear that live migration is a desirable feature for cloud tenants as it drastically

increases their load-balancing capabilities with minimal impact to the perceived quality of service.

A naive approach would checkpoint the process in one host, transfer the checkpoint dump

through the network, and restore it later on the other host. Unfortunately, this approach incurs in

very high downtimes. Other more refined and more popular mechanisms minimize this downtime,

we highlight pre-copy and post-copy migration.

Pre-Copy Migration.

Pre-copy migration, or sometimes called iterative migration, is a live migration technique that

transfers most of the checkpoint information previously to stopping the running process, and

only stops it once the information to transfer to the other end is minimal, achieving a very low

downtime [21]. As memory pages tend to be the largest resource to dump and transfer, most

pre-copy implementations iteratively transfer the memory that has changed between subsequent

iterations. Additionally, and depending on whether the different nodes share a common file system

or not, files are also incrementally dumped. When the information to transfer is lower than a

specified threshold, the application is stopped in one end, the remaining bits sent over the wire,

and resumed in the other one.

Post-Copy Migration.

Post-copy migration follows a radically different approach. Initially, it transfers the minimal

information for the process to be able to resume on the destination host [22]. Then, page faults

in the new host are resolved over the network, sending a request for a page that was not sent in

the initial batch. This approach tends to be faster (lower total migration time) than pre-copy, but

incurs in service degradation as page faults become extremely costly. In the literature, post-copy

migration is also referred to as lazy migration.

2.2.3 Distributed Checkpointing

A less explored area is that of checkpointing a distributed application as a whole. This is, given

a process running in different physical hosts, how to coordinate the checkpoint in order to get

a consistent execution state. Reaching consensus among a set of distributed processes is a well-

studied topic in the distributed systems field, and an existing algorithm for distributed snapshotting

was presented in 1985 by Chandy and Lamport [23]. Since then, more and more algorithms have

been presented [18, 24] optimizing certain aspects of the process. However, transparent distributed

C/R is yet to be implemented in a software tool. The work here presented aims to be a step in

this direction by facilitating live migration of containers with established TCP connections and

Chapter 2. Background Concepts 14

external namespaces (external in the sense that they are not created by the migrated process).

2.3 CRIU: Checkpoint Restore in Userspace

Checkpoint/Restore in Userspace (CRIU) is an open-source C/R tool [4]. Introduced in 2011,

its distinctive feature is that it is mainly implemented in userspace, rather than in the kernel, by

using existing interfaces [25]. One of the most important interface is ptrace [26], as CRIU relies

on it for seizing the target process. For other interfaces, several patches have been pushed to the

mainline kernel by CRIU developers [5]. The project is currently under active development [27],

and its main focus is to support the checkpoint and migration of containers.

2.3.1 A Technical Overview on CRIU

The main goal of CRIU is to perform a snapshot of the current process’ tree state to a set of

image files, so that it can be later restored at that exact point in time, without reproducing the

steps that led to it.

Checkpoint

The checkpointing process starts with the process identifier (PID) of a process group leader pro-

vided by the user through the command line using the --tree option [28]. However, before it can

actually start, we need to ensure that the process does not change its state during checkpoint. This

includes: opening file descriptors, changing sessions, or even producing new child processes [29].

To achieve this transparently, instead of sending a stop signal (which could affect the process’

state) CRIU freezes tasks using ptrace’s PTRACE SEIZE command [26]. In order to find all active

tasks descendant of the parent PID, the $pid dumper iterates through each /proc/$pid/task/

entry, recursively gathering threads and their children from /proc/$pid/task/$tid/children.

Once all tasks are frozen, CRIU collects all the information it can about the task’s re-

sources. File descriptors and registers are dumped through a ptrace interface and are parsed

from /proc/$pid/fd and /proc/$pid/stat respectively. In order to dump the contents of mem-

ory and credentials, a novel technique is introduced, the parasite code.

The parasite code is a binary blob built as a position independent executable (PIE) for execution

inside another process’ address space. Its purpose is to execute CRIU calls from within the

dumpee’s task address space [30]. To achieve this goal, CRIU must:

1. Move the task into seized state calling ptrace(PTRACE SEIZE, ...). Note that the task is

stopped without it noticing, hence not altering its state.

15 2.3. CRIU: Checkpoint Restore in Userspace

2. Inject an mmap syscall in the current stack’s instruction pointer, and allocate memory for the

whole code blob. At this stage, space for exchanging parameters and results is also allocated

within the dumpee’s process address space. CRIU is now ready to run parasite service

routines.

3. The external dumping process retrieves information about the dumpee’s address space through

the parasite code either through trap mode (one command at a time) or daemon mode (in

which the parasite behaves as a UNIX socket).

4. With information about used memory areas and important flags read from /proc/$pid/smaps/

and /proc/$pid/pagemap, the parasite code transfers the actual content outside through a

set of pipes, which in turn gets translated into image files.

Lastly, the target process is cured from the parasite by closing it, unmapping its allocated memory

area, and reverting to the original frozen state.

Restore

During the restore process, CRIU morphs into the to-be-restored task. Since we checkpoint process

trees rather than single processes, CRIU must fork itself several times to recreate the original PID

tree. In particular, and in order to be completely transparent, CRIU requires that the restored

tasks have the same PID they had before dump. To achieve this goal, older versions of CRIU

had to perform very time-sensitive and race condition-prone PID handling, what was referred to

as the PID dance [31, 32]. Starting with kernel 5.3 and the new clone3() system call, it becomes

now possible to clone a process and specify the desired PID for it [33].

Then CRIU restores all basic task resources such as file descriptors, namespaces, maps, ... The

only resources that are not restored at this stage are, most notably, memory mappings. In order

to restore memory areas, and since the morphing is done in-place, before exiting CRIU would

have to unmap itself and map the application code. To overcome this issue, a similar approach to

the parasite code one is followed, the restorer blob. The restorer blob is a piece of PIE code, to

which CRIU transfers control to unmap itself and map the appropriate code and memory areas

for the process to restore successfully.

Live Migration with CRIU

As CRIU operates by design on a single system, support for live migration requires further user

interaction [34]. In particular, it is up to the user to ensure that the dump files are on the remote

host upon restore. Furthermore, IP addresses used by the application in the original host, must

also be available in the new one. With that said, CRIU developers implemented P.Haul [35], a

Chapter 2. Background Concepts 16

library specially targeted for live migration using CRIU. At the time of the writing, the project

is currently inactive.

The most natural way to manually perform a live migration is to use the iterative approach as

we will cover later. However, support for lazy migration and a page server is also available [36].

A major drawback with iterative migration is that, as explained before, CRIU freezes the process

while the snapshot takes place. As a consequence, recurrent snapshots of a memory intensive

application might cause it to freeze during long periods of time. Lastly, and in order to prevent

file duplication, it is encouraged to use a technique called diskless migration [37] - which we will

cover in detail in §4.

2.3.2 Comparison with Other C/R Tools

The main differences between C/R tools are the way they interact with the kernel and the type

of applications they target. CRIU is implemented completely in userspace, and as a consequence

relies heavily on existing kernel interfaces, otherwise execution fails. Additionally, CRIU’s target

application are containers.

Other open-source tools that implement C/R are DMTC [38], and BLCR [39]. They both focus

on high performance computing, what motivates some of their design choices.

DMTCP.

Distributed Multi-Threaded Checkpointing (DMTCP) is an active project lead by Prof. Coop-

erman at Northeastern University that implements C/R on a library level. This means that if a

user wants to checkpoint its application, this must be dynamically linked from the very beginning

and executed with custom wrappers (which decreases transparency). DMTCP intercepts all sys-

tem calls instead of assuming existing kernel interfaces, as CRIU does, and is, as a consequence,

more robust and reliable. It is very popular in HPC environments and is present in a variety of

publications [40, 41].

BLCR

Berkeley Lab Checkpoint/Restart (BLCR) is a system-level checkpointing tool aimed also at

High Performance Computing jobs. It requires loading an additional kernel module and is currently

not maintained (last supported kernel version is 3.7).

A detailed table comparing the software here presented, and some other solutions, is maintained

by the CRIU foundation [42].

17

Chapter 3

Related Work

In this chapter we introduce the most relevant pieces of related work we have based our work

on, together with similar approaches to tackle live migration of processes or containers. We also

include, given the educational nature of this work, references on the bibliography we have based

our claims on, together with the materials used throughout our learning process as we understand

it is relevant in the frame of a Master’s thesis.

3.1 Containers: Overview, Internals, and Terminology

The main goal of this work is to perform efficient live migration of running containers. As a conse-

quence, understanding the working principles of the latter is of prominent importance. Nowadays,

there are dozens of articles covering containers available online but most either confuse general

concepts with particular implementations or misuse terminology. The first problem becomes ap-

parent when, given the widespread use of Docker as a container engine, one can wrongly assume

that Docker containers are the only sort of containers. The second one stems from the fact that

containers are a relatively new technology (less than 10 years of usage) and their governing body

(Open Container Initiative, OCI) is still in the process of establishing itself. As a consequence

there is a lack of formalism in the definition of terms like: container, container image, container

registry, among several others.

A great article from 2018 by McCarty [15] published in the RedHat blog aims to provide OCI-

based definitions on terms like: container, image, image layer, tag, base image, and layer. It also

covers different container engines and container runtimes. Fortunately, there’s already much more

to that than Docker and runc. For a technical introduction to the working principles of containers

(namely namespaces) we have leveraged a series of articles on LWN by Michael Kerrisk [11]. They

first cover the patch history of different namespaces right at the same time user’s namespaces where

merged into the mainline kernel (Linux 3.8). Then, it introduces the different namespaces available

to that date: mount namespaces, UTS namespaces, IPC namespaces, PID namespaces, network

Chapter 3. Related Work 18

namespaces, and user namespaces. To each one of these, the author also devotes a complete article

and includes snippets to give practical examples of different use cases.

Whenever we deal with system-related tools or calls, the manual pages themselves offer great

resources of information, albeit sometimes quite advanced. In particular, we make use of and cite

the manual pages for namespaces [10], the clone system call [12] and the setns one [14]. Lastly,

for both namespaces and control groups we have also used a set of slides on Process Virtualization

from the Operating Systems course of the Master in Innovation and Research in Informatics (MIRI)

from the Technical University of Catalonia. The contents of this course are not available for open

distribution and were crafted by the course instructor, Jordi Guitart, who is at the same time the

advisor for this work.

With regard to runC, the OCI reference implementation of a container runtime, we would

highly recommend the introductory post by Solomon Hykes, Docker’s founder and former CEO.

runC was originally a proprietary component of the Docker’s stack, but was open-sourced in 2015

and donated to the Open Container Initiative. In this article, Hykes introduces what exactly is

runC, the motivation behind it and the new governance model. The project is very active on

GitHub [43], and the different issues there posted together with the available documentation (from

the repository itself) are the best source of information for the project. Lastly, runC is on track

with the OCI container runtime specification, which is also available on GitHub [44].

3.2 Checkpoint Restore and CRIU

Checkpoint-Restore being a technique (application checkpointing) rather than a tool, makes the

topic that much vague for its research. A good starting point is the definition in the Encyclopedia

of Parallel Computing [17]. We have also greatly leveraged a set of slides by Brandon Barker

from Cornell University [3]. There, the author does a non-scientific introduction and motivation

for C/R, and goes on to cover the different available tools as of December 2014. Albeit slightly

old, most of the works he cites (DMTCP, CRIU, and BLCR) are still the de facto alternatives

when doing application checkpointing. The author’s approach is biased towards high performance

computing, where DMTCP [38] is the usual software of choice, but it does a great job at pointing

out the differences between each solution. For a detailed survey on the origins of C/R in the context

of rollback recovery strategies for fault-tolerant systems, we highlight the work by Elnozahy et al.

from 2002 [20]. The techniques there described started gaining traction with Virtual Machine’s

migration, a topic for which Clark’s survey is also a great source of information [19].

We chose to use CRIU as our C/R tool, as it was the most suitable one in the container scenario,

and was already used by the major container engines and runtimes (although with different degrees

of integration and active maintenance). Checkpoint-Restore in Userspace [4] is an open-source

community-driven project. Therefore, it has a very actively maintained wiki covering all related

19 3.3. Applications of C/R and Live Migration

topics. An exhaustive list of these topics is also available [45]. Adrian Reber is a maintainer of

the project in charge of, among others, part of the integration with runC, and has a set of very

interesting an easy-to-follow articles on CRIU. The earliest ones from 2016 cover the tool as a

whole [25], and different types of available migrations [46]. One of the most delicate parts of

process restore is how to handle old, new, and dependent process identifiers (PIDs). Reber also

has an article describing how this is done in CRIU [31]. For our technical dive on the tool’s

internals in §2, we relied mostly on the wiki articles. In particular we would like to highlight the

one covering checkpoint-restore in a broad sense [28]. From it, the reader can easily jump to other

linked articles if needed. We also read in detail the articles covering diskless migration [37], live

migration [34], and the memory tracking ones both in the wiki [47] and in LWN [48]. Lastly, for the

C/R of established TCP connections, we highly recommend the article by Corbet from 2012 [49],

as it covers everything one needs to know to understand the approach followed in CRIU.

When comparing different C/R tools, and in addition to the previously mentioned work by

Barker [3], CRIU’s developers themselves maintain a comparative table where they list the pro’s

and con’s of each different tool [42] (namely CRIU, DMTCP, and BLCR). In spite of the natural

bias they may have, the resource has plenty of detail and is of great use. The main alternative to

CRIU for C/R is the Distributed-MultiThreaded Checkpointing project [40] (DMTCP). Developed

under the supervision of professor Gene Cooperman from Northeastern University, the project has

a long-standing record of successes in the high performance computing domain, being the tool of

choice by several national laboratories in the US. We based on their home page [38] to complete

our section comparing them. Additionally, the Berkeley Lab’s Checkpoint-Restart [39] (BLCR) is

also an HPC-focused tool, although it has lost some traction during the last years.

A stretch goal for this project was to implement live migration of distributed container deploy-

ments, for which distributed checkpointing algorithms would be crucial. Even though we have not

had time to address the implementation of such a concept, we have used several well-established

resources for documentation purposes. We would like to highlight the works by Raynal [18] and

Kshemkalyani [24].

3.3 Applications of C/R and Live Migration

Even though C/R and live migration are a relatively mature topic of research, scientific contribu-

tions covering particular applications are way more scarce. This was, among others, one of our

initial motivations for this work. Some of the earlier pieces of research stem from the same research

group developing DMTCP. Being HPC the target community for the project, one of the most pop-

ular applications of DMTCP is checkpointing of MPI applications. The first references date from

2002 [50], but the first contribution from the DMTPC team did not appear until 2016 in the work

by Arya et al. [51], which finally resulted in MANA for MPI: MPI-Agnostic Network-Agnostic

Chapter 3. Related Work 20

Transparent Checkpointing [41]. This last piece of work summarizes all the previous contributions

as it allows for transparent checkpointing of any MPI implementation and network combination.

The current lines of research focus on proving this approach’s scalability and GPU checkpointing.

For application-oriented projects leveraging CRIU we would like to highlight the work by

Venkatesh [52]. This contribution is relevant to our work as it focuses on fast and efficient

checkpoint-restore for Docker containers. In particular, the authors present an optimization

to the file-based image procedure using the new (as of 2019) kernel support for multiple indepen-

dent virtual addresses space (MVAS). We can not leverage the findings in our project as it only

focuses on single-machine C/R.

Another interesting application of CRIU for Docker container migration is the recent article

by Antonio Barbalace et al. [53]. In this work, the authors aim to overcome the limitation in

migration for edge computing imposed by the different instruction set architectures (ISAs) each

node may have. To achieve this goal they rely on containerization and CRIU. Our work focuses

on live migration of server-side oriented services, hence why the edge computing use case is not

directly applicable. Similarly, the work by Machen [54] also targets the edge computing scenario.

In particular, the author presents a layered framework to perform live migration of services in

mobile edge clouds. These services can be encapsulated in either virtual machines or containers

within VMs, and the authors rely on native VM migration with LXC and KVM.

A contribution to CRIU which stemmed from an application use case and which we could

leverage in the project was presented by Stoyanov in 2018 [55]. The author optimizes downtime

during container live migration by utilizing CRIU’s newly added feature: the image cache/proxy.

Another article covering efficient live migration of Docker containers was presented in late 2019

by Zeynep and Pelin [56]. The authors focus on the support for C/R implemented in Docker

and focus on securing the migration process to protect against potential attacks. Although the

security approach is novel in nature, the fact that the authors use the outdated and not-maintained

Docker integration of CRIU’s C/R makes it not-reusable for our project.

Also in the HPC domain, but focused on container migration, lie the pieces of work by Berg [57],

and Sindi [58]. The former follows more of a survey-like style, in which the authors proof the

feasibility of using C/R for containers in HPC. Similarly, the latter showcases different applications

of CRIU’s migration capabilities in HPC. In particular, the authors present a migration of an MPI

application, although they don’t compare it with the work here described previously.

Lastly, the contribution that most closely matches our goal of providing an efficient, transparent,

easy-to-use migration library for running containers is the Process Hauler (P.Haul) project [59, 9].

Initiated by the same CRIU developers, the work was an early attempt to wrap all the technical

details behind efficient live migration and deliver it as a solution to the end user. Unfortunately,

the development stopped in late 2017, what greatly motivated this work.

21

Chapter 4

Implementing Efficient Live Migration

In this chapter we present our implementation of live migration of runC containers using CRIU. In

order to achieve efficiency, liveness, and mimic a realistic setting, we explore disk-less and iterative

migrations, and checkpointing established TCP connections and external namespaces. First, in

§4.1, we cover the implementation of each of these features in CRIU and their integration with

runC. Then, we perform a set of micro-benchmarks to assess their impact on performance, and

finish with a snippet showcasing their usage. Lastly, in §4.2, we provide insights on our final open

source implementation available at https://github.com/live-containers/live-migration.

4.1 Building Blocks

In this first section we study the implementation of diskless and iterative migration in CRIU. The

former allows fast checkpoint/restore without writing to disk. The latter allows for incremental

dumps, which in turn reduces downtime when migrating an application as the load can be divided

among subsequent dumps. We also introduce how to checkpoint and migrate established TCP

connections and established namespaces.

For each different feature, we prepare a set of experiments. Unless otherwise stated, we run

each one in a Debian machine with kernel version 4.19.0-6 and use CRIU version 3.13 and runC

version 1.0.0-rc8, both built from source.

4.1.1 Diskless Migration

As previously detailed, CRIU builds the snapshot of a running process using image (.img) files,

which are stored in a user-specified path. As a consequence, it relies heavily on the underlying

storage facility provided which, in most commodity PCs, tends to be the disk-backed file system. It

is of no surprise then, that reading and writing from and to disk can quickly become the bottleneck

in live migration’s performance. It gets even worse when writes are duplicated, i.e. we write once

to disk to dump the process state, and a second time to transfer image files wherever they need to

https://github.com/live-containers/live-migration

Chapter 4. Implementing Efficient Live Migration 22

be restored. To overcome the former, we rely on tmpfs a virtual memory file system [60]. For the

latter, we leverage CRIU’s page-server.

First presented by Sun Microsystems in 2007 [61], tmpfs is a memory-based file system that uses

resources from the virtual memory subsystem. According to the Linux Programmer’s Manual [60],

this file system can employ swap space if memory pressure is high, only consumes as much memory

as required to store the current files (regardless of the allocated size), and unmounting it destroys

the contents therein. Since the files actually reside in memory, the user benefits from memory-

like read/write performance. A notable use of tmpfs is /dev/shm, used in the POSIX-compliant

implementation of shared memory and in POSIX semaphores. One such file system can be easily

created and destroyed using mount and umount as detailed in Listing 4.1

1 #!/bin/bash

2 # Mount a tmpfs file system rooted in the /tmp/my-tmpfs directory with maximum size 100 MB

3 mkdir /tmp/my -tmpfs

4 sudo mount -t tmpfs -o size =100M tmpfs /tmp/my-tmpfs

5

6 # Check the new file system appears in the list of mounted devices

7 sudo mount | grep /tmp/my -tmpfs

8

9 # Unmount the file system

10 sudo umount /tmp/my-tmpfs # CAUTION: THIS WILL DESTROY THE CONTENTS

Listing 4.1: Mounting and dismounting a tmpfs file system.

The page server is a component of CRIU that allows to send memory dumps directly through

the network, saving disk read/writes on the origin, writing them once they reach the destination

system [62]. Note that the page server is used only to migrate memory files, which tend to be the

largest ones, whereas other image files still need to be transferred when migrating. The current

implementation uses only TCP sockets and no encryption nor compression is used on the network

transfer. It is also worth mentioning that criu page-server --port is a one-shot command, i.e.

if we perform multiple dumps, a page server must be started for each one of them. Observe that,

even though it introduces a small overhead, our results (see Figure 4.1) show that for migrations

within the same machine, setting up a page server in localhost outperforms the double-copying

approach for larger applications.

As introduced in the previous paragraphs, the key pieces to achieve efficient diskless migrations

are making use of a tmpfs file system and CRIU’s page server. The former is in another level

of abstraction than runC, and for the latter we need to start the page server separately and then

checkpoint passing address and port as a parameter to the --page-server flag. In Listings 4.2

and 4.3 we include snippets to perform a checkpoint with a page server using runC and CRIU

respectively.

In order to benchmark the performance of diskless migration when compared to disk-based one

and the benefits of using a page server, we set up two different experiments. In one hand we have

a counter program written in C (see Listing A.1 for the full implementation) that increments a

23 4.1. Building Blocks

1 #!/bin/bash

2 # Start the Page Server

3 sudo criu page -server \

4 --port 9999 \

5 --images -dir /path/to/dst/images &

6

7 # Checkpoint using the page -server

8 sudo runc checkpoint \

9 --image -path /path/to/src/images \

10 --page -server 127.0.0.1:9999 \

11 <container_name >

12

13 # To finish the migration we would need to

14 # copy the remaining files

15 # This should be fast as memory dumps are

16 # already at destination

17 cp /path/to/src/images /* \

18 /path/to/dst/images/

Listing 4.2: Commands to perform a
checkpoint in runC using a page server.

1 #!/bin/bash

2 # Start the Page Server

3 sudo criu page -server \

4 --port 9999 \

5 --images -dir /path/to/dst/images &

6

7 # Checkpoint using the page -server

8 sudo runc checkpoint \

9 --image -path /path/to/src/images \

10 --page -server 127.0.0.1:9999 \

11 <container_name >

12

13 # To finish the migration we would need to

14 # copy the remaining files

15 # This should be fast as memory dumps are

16 # already at destination

17 cp /path/to/src/images /* \

18 /path/to/dst/images/

Listing 4.3: Commands to perform a
checkpoint in CRIU using a page server.

value and prints it to stdout. On the other hand we have an instance of a Redis in-memory

database that we pre-load with 1e7 keys. The total weight of the memory image dump is 912 MB.

For each experiment, we measure the time to checkpoint the process and transfer the remaining

images to a different directory, either locally or on a different machine in the same local network.

We compare the performance when using tmpfs directories to store the images (diskless) or not

(file-based) and when using a page server or not. Each test is run 100 times and we present the

average and standard deviation values obtained in Figure 4.1.

 0.2

 0.4

 0.6

 0.8

criu runc criu runc criu runc criu runc

 6

 12

 18

 24

Redis Database

Local Remote Local Remote

T
im

e
 E

la
p
s
e
d
 [
s
]

Simple Counter

Diskless w/ Page-Server Diskless w/out Page-Server File-Based w/ Page-Server File-Based w/out Page-Server

Figure 4.1: Time elapsed checkpointing and migrating a running process when using file-based or
diskless migration, with and without a page server. We compare the results for a small application
(around 100 kB, left) and a big one (around 1 GB, right).

.

The first and most important conclusion we draw from our results is that there is no one-

size-fits-all solution when choosing the best setting to migrate our application. It seems clear

that diskless is always equal or better than non-diskless. This was to be expected, as for the same

setting, tmpfs gives better raw read/write performance. For instance, when transferring image files

from one machine to the other, the perceived end-to-end throughput between tmpfs directories is

Chapter 4. Implementing Efficient Live Migration 24

in the order of 100-120 Mbps compared to the 60-70 Mbps for regular directories. However, there

might be situations, or systems, which simply don’t have that much free memory. The Redis dump

files alone already take up 1 GB of memory, unacceptable in constrained devices.

If the application is sufficiently small (a dump for an instance of the counter process is around

90 kB), the overhead of running a page server is higher than simply writing the files twice, both in

the local and remote setting. However, for large applications, diskless outweighs the page server

in the local case, whereas if we have to send files over the network, running a page server is

more important than using the diskless approach (although a combination of both yields the best

performance). We include the full evaluation scripts in Listing B.1.

4.1.2 Iterative Migration

Implemented in CRIU we find a series of features that enable us to perform iterative migrations

of running processes. This is, periodically snapshot the state of the process without altering it

until some condition is triggered, that in turn checkpoints the container and restores it elsewhere.

The key idea being that all the heavy work for the snapshot (i.e. capturing the memory state and

transferring it) will have already been done in previous iterations, hence minimizing the application

downtime.

In the previous paragraph we have assumed that transfers across consequent snapshots will

be smaller in size, otherwise the n-th dump would not be any faster than the first one, and we

would be wasting a lot of bandwidth since the same information would be sent repeatedly. This

reduction in size can be achieved through memory tracking, a procedure through which memory

pages written between dumps are marked as dirty and hence included in the following transfer.

Therefore, to implement efficient iterative migration we need:

1. Pre-Dump: A procedure to snapshot the memory of the process without stopping it (note

that, at this point, we don’t need all the other details).

2. Memory Tracking: A procedure to keep track of the memory changes in a process’ address

space.

3. Parent Directory: A procedure to link together subsequent dumps so that they can be

correctly re-interpreted at restore time.

The first step during an iterative migration consists on dumping all of the process memory to

an image file. This allows for a baseline from which smaller incremental dumps are performed.

Note that, at this point, we are not interested in capturing the whole state, hence the usage of the

pre-dump command in CRIU.

Memory tracking in CRIU [47] is done by means of a kernel functionality introduced in 2013 [48].

It consists of two steps: first we ask the kernel to keep track of memory changes on a per-process

25 4.1. Building Blocks

basis by writing a 4 to /proc/pid/clear refs and, after a while, reading the /proc/pid/pagemap

file and checking the soft-dirty bit for each page table entry (PTE). Internally, in the first step the

kernel clears all soft-dirty bits and the writable ones per each PTE for the given process id (PID).

Subsequent writes to any page will trigger a page fault, a call to pte mkdirty, and therefore the

soft-dirty bit will be set. During the second step, at memory dump time, if this bit has not been

set, the memory page needs not to be transferred again. To enable this functionality in CRIU,

we must use the --track-mem flag.

One last key step required to achieve efficiency and correctness upon restore is to link the actual

dump (or pre-dump) with the one preceding it, it’s parent. For a pre-dump, --prev-images-dir

indicates CRIU to look for existing dumps in the specified path, and perform the bit-checking

described in the previous paragraphs. Upon restore, links among successive dumps are pieced

together to successfully restore the freshest version of the running program.

The integration with runC is seamless. The pre-dump functionality is triggered with the -

-pre-dump flag which, in turn, sets the memory tracking flag automatically [43]. Lastly, the

--parent-path flag can be used to achieve the correct linkage between dumps. In Listings 4.4

and 4.5 we include the different scripts to perform the three consecutive dumps both in CRIU

and runC. The complete scripts used for the benchmarking are included in Listing B.2.

1 #!/bin/bash

2 # First Pre -Dump

3 sudo criu pre -dump \

4 -t PROCESS_PID \

5 --images -dir images /1 \

6 --track -mem \

7 --shell -job

8

9 # Second Pre -Dump

10 sudo criu pre -dump \

11 -t PROCESS_PID \

12 --shell -job \

13 --images -dir images /2 \

14 --prev -images -dir ../1 \

15 --track -mem

16

17 # Last Dump

18 sudo criu dump \

19 -t PROCESS_PID \

20 --images -dir images /3 \

21 --prev -images -dir ../2 \

22 --shell -job \

23 --track -mem

24

25 # Process is now stopped

Listing 4.4: Scripts to perform two pre-
dumps and a dump of a running process
using CRIU.

1 #!/bin/bash

2 # First Pre -Dump

3 sudo runc checkpoint \

4 --pre -dump \

5 --image -path ./ images /1/ \

6 <container_name >

7

8 sudo runc list # Container running

9

10 # Second Pre -Dump

11 sudo runc checkpoint \

12 --pre -dump \

13 --parent -path ../1/ \

14 --image -path ./ images /2/ \

15 <container_name >

16

17 sudo runc list # Still running

18

19 # Last Dump

20 sudo runc checkpoint \

21 --parent -path ../2/ \

22 --image -path ./ images /3/ \

23 <container_name >

24

25 # Container is now stopped

Listing 4.5: Scripts to perform two pre-
dumps and a dump of a running container
using runC.

In order to perform a micro-benchmark of this functionality we consider two different scenarios:

a simple counter written in C, and a Redis in-memory database, as introduced in the previous

Chapter 4. Implementing Efficient Live Migration 26

section. For each scenario we perform two pre-dumps, and a final dump, and report the size of the

pages-1.img file (which contains the memory dump). We test a static setting in which we don’t

change the memory during successive dumps which acts as a baseline, and a dynamic one in which,

between each dump, we modify the contents of the process memory. For the counter, the static

setting starts the program and goes to sleep, whereas the dynamic one indeed updates the counter

every other second. For the database, we initially pre-load it with 1e7 key-value pairs (around 300

MB of data) and then either do nothing, or run a redis-benchmark which alters around 1% of

the key pairs. Lastly, we compare the results of running the experiments with vanilla CRIU or

through runC.

 20

 40

 60

 80

criu runc criu runc criu runc criu runc

 200

 400

 600

 800

Redis Database

No Increment Increment No Shuffle Shuffle

M
e
m

o
ry

 D
u
m

p
 S

iz
e
 [
k
B

] M
e
m

o
ry

 D
u
m

p
 S

iz
e
 [M

B
]

Simple Counter
1st Pre-Dump 2nd Pre-Dump 3rd Dump

Figure 4.2: Size of the dumped memory image when performing iterative dumps. For the counter
experiment we report the results in kB (left axis) and for the redis one we report the results in
MB (right axis). We compare the results when using runC or purely CRIU.

.

We present our results in Figure 4.2. First of all, note how we use different scales for the counter

application (left) and the Redis one (right). We observe that, as expected, if we make no changes

to the process’ memory after the first dump, the amount of information to be re-transferred is

very little, which we attribute it to CRIU’s metadata. In the counter case, the initial dump is

around 90 kB and subsequent ones are 12 kB, whereas in the Redis one, the size decreases from

900 MB to just 1 MB. Once we modify the memory, additional pages need to be transferred. In

the counter case, between successive dumps we just increase the value of a variable and alter the

state of stdout, what translates in a 10 kB increase in the image size every time. In the Redis

one, the redis-benchmark is non-deterministic in nature, but it’s worth observing how shuffling

a percent of the total key-store propagates to higher percentages of memory re-use. We conclude

that memory tracking is a necessary feature if any application considers even near-live migration

of production applications, and the technology presented allows for an easy way to do so.

27 4.1. Building Blocks

4.1.3 Checkpointing TCP Connections

The ability to checkpoint established TCP connection is mainly due to the inclusion of the TCP -

REPAIR socket option to kernel version 3.5 [63].

Similarly to other resources and as introduced in §2, basic information about sockets is obtained

by parsing the adequate files in the /proc file system. However, there are some internals of active

network connections (namely negotiated parameters such as send and receive queues, and sequence

numbers) that require putting the socket in the TCP REPAIR state using the setocketopt() syscall

(note that this action requires CAP NET ADMIN capabilities). Then, if the connection is closed whilst

the socket is in TCP REPAIR mode, no FIN nor RST packets are sent to the other peer, what means

that his endpoint is effectively still open [49].

To re-establish the connection from the newly generated socket, the first thing to do is put

it, again, in TCP REPAIR mode. Then, the previously dumped parameters can be set, and upon

connect() the socket goes directly into ESTABLISHED mode without acknowledgment from the

other end, and a RST packet is sent to resume communication.

The last missing piece is what happens if the remote end tries to send a packet to its, seemingly

open, TCP socket whilst the other peer is down. Were we to ignore this fact, once the packet

reached our kernel this, given that the socket is closed, would send a RST to the other end, and our

whole illusion would collapse. To overcome this issue, upon checkpoint we include a set of rules to

the netfilter [64] IP routing table to drop all packets. We include the set of rules in Table 4.1.

Chain INPUT (policy ACCEPT)

target prot opt source dest

CRIU all -- <source IP> <dest IP>

Chain FORWARD (policy ACCEPT)

target prot opt source dest

Chain OUTPUT (policy ACCEPT)

target prot opt source dest

CRIU all -- <source IP> <dest IP>

Chain CRIU

target prot opt source dest

ACCEPT all -- <source IP> <dest IP> mark match ! 0xc114

DROP all -- .../0 .../0

Table 4.1: Output of running iptables -t filter -L -n.
.

Chapter 4. Implementing Efficient Live Migration 28

Efficient IP Address Re-Use

A caveat of restoring established TCP connections is that, without bringing down both peers,

we can not circumvent the negotiated IP:PORT pairs. As a consequence, the same IP address and

port must be available at restore time. Otherwise, when the remote peer receives the RST package

it will immediately close the connection. Re-using an IP address is achievable using locally scoped

addresses or network namespaces. In our experiments we tested both.

Firstly, if we are migrating into a different machine (as the experiments presented below),

we need to assign addresses using ip’s addr subcommands. In particular, we are using a host-

only [65] subnet to manage our (virtual) machines.

Alternatively, we have also tested process migration within the same machine, from one network

namespace to a different one. This situation is particularly interesting as it recreates what happens

under the hood in CRIU’s binding for runC, as containers rely on namespaces for isolation. We

set up a bridge device in the host namespace, two network namespaces, and two virtual ethernet

devices with one peer tied to the bridge, and the other one inside a namespace. Adequately setting

up addresses and default gateway routes, we achieve the setup we depict in Figure 4.3.

net-ns-1

netfilter

veth-peer1

net-ns-2

netfilter

veth-peer2

Local Bridge

Established TCP Socket

Outside Network

Figure 4.3: Architecture of three different namespaces connected through virtual ethernet pairs.

Integration with runC is two-fold. For the TCP connection CRIU’s binding for runC includes a

--tcp-established flag that does most of the socket management. If we are interested in restoring

the connection in a different machine or namespace, we must manually recreate the filter table

from Table 4.1 using the iptables command. Lastly, to restore into an existing namespace, the

container must be restored with the adequate open file descriptors using CRIU’s --external [66]

and --inherit-fd [67]. In Listings 4.6 and 4.7 we include excerpts of snippets to checkpoint and

restore an established TCP connection without or within a network namespace respectively. The

complete scripts for the evaluation are included in Listings B.3 and B.4 for CRIU’s downtime and

reactivity experiments, and in Listings B.5 and B.6 for runC’s.

Benchmarking

29 4.1. Building Blocks

1 #!/bin/bash

2 # CRIU Dump and Restore , one after the other

3 # but in the BG (not affecting time)

4 (sudo criu dump \

5 -t ‘SERVER_PID ‘ \

6 --images -dir ‘IMAGES_DIR ‘ \

7 --tcp -established; \

8 echo "Restoring server ..."; \

9 sudo criu restore \

10 --images -dir ‘IMAGES_DIR ‘ \

11 --tcp -established) &

12

13 # Similarly with runC

14 (sudo runc checkpoint \

15 --image -path ‘IMAGES_DIR ‘ \

16 --tcp -established \

17 eureka; \

18 cd /container/directory; \

19 sudo runc restore \

20 --image -path ‘IMAGES_DIR ‘ \

21 --tcp -established \

22 eureka; \

23 cd ‘CWD ‘) &

Listing 4.6: Checkpoint and restore an
established TCP connection using CRIU
and runC.

1 #!/bin/bash

2 # Two namespaces with path NS_1 and NS_2

3 INO_1=$(ls -iL ${NS_1} | awk ’{ print $1 }’)

4 INO_2=$(ls -iL ${NS_2} | awk ’{ print $1 }’)

5 exec 33< ${NS_1}

6 exec 34< ${NS_2}

7

8 # To checkpoint we mark as an external

9 # resource both NS

10 sudo criu dump \

11 -t ${PID_1} \

12 --images -dir images \

13 --tcp -established \

14 --external net[${INO_1 }]:${NS_1} \

15 --external net[${INO_2 }]:${NS_2}

16

17 # At restore , we match the file

18 # descriptors with the NS

19 sudo criu restore \

20 --images -dir images \

21 --tcp -established \

22 --inherit -fd fd[33]:${NS_1} \

23 --inherit -fd fd[34]:${NS_2} -d

Listing 4.7: Excerpt of a script to checkpoint
a connection within an existing namespace.

In order to evaluate the impact of migrating a process with an established TCP connection,

we are interested in assessing how quickly can communication resume after restore.

To achieve this goal we set up the following testbed. We first deploy two identical virtual

machines running Linux Debian with kernel version 4.19.0-6. Each one has CRIU version 3.13

and runC version 1.0.0-rc8, both built from source. Additionally, and in order to conduct the

experiments, we make use of iPerf3 (version 3.7+) a network bandwidth benchmarking tool [68].

In particular, we start an iPerf3 client-server pair, one in each VM, and record the perceived

throughput by the client. Each experiment is repeated running the bare processes and check-

pointing them using CRIU, or isolating them within a runC container, to assess the introduced

overhead. We measure from the client side since we are interested in dumping and restoring the

server. This situation makes more sense from the cloud-provider/load-balancing standpoint.

Re-connection after a down period. The first experiment simulates the scenario in which

the server is restored some time after the dump occurred. In particular, we let the client saturate

the link for 10 seconds, then dump the server, and restore it 2 seconds later, all of which trans-

parently to the client (whose connection is never closed). In Figure 4.4 we present the throughput

perceived by the client as a function of time. The first observation we make from the plot, is that

it takes almost a full second to get the connection back to full speed. To understand this behaviour

we must recall what is iPerf3 actually doing. The client tries to saturate the link, sending as

many packets as it can, and reports the measured capacity. As the socket is never closed, and

packets are just discarded by the network filters, to the client it will be as if those packets were

never acknowledged, and hence will try to retransmit them. The TCP protocol specifies [69] that

Chapter 4. Implementing Efficient Live Migration 30

 1

 2

 3

 4

 0 2 4 6 8 10 12 14 16 18 20

Checkpoint Restore
T

h
ro

u
g
h
p
u
t
[G

b
p
s
]

Time [s]

criu runc

Figure 4.4: Throughput perceived from the client as a function of time, when we checkpoint the
server once, and restore it after two seconds. We compare the results of CRIU and runC.

the retransmission timeout must be doubled every time a packet is not acknowledged, therefore

the recurrent outage of ACKs might cause the client to back-off for the perceived full second. This

implies that checkpointing established TCP connections only makes sense in the scenario in which

the service is soon going to be restored. The next experiment tackles the behaviour under this

situation.

Reactivity to immediate restore. To prove our hypothesis that the large delay after a

restore is due to the protocol itself rather than our implementation, we set up an experiment

in which we perform a sequence of dumps and immediate restores of the same established TCP

connection. We again present the throughput as a function of time in Figure 4.5. In this case

 1

 2

 3

 4

 0 2 4 6 8 10 12 14 16 18 20

C/R 1 C/R 2 C/R 3

T
h
ro

u
g
h
p
u
t
[G

b
p
s
]

Time [s]

criu runc

Figure 4.5: Throughput from the client as a function of time as we iteratively checkpoint and
restore the service immediately after.

the measured throughput downtime does not exceed 0.1 seconds, an order of magnitude better

than the previous experiment. This reduced value, together with the fact that the application

studied is very network-intensive, makes us believe that our proposed technique is suitable for

31 4.2. Putting it All Together

most client-server scenarios and won’t have an impact in the overall quality of service.

Lastly, in both Figures we observe that, albeit being the experiments running bare processes

with CRIU slightly faster to restore, the overhead introduced by runC is negligible.

4.2 Putting it All Together

In this section we cover our implementation of live migration of running runC containers using

CRIU. As previously mentioned, the complete source code is available on Github: https://

github.com/live-containers/live-migration. The implementation is fully in C and it amounts

to around 1300 LoC. We chose C to have a cleaner interaction with the underlying system and

a smoother integration with CRIU, which is also written in C. However, CRIU exposes all its

services via an RPC client, hence it should be compatible with a variety of other programming

languages. Additionally, all the namespace and ip tables handling can be done natively importing

the adequate libraries. Lastly, runC is written in Go and we had to interact with it spawning a shell

from the main process. We would like to eventually try crun, an OCI-compliant runtime written

in C, and see whether performance could be improved. We leave this for future work.

4.2.1 High Level Specification

We have implemented a tool that, given a container name and a remote server, migrates execution

from the host where the command is run to the one specified in the argument list. In particular,

it checkpoints the container, transfers the image files over the network, and restores remotely the

execution. As optional parameters, the user might specify whether they prefer diskless or file-based

migration (defaults to diskless), iterative or one shot (defaults to iterative), and the path where

intermediate files will be stored.

We make two important assumptions in the current implementation. First, we assume that the

user running the migration has access to the machine specified in the argument list. In particular

we assume SSH access. We have chosen to rely on a single execution process, rather than having

a client-server architecture like other solutions do [35]. Hence why we don’t need a server process

running in the remote machine, but require execution privileges there. Second, we assume the

required container bundle (rootfs directory and config.json specification file) to be available in

the remote end. These are required to restore the container. Note that this assumption could be

easily circumvented pre-generating the bundle before executing the migration. The procedure to

create a rootfs bundle is very straightforward and we include an example in Listing 4.8.

1 #!/bin/bash

2 # Create a new directory for the container

3 mdkir ./my-container && cd my-container

4

5 # Create a root file system

https://github.com/live-containers/live-migration
https://github.com/live-containers/live-migration

Chapter 4. Implementing Efficient Live Migration 32

6 mkdir rootfs

7

8 # Export the docker image into the root file system

9 docker export ‘docker create <image -tag >‘ | tar -C rootfs -xvf -

10

11 # Generate the config file using the OCI runtime tool

12 oci -runtime -tool generate <args >

Listing 4.8: Commands to generate an OCI bundle to run a container using runC.

Lastly, it is worth mentioning that the support for rootless containers is still work-in-progress in

the CRIU project [70]. Therefore, to run the software the user must have root permissions in

both machines (in particular CAP SYS ADMIN).

We have also implemented two additional modules. One performs all the interactions with

the remote host such as transferring files, creating directories, and running CRIU commands. In

particular, we use libssh [71] to interact with the other node, and implement our methods basing

on their low-level primitives. The second is a benchmarking module that through conditional

compilation adds profiling instructions and generates reports to populate the plots we present

throughout this document.

4.2.2 Implementation Details

Migration Module

The first step consists in processing the user input. We require the container name, which must

be a running container (i.e. must have a matching entry in sudo runc list) and an IP address

(more on that on the networking module). We also allow for a series of optional parameters.

Firstly, the user might choose to perform a one-shot migration, rather than an iterative one, and

the path to store intermediate results can also be determined at this stage. Second, the user can

opt to not use diskless migration and persist intermediate files. In the event of a diskless migration,

the parameters (address and port) where the page server runs also can be determined. Lastly, the

user can also specify a directory where to mount the tmpfs file system. Otherwise the system

will default to, if available, /dev/shm. For the remaining of the walkthrough we will assume the

default parameters are set: diskless, iterative migration, with a page server running in the remote

end and relying on /dev/shm as our tmpfs file system of choice.

The most important part in the migration procedure is a loop that periodically and while the

amount of memory to transfer exceeds a threshold does the following:

1. Create Directories. The first step is to create the local and remote directories where image

files will be stored. This has to be done before anything else as otherwise the page server

will report an error and crash.

2. Start Page Server. As previously introduced, CRIU’s page server is a one-shot command.

33 4.2. Putting it All Together

This means that once it serves a request it terminates. As a consequence at the start of every

iteration the command must be re-run. We start it with the following snippet: sudo criu

page-server -d --images-dir <path> --prev-images-dir <prev-path>

--port <port>. Note that the prev-images-dir is crucial to avoid memory duplication.

3. Checkpoint. Now we are ready to checkpoint the container. We use the following command:

sudo runc checkpoint --pre-dump --image-path <path> --page-server <host>:<port>

<container name>. Note that the --pre-dump flag is crucial to keep the container running

and only dump the contents of the memory, which will be automatically over the network to

the page server (and not written to disk).

4. Transfer Remaining Files. Even though we are only running a pre-dump, there are a

few files that need to be transferred to the other node, and we do so at this stage. We

additionally perform housekeeping duties cleaning temporary files.

5. Update Directory Counter. The last step, and not to be overlooked, consists in updating

the directory chain that links iterative dumps. In point 2, we need to specify the path to the

preceding directory, as a consequence we keep a linked list of directory names.

We include a simplified version of this loop in Listing 4.9. Most of the technical details have been

omitted for simplicity, and should be directly inspected in GitHub.

1 while (size_to_xfer > MEMORY_THRESHOLD)

2 {

3 /* Prepare Migration: create directories and start page server */

4 if (prepare_migration(args , i == 0) != 0)

5 {

6 fprintf(stderr , "iterative_migration: prepare migration failed at \

7 iteration %i.\n", i + 1);

8 return 1;

9 }

10 memset(cmd_dump , ’\0’, MAX_CMD_SIZE);

11 if (i == 0)

12 sprintf(cmd_dump , "sudo runc checkpoint --pre -dump --image -path %s \

13 --page -server %s:%s %s", args ->src_image_path ,

14 args ->dst_host , args ->page_server_port , args ->name);

15 else

16 sprintf(cmd_dump , fmt_cmd_dump , args ->src_image_path ,

17 args ->src_prev_image_dir , args ->dst_host ,

18 args ->page_server_port , args ->name);

19

20 /* Run Pre -Dump */

21 if (system(cmd_dump) != 0)

22 {

23 fprintf(stderr , "iterative_migration: pre -dump #%i failed .\n", i);

24 return 1;

25 }

26

27 /* Transfer the Remaining Files */

Chapter 4. Implementing Efficient Live Migration 34

28 if (sftp_copy_dir(args ->session , args ->dst_image_path ,

29 args ->src_image_path , 0, &dir_size) != SSH_OK)

30 {

31 fprintf(stderr , "migration: error transferring from ’%s’ to ’%s’\n",

32 args ->src_image_path , args ->dst_image_path);

33 }

34

35 /* Swap Dirs */

36 if (increment_dirs(i) != 0)

37 {

38 fprintf(stderr , "migration: error incrementing dirs\n");

39 return 1;

40 }

41 i++;

42 }

Listing 4.9: Iterative migration internal loop.

Once we exit the loop, it means the remaining files to transfer are sufficiently small. We then

proceed to checkpoint and stop the container, transfer the remaining files, and restore it in the

other node. We present a simplified version of the code in Listing 4.10.

1 /* Prepare Environment: create directories and start page server */

2 if (prepare_migration(args , 0) != 0)

3 {

4 fprintf(stderr , "migration: prepare_migration failed .\n");

5 return 1;

6 }

7

8 /* Craft Checkpoint and Restore Commands */

9 char *fmt_cp = "sudo runc checkpoint "

10 "--parent -path %s "

11 "--image -path %s "

12 "--tcp -established "

13 "--page -server %s:%s %s";

14 char *fmt_rs = "cd %s && echo %s | sudo -S runc restore --image -path %s \

15 %s-restored &> /dev/null < /dev/null &";

16 sprintf(cmd_cp , fmt_cp , last_dir , args ->src_image_path , args ->dst_host ,

17 args ->page_server_port , args ->name);

18 sprintf(cmd_rs , fmt_rs , RUNC_REDIS_PATH , REMOTE_PWRD , args ->dst_image_path , args ->name);

19

20 /* Checkpoint the Running Container */

21 if (system(cmd_cp) != 0)

22 {

23 fprintf(stderr , "migration: error checkpointing w/ command: ’%s ’\n",

24 cmd_cp);

25 return 1;

26 }

27

28 /* Copy the Remaining Files (should be few as we are running diskless) */

29 if (sftp_copy_dir(args ->session , args ->dst_image_path ,

30 args ->src_image_path , 0, &dir_size) != SSH_OK)

31 {

32 fprintf(stderr , "migration: error transferring from ’%s’ to ’%s’\n",

33 args ->src_image_path , args ->dst_image_path);

34 return 1;

35 4.2. Putting it All Together

35 }

36

37 /* Restore the Running Container */

38 if (ssh_remote_command(args ->session , cmd_rs , 0) != SSH_OK)

39 {

40 fprintf(stderr , "migration: error restoring w/ command: ’%s ’\n",

41 cmd_rs);

42 if (clean_env(args) != 0)

43 {

44 fprintf(stderr , "migration: clean_env method failed .\n");

45 return 1;

46 }

47 return 1;

48 }

49

50 /* Clean Environment Before Exitting */

51 if (clean_env(args) != 0)

52 {

53 fprintf(stderr , "migration: clean_env method failed .\n");

54 return 1;

55 }

Listing 4.10: Snippet for the last (stopping) checkpoint and remote restore.

Note that before exiting we call the clean env routine that removes temporary files and cleans

the remaining processes.

Networking Module

From the code snippets presented in the previous lines, the reader might observe a series of calls

to some seemingly unfamiliar methods like sftp copy dir or ssh remote command. One of the

first design choices we faced was to whether follow a client-server architecture, in which a listening

process would have to be running in advance in the destination machine, or run all commands from

the same process. We decided to follow the second approach as it required less dependencies on

participating nodes (none other than CRIU and runC). This decision implied that we would need

programmatic access from the main execution process to the remote node in order to: manipulate

the file system, transfer files, and execute privileged commands.

For enhanced control, we decided to implement routines to transfer files and execute remote

commands using libssh’s API [71, 72]. In particular, we expose the following API calls,

• ssh remote command: execute a command remotely. We open an ssh channel, use the ssh -

channel request exec method, and capture the output. Alternatively we can also run the

command in non-blocking mode. Lastly, and in order to execute root commands, we used

two different workarounds. One first option is to, for the user we authenticate with (part of

our initial assumptions), enable password-less sudo. Another one is to pass the password, in

clear, over the encrypted SSH channel with a snippet like: echo <PWD> | sudo -S <cmd>.

• sftp copy file: copies a file to the remote end’s specified path. libssh only exposes very

Chapter 4. Implementing Efficient Live Migration 36

low level primitives, so we have to serialize and chunk the file, transfer it over an established

sftp channel, rebuild it in the other end, and store it at the desired location.

• sftp copy dir: recursively copy a directory using the previously introduced method.

The full implementation is again available on GitHub, but we include the signatures and a simplified

implementation of the methods listed above (without the helper functions) in Listing A.2.

4.2.3 Usage

The usage of the tool is very straightforward. First, the user must ensure that the previously

mentioned assumptions are met. This is, the container is running in the host machine, and the

user has SSH access to the destination node. The only dependencies for the software to run are

CRIU and runC. libssh might or might not be available depending on the Linux flavour the user

is running in. At the time of the writing the system has only been tested in Debian machines.

When all the dependencies are met, the code can be compiled using make all and executed via

./migration <container> <host>. This ease of use is not to be overlooked, as similar tools are

way more complicated to set up and get running. For instance, in order to migrate a process using

the old P.Haul interface (https://github.com/checkpoint-restore/p.haul/), one must set

up a NFS mount between source and destination, specify the file descriptors for both RPC and

memory socket, and repeat the procedure in both nodes before even starting the script. Moreover,

the newer interface (https://github.com/checkpoint-restore/go-criu/tree/master/phaul)

does not even allow for standalone execution as it has to be included in a Go project.

https://github.com/checkpoint-restore/p.haul/
https://github.com/checkpoint-restore/go-criu/tree/master/phaul

37

Chapter 5

Evaluation

In the previous chapter, §4, we have presented our implementation of live migration of containers

using CRIU and runC, and have motivated our design choices with micro-benchmarks that fulfil

the initial objectives specified in the introduction. In this chapter, we move on to evaluate the

system as a whole, and how the different features interlace and work together, and how does our

system compare to traditional virtual machine live migration.

In all the experiments here presented, and unless otherwise stated, we use the same experimental

setup than in the micro-benchmark chapter. Two (if necessary) Linux Debian machines with kernel

version 4.19.0-6 running on a host-only network in VirtualBox version 5.2.34. CRIU version

3.13 and runC version 1.0.0-rc8, both built from source.

5.1 Application Downtime

In this section we study the impact of the threshold value we set to stop the iterative migration and

dump the application on the total downtime. As previously introduced in the Iterative Migration

section from §4.1, we establish an arbitrary parameter to decide when to stop transferring only

memory dumps (i.e. pre-dumping the container process) and checkpoint, hence freeze, and migrate

the application to the remote host. A reasonable rule of thumb is to establish a memory cap, and

whenever the successive dumps are smaller than said cap, trigger the threshold and exit the loop.

However, a hard-coded value would be very ad-hoc to our experimental setup. Therefore, we have

benchmarked the impact of setting a variable memory cap to the total downtime. The values we

choose are proportional to the size of the initial allocated memory pool.

In order to test this feature we set up the following experiment. We deploy an in-memory Redis

database with 1e6 key pairs which result in an allocated memory (for all the container) of several

hundreds of MB. We use redis-client and redis-server version 5.0.3. For each run, we set a

percentage of the initial memory as our threshold value, and report the total application downtime

and a breakdown of the time spent (in percentage) during the last dump of each migration to the

Chapter 5. Evaluation 38

remote host. In particular we measure the time spent dumping the memory (dump), preparing the

migration (prepare), transferring files to the other host (transfer) and during restore (restore).

We present our results in Figure 5.1.

 0

 25

 50

 75

 100

100 75 50 25 10 1
 0

 200

 400

 600

T
im

e
 E

la
p
s
e
d
 [
%

]
A

p
p
. D

o
w

n
tim

e
 [m

s
]

Dump Threshold Relative to Initial Memory Size [%]

dump prepare transfer restore downtime

Figure 5.1: Application downtime relative to the memory threshold cap (dotted red), and stacked
histogram of the time spent in each phase during the last dump.

We observe that, for our particular setting, once the memory cap reaches 10% of the original

size, the application downtime reaches the baseline value. Moreover it is also interesting to see

that, as this value gets closer to the baseline, the time spent (absolute and relative) dumping

memory decreases. This results are specific to our setting with two virtual machines and limited

memory, but a similar benchmark could be reproduced in production to estimate an adequate

threshold value.

5.2 Scalability regarding the Container’s Memory Size

In this section we study the scalability of our approach with respect to the memory allocated by

the to-be checkpointed container. For this experiment we set up a Redis in-memory database

which we pre-load with a variable number of key-value pairs. We use, similarly to the previous

section, redis-client and redis-server version 5.0.3, and pre-load the keys using the --pipe

flag for bulk data upload. In Listing 5.1 we include the script for doing so. Note that this same

strategy was also used in other benchmarks using Redis.

1 #!/bin/bash

2

3 # Start a runc container named redis -db

4 # The ip the service runs on is stored in the .ip file

5 sudo runc run -d redis -db &> /dev/null < /dev/null

6

7 # Populate DB with data

8 cat "./data/file.dat" | redis -cli -h ‘< .ip‘ --pipe

39 5.2. Scalability regarding the Container’s Memory Size

Listing 5.1: Snippet for bulk data upload to a Redis database.

Our goal is to evaluate the impact of the size of the memory allocated to the overall container

downtime. In order to compare against a naive live migration (checkpoint, transfer files, and restore

on the remote end) and traditional virtual machine migrations, we choose not to use iterative

migration in our system. This is due to the fact that it would be an unfair advantage against the

other two systems. Additionally, and in order to avoid noise introduced by the network latency,

we run migrations locally (i.e. transferring files to 127.0.0.1). We measure the application’s

downtime (time to checkpoint plus time to restore) when running an in-memory Redis database

pre-loaded with key-value pairs of sizes raging 16 B for one pair to 265 MB for 1e7 pairs.

Comparison Against Naive Live Migration.

We first compare against a naive live migration. We define by naive the process of dump-

ing (hence stopping) a process, transferring the dump files, and restarting it in the remote end.

We report the downtime for this approach and our system when ran with only one iteration in

Figure 5.2.

 0

 0.5

 1

 1.5

 2

 2.5

 3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

T
im

e
 E

la
p
s
e
d
 [
s
]

Number of Keys loaded to Redis

Naive Live Migration
Checkpoint Time Restore Time Total Time (Add)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Our Library

Figure 5.2: Scalability with respect to the memory to transfer. We compare our system with
manual live migration when running in the same machine with a one-shot migration.

From our results we are able to extract different conclusions. First of all, the time to restore is

negligible when compared to the time to checkpoint/dump the container. Secondly, even though

our library introduces a small overhead, around 0.1 seconds, to the baseline, this proofs effective in

the long run when the application downtime is reduced by a factor of five. Lastly, we also observe

that a user will specially benefit from using a specialized live migration library like ours over the

manual approach whenever the container to checkpoint is resource-eager.

Comparison Against Virtual Machine Migration

In this second comparison, we compare against traditional virtual machine migration. Given

that our test nodes were already running in VirtualBox version 5.2.3, we have opted to use

Chapter 5. Evaluation 40

VirtualBox’s native live migration solution: teleporting [73]. From the user manual we read that

teleporting boils down to moving one virtual machine from one VirtualBox host to another one

over TCP/IP.

1 #!/bin/bash

2

3 # Configure target machine to wait for a teleport request to arrive

4 VBoxManage modifyvm ’CRIU -Debian -Teleport -Target ’ --teleporter on --teleporterport 6000

5

6 # Iterate over the different number of keys

7 for num_keys in 1 10 100 1000 10000 100000 1000000 10000000

8 do

9 # Start the host machine as usual

10 ssh <HOST_VM >

11 cd ~/runc -containers/redis && ./ run_redis.sh 100000

12

13 # Start the target machine , if using a normal start , a process dialog will appear

14

15 # Run the migration

16 time VBoxManage controlvm ’CRIU -Debian ’ teleport --host localhost --port 6000

17

18 # Shut down both VMs

19 done

Listing 5.2: Script to teleport a VirtualBox VM, and run the macro-benchmark.

In our particular experiment, the VirtualBox host would be the same, as we are migrating to

localhost, but to a different virtual machine (a pre-made clone of the origin one). In Listing 5.2 we

include the evaluation snippet we used to launch the experiments and teleport the machines. Note

that some additional commands had to be made through the GUI, and that the ./run redis.sh

script is very similar to the one presented in Listing 5.1.

 0

 2

 4

 6

 8

 10

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

T
im

e
 E

la
p
s
e
d
 [
s
]

Number of Keys loaded to Redis

VirtualBox Teleport
Checkpoint Time Restore Time Total Time (Add)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Our Library

Figure 5.3: Scalability with respect to the memory to transfer. We compare our system with VM
live migration using VirtualBox’s Teleport functionality.

We present our results in Figure 5.3. The first observation we can make, is that VM live

migration has a significantly higher overhead in the baseline case. This was to be expected as

41 5.2. Scalability regarding the Container’s Memory Size

overall overhead and slow boot times are the main argument in favour of containers and against

virtual machines. And in this experiment we are running one inside of the other. However, what is

also worth noticing is the scalability. Whilst our system (for which we re-plot the same results from

Figure 5.2), experiences an increase in downtime of ×1.5, VirtualBox’s experiences a downtime

closer to ×2 (whilst naive migration had one closer to ×10). This result shows that, even with

a drastically smaller overhead, our system also showcases a better scalability when compared to

traditional VM migration.

The improvements from our library with respect to naive and VM migration can be understood

from the following facts. When compared to naive migration, our system does not rely on files

written to disk, neither duplicates memory allocation. This adds a small overhead to the baseline,

but drastically improves scalability. When compared to VM migration, the difference in baselines

comes from the way larger set of files VirtualBox has to copy in order to restore the machine.

Furthermore, the slight gains in scalability probably come from the completely diskless migration

we employ.

Chapter 5. Evaluation 42

43

Chapter 6

Conclusions and Future Work

In this Chapter we summarize the work presented, and critically assess whether our contributions

match the objectives we initially planned. We also provide an objective overview of the results

presented in order to establish if the techniques we use are ready for a production environment.

Bear in mind that checkpoint-restore as a load-balancing tool is still a very novel technique, and

even more in the context of containerized applications. Lastly, in §6.2 we cover the stones we left

unturned, the things we would have liked to include in this thesis but have not been able to, and

the research lines we believe this initial approach heads us to.

6.1 Conclusions and Lessons Learnt

Our initial goal was to implement a tool for efficient live migration of containers. It was surprising

to us that, such an apparently useful technique (checkpointing of containers), had been abandoned

for several years in Docker’s experimental branch. Even though the reasons for this are still

unclear to us, what has become apparent is that migrating a container is not an easy task. CRIU

is an incredibly complex tool, with a very helpful community, but whose intricate relation with the

kernel makes it hard to debug whenever things don’t go as expected. Luckily, the integration with

other container engines (other than Docker), is way more maintained, resourceful, documented,

and tested. These other container engines target a different audience than Docker does, and

hence why the feature may not be mainline in the latter.

Live migration turned out not to be only checkpointing, transferring files, and restoring from

another node. At least not if we were looking for performance even in the event of resource-

intensive containers with established TCP connections and external namespaces. The process

of optimizing (less resource usage), reducing downtime, and integrating further capabilities, was

done by micro-benchmarking each different feature to motivate our design choices as presented

in §4.1. It has lead us to use, by default, iterative, diskless migration with a special handling

of namespaces and IP tables filtering in the event of existing connections. And to our ultimate

Chapter 6. Conclusions and Future Work 44

goal of a single binary file that, given a container name and a target IP, migrates efficiently said

container. The current implementation can be downloaded and tested from https://github.

com/live-containers/live-migration.

Our experimental results presented in Chapter 5, validate our design. Firstly, resource utiliza-

tion, and in particular disk usage and memory duplication, is drastically reduced when compared

to a naive migration approach. Secondly, scalability with the size of the allocated memory is bet-

ter than both naive migration and VM migration, whilst maintaining a baseline of approximately

0.2 − 0.3 seconds (bear in mind that this time takes dump, restore, and network transfer and la-

tency into account). Thirdly, the throughput in downtime perceived by a network-intensive client

when migrating the server to the same location (i.e. simulating a maintenance reboot) was under

0.1 seconds when flooding the link. We therefore conclude that this would be close to negligible

for a regular client. Lastly, we provide a procedure and benchmarking technique to estimate a

threshold value necessary for iterative migration.

As a consequence, we believe that the techniques we have used and the work here presented are

mature enough to be used, at least, in replacement of traditional virtual machine migration. We are

also confident that migration of containers, their native support within engines and orchestrators,

and their integration with larger frameworks, will see a drastic increase in the coming years.

6.2 Future Work

Unfortunately, and as it tends to be the case, there has been much work we would have liked to

include in the present work but we have not been able to. Either due to a lack of time or a lack of

expertise and experience, there are some areas of this research that we would like to polish, and

some ones which we would like to push forward in the future.

From a technical standpoint, there are some implementation and evaluation details we would

like to complete. Firstly, as mentioned in §4.2, there are some assumptions we make on both source

and destination hosts. With regard to the authentication of the user in the remote host, we have

found no shortcoming. Even if we were to use a client-server architecture, the listening counterpart

would also need to run in privileged mode. Support for rootless containers and rootless restore

in CRIU is not available [74, 75], so our pre-requisites in this regard are necessary and sufficient.

As for the pre-provisioning of the OCI bundle to start a runC container and the image transfer

optimization, the former could be easily scripted, and the latter is an active open research topic [76]

in CRIU, which we could leverage in the near future. Secondly, we would like to perform further

benchmarking against other live migration tools. In particular, we were unable to compare against

P.Haul due to the project not being actively maintained (as an executable) and only distributed

as a library. With some additional time we could indeed compare both solutions, together with

other VM migration tools (other than VirtualBox’s) like those offered by LXC and KVM. We

https://github.com/live-containers/live-migration
https://github.com/live-containers/live-migration

45 6.2. Future Work

believe that with these additional contributions, a trimmed version of the material here presented

is suitable to be submitted to a dedicated conference, and we plan to do so throughout the coming

months.

On a broader scope, the over-arching goal of this project was to support live migration for

distributed container deployments. We believe the work here presented is a necessary first step

towards achieving it, but there’s still much work to be done. From an algorithmic standpoint,

distributed checkpointing and coordination algorithms need to be implemented. From an infras-

tructure standpoint, distributed container deployments are managed through an orchestrator. The

integration of CRIU with such a tool is, to the best of our knowledge, unexplored territory and

something we look forward to doing in the future.

Chapter 6. Conclusions and Future Work 46

47

Bibliography

[1] M. Masdari, S. Nabavi, and V. Ahmadi. An overview of virtual machine placement schemes

in cloud computing. Journal of Network and Computer Applications, 66, 01 2016.

[2] A. Strunk. Costs of virtual machine live migration: A survey. In 2012 IEEE Eighth World

Congress on Services, pages 323–329, June 2012.

[3] B. Barker. Autosave for research: Where to start with checkpoint/restart. 2014.

[4] CRIU Foundation. Criu - main page. https://criu.org/Main_Page, 2019.

[5] A. Avagin. Criu - upstream kernel commits. https://criu.org/Upstream_kernel_commits,

2019.

[6] A. Tucker. Task migration at Google using CRIU. https://www.linuxplumbersconf.org/

event/2/contributions/209/attachments/27/24/Task_Migration_at_Google_Using_

CRIU.pdf, 2018.

[7] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. Large-scale

cluster management at Google with Borg. In Proceedings of the European Conference on

Computer Systems (EuroSys), Bordeaux, France, 2015.

[8] S. Hykes. Introducing runC: a lightweight universal container runtime. https://www.docker.

com/blog/runc/, 2017.

[9] CRIU Foundation. Process Haul - Github. https://github.com/checkpoint-restore/

go-criu, 2019.

[10] Linux Programmer’s Manual. unshare: run program with some unshared namespace from

parent. https://linux.die.net/man/1/unshare, 2017.

[11] M. Kerrisk. Namespaces in operation (series). https://lwn.net/Articles/531114/, 2013.

[12] Linux Programmer’s Manual. clone: create child process. https://linux.die.net/man/2/

clone, 2018.

https://criu.org/Main_Page
https://criu.org/Upstream_kernel_commits
https://www.linuxplumbersconf.org/event/2/contributions/209/attachments/27/24/Task_Migration_at_Google_Using_CRIU.pdf
https://www.linuxplumbersconf.org/event/2/contributions/209/attachments/27/24/Task_Migration_at_Google_Using_CRIU.pdf
https://www.linuxplumbersconf.org/event/2/contributions/209/attachments/27/24/Task_Migration_at_Google_Using_CRIU.pdf
https://www.docker.com/blog/runc/
https://www.docker.com/blog/runc/
https://github.com/checkpoint-restore/go-criu
https://github.com/checkpoint-restore/go-criu
https://linux.die.net/man/1/unshare
https://lwn.net/Articles/531114/
https://linux.die.net/man/2/clone
https://linux.die.net/man/2/clone

Bibliography 48

[13] Linux Programmer’s Manual. unshare: run program with some unshared namespace from

parent. https://linux.die.net/man/1/unshare, 2017.

[14] Linux Programmer’s Manual. setns: reassociate thread with namespace. http://man7.org/

linux/man-pages/man2/setns.2.html, 2020.

[15] S. McCarty. A practical introduction to container terminology. https://developers.

redhat.com/blog/2018/02/22/container-terminology-practical-introduction/,

2018.

[16] Open Container Initiative. Open Container Initiative Runtime Specification. https:

//github.com/opencontainers/runtime-spec/blob/master/spec.md, 2019.

[17] M. Schulz. Checkpointing, pages 264–273. Springer US, Boston, MA, 2011.

[18] M. Raynal. Distributed Algorithms for Message-Passing Systems. Springer Publishing Com-

pany, Incorporated, 2013.

[19] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield.

Live migration of virtual machines. In Proceedings of the 2nd Conference on Symposium on

Networked Systems Design & Implementation - Volume 2, NSDI’05, page 273–286, USA, 2005.

USENIX Association.

[20] E. N. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson. A survey of rollback-recovery protocols

in message-passing systems. ACM Comput. Surv., 34(3):375–408, September 2002.

[21] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg. Live wide-area migration of

virtual machines including local persistent state. In Proceedings of the 3rd International

Conference on Virtual Execution Environments, VEE ’07, page 169–179, New York, NY,

USA, 2007. Association for Computing Machinery.

[22] A. Shribman and B. Hudzia. Pre-copy and post-copy vm live migration for memory inten-

sive applications. In Euro-Par 2012: Parallel Processing Workshops, pages 539–547, Berlin,

Heidelberg, 2013. Springer Berlin Heidelberg.

[23] M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed

systems. ACM Trans. Comput. Syst., 3(1):63–75, February 1985.

[24] A. D. Kshemkalyani and M. Singhal. Distributed Computing: Principles, Algorithms, and

Systems. Cambridge University Press, New York, NY, USA, 1 edition, 2008.

[25] Adrian Reber. Criu - checkpoint/restore in userspace. https://access.redhat.com/

articles/2455211, 2016.

https://linux.die.net/man/1/unshare
http://man7.org/linux/man-pages/man2/setns.2.html
http://man7.org/linux/man-pages/man2/setns.2.html
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction/
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction/
https://github.com/opencontainers/runtime-spec/blob/master/spec.md
https://github.com/opencontainers/runtime-spec/blob/master/spec.md
https://access.redhat.com/articles/2455211
https://access.redhat.com/articles/2455211

49 Bibliography

[26] Linux Programmer’s Manual. ptrace - Process Tree. http://man7.org/linux/man-pages/

man2/ptrace.2.html, 2019.

[27] CRIU Foundation. CRIU - A project to implement checkpoint/restore functionality for Linux.

https://github.com/checkpoint-restore/criu, 2019.

[28] CRIU Foudnation. CRIU - Checkpoint/Restore. https://criu.org/Checkpoint/Restore,

2017.

[29] P. Emelyanov. CRIU - Freezing the tree. https://criu.org/Freezing_the_tree, 2017.

[30] CRIU Foundation. Criu - parasite code. https://criu.org/Parasite_code, 2018.

[31] A. Reber. Criu and the pid dance. 2019.

[32] A. Reber. Criu and the pid dance. https://linuxplumbersconf.org/event/4/

contributions/472/attachments/224/397/2019-criu-and-the-pid-dance.pdf, 2019.

[33] C. Brauner. fork: add clone3. https://git.kernel.org/pub/scm/linux/kernel/git/

torvalds/linux.git/commit/?id=7f192e3cd316ba58c, 2019.

[34] Criu Foundation. Criu - live migration. https://criu.org/Live_migration, 2019.

[35] CRIU Foundation. Criu - p. haul. https://criu.org/P_haul, 2018.

[36] CRIU Foundation. Criu - lazy migration. https://criu.org/Lazy_migration, 2018.

[37] CRIU Foudnation. Comparison with other CR Projects - CRIU. https://criu.org/

Comparison_to_other_CR_projects, 2019.

[38] DMTCP. Distributed MultiThreaded Checkpointing. http://dmtcp.sourceforge.net/,

2019.

[39] Computer Language and Systems Software Group. Berkeley Lab Checkpoint/Restart (BLCR)

for LINUX. https://crd.lbl.gov/departments/computer-science/CLaSS/research/

BLCR/, 2013.

[40] J. Ansel, K. Arya, and G. Cooperman. Dmtcp: Transparent checkpointing for cluster compu-

tations and the desktop. In Proceedings of the 2009 IEEE International Symposium on Parallel

& Distributed Processing, IPDPS ’09, page 1–12, USA, 2009. IEEE Computer Society.

[41] R. Garg, G. Price, and G. Cooperman. Mana for mpi: Mpi-agnostic network-agnostic

transparent checkpointing. In Proceedings of the 28th International Symposium on High-

Performance Parallel and Distributed Computing, HPDC ’19, page 49–60, New York, NY,

USA, 2019. Association for Computing Machinery.

http://man7.org/linux/man-pages/man2/ptrace.2.html
http://man7.org/linux/man-pages/man2/ptrace.2.html
https://github.com/checkpoint-restore/criu
https://criu.org/Checkpoint/Restore
https://criu.org/Freezing_the_tree
https://criu.org/Parasite_code
https://linuxplumbersconf.org/event/4/contributions/472/attachments/224/397/2019-criu-and-the-pid-dance.pdf
https://linuxplumbersconf.org/event/4/contributions/472/attachments/224/397/2019-criu-and-the-pid-dance.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7f192e3cd316ba58c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=7f192e3cd316ba58c
https://criu.org/Live_migration
https://criu.org/P_haul
https://criu.org/Lazy_migration
https://criu.org/Comparison_to_other_CR_projects
https://criu.org/Comparison_to_other_CR_projects
http://dmtcp.sourceforge.net/
https://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR/
https://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR/

Bibliography 50

[42] CRIU Foudnation. Comparison with other CR Projects - CRIU. https://criu.org/

Comparison_to_other_CR_projects, 2019.

[43] Open Containers. Runc - Automatic Memory Tracking. https://github.

com/opencontainers/runc/blob/d4a6a1d99875aa571ebe95babf0ac14f54079282/

libcontainer/container_linux.go#L1034, 2019.

[44] Open Containers Initiative. OCI - Runtime Specification. https://github.com/

opencontainers/runtime-spec, 2020.

[45] CRIU Foudnation. CRIU - All articles. https://criu.org/Articles, 2017.

[46] Adrian Reber. Combining pre-copy and post-copy migration. https://lisas.de/~adrian/

posts/2016-Oct-14-combining-pre-copy-and-post-copy-migration.html, 2016.

[47] CRIU Foundation. Memory changes tracking. https://criu.org/Memory_changes_

tracking, 2019.

[48] P. Emelyanov. mm: Ability to monitor task memory changes (v3). https://lwn.net/

Articles/546966/, 2013.

[49] J. Corbet. TCP connection repair. https://lwn.net/Articles/495304/, 2012.

[50] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T. Herault,

P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and A. Selikhov. Mpich-v: Toward

a scalable fault tolerant mpi for volatile nodes. In Proceedings of the 2002 ACM/IEEE Con-

ference on Supercomputing, SC ’02, page 1–18, Washington, DC, USA, 2002. IEEE Computer

Society Press.

[51] K. Arya, R. Garg, A. Polyakov, and G. Cooperman. Design and implementation for check-

pointing of distributed resources using process-level virtualization. In 2016 IEEE International

Conference on Cluster Computing (CLUSTER), pages 402–412, 2016.

[52] S. Venkatesh, Till Smejkal, Dejan S. Milojicic, and Ada Gavrilovska. Fast in-memory criu

for docker containers. In Proceedings of the International Symposium on Memory Systems,

MEMSYS ’19, page 53–65, New York, NY, USA, 2019. Association for Computing Machinery.

[53] A. Barbalace, M. L. Karaoui, W. Wang, T. Xing, P. Olivier, and B. Ravindran. Edge com-

puting: The case for heterogeneous-isa container migration. In Proceedings of the 16th ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, VEE ’20,

page 73–87, New York, NY, USA, 2020. Association for Computing Machinery.

https://criu.org/Comparison_to_other_CR_projects
https://criu.org/Comparison_to_other_CR_projects
https://github.com/opencontainers/runc/blob/d4a6a1d99875aa571ebe95babf0ac14f54079282/libcontainer/container_linux.go#L1034
https://github.com/opencontainers/runc/blob/d4a6a1d99875aa571ebe95babf0ac14f54079282/libcontainer/container_linux.go#L1034
https://github.com/opencontainers/runc/blob/d4a6a1d99875aa571ebe95babf0ac14f54079282/libcontainer/container_linux.go#L1034
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://criu.org/Articles
https://lisas.de/~adrian/posts/2016-Oct-14-combining-pre-copy-and-post-copy-migration.html
https://lisas.de/~adrian/posts/2016-Oct-14-combining-pre-copy-and-post-copy-migration.html
https://criu.org/Memory_changes_tracking
https://criu.org/Memory_changes_tracking
https://lwn.net/Articles/546966/
https://lwn.net/Articles/546966/
https://lwn.net/Articles/495304/

51 Bibliography

[54] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis. Live service migration in

mobile edge clouds. Wireless Commun., 25(1):140–147, February 2018.

[55] R. Stoyanov and M. J. K. Efficient live migration of linux containers. In High Performance

Computing, pages 184–193, Cham, 2018. Springer International Publishing.

[56] M. Zeynep and Pelin A. A secure model for efficient live migration of containers. volume 10,

pages 21–44, 2019.

[57] Gustaf L. Berg and Magnus Brattlöf. Distributed checkpointing with docker containers in

high performance computing. 2017.

[58] Sindi M. and Williams J. R. Using container migration for hpc workloads resilience. In 2019

IEEE High Performance Extreme Computing Conference (HPEC), pages 1–10, 2019.

[59] CRIU Foundation. Process Haul - CRIU Wiki. https://criu.org/P.Haul, 2019.

[60] Linux Programmer’s Manual. tmpfs - A virtual memory filesystem. http://man7.org/linux/

man-pages/man5/tmpfs.5.html, 2019.

[61] P. Snyder. tmpfs: A virtual memory file system. 2007.

[62] R. Stoyanov. Criu - page server. https://criu.org/Page_server, 2019.

[63] P. Emelyanov. Tcp connection repair (v4). https://lwn.net/Articles/493983/, 2012.

[64] The Netfilter Project. netfilter: firewalling, NAT, and packet managing for linux. https:

//www.netfilter.org/, 2020.

[65] VirtualBox User Manual. 6.7. Host-only networking. https://www.virtualbox.org/manual/

ch06.html#network_hostonly, 2012.

[66] CRIU Foundation. Criu - external resources. https://criu.org/External_resources, 2020.

[67] CRIU Foundation. Criu - inheriting fds on restore. https://criu.org/Inheriting_FDs_

on_restore, 2016.

[68] iPerf Foundation. iPerf - The ultimate speed test tool for TCP, UDP, and SCTP. https:

//iperf.fr/, 2017.

[69] V. Paxson, M. Allman, J. Chu, and Sargent W. Computing tcp’s retransmission timer. RFC

6298, RFC Editor, June 2011.

[70] R. Stoyanov. CRIU - User Mode. https://criu.org/User-mode, 2019.

https://criu.org/P.Haul
http://man7.org/linux/man-pages/man5/tmpfs.5.html
http://man7.org/linux/man-pages/man5/tmpfs.5.html
https://criu.org/Page_server
https://lwn.net/Articles/493983/
https://www.netfilter.org/
https://www.netfilter.org/
https://www.virtualbox.org/manual/ch06.html#network_hostonly
https://www.virtualbox.org/manual/ch06.html#network_hostonly
https://criu.org/External_resources
https://criu.org/Inheriting_FDs_on_restore
https://criu.org/Inheriting_FDs_on_restore
https://iperf.fr/
https://iperf.fr/
https://criu.org/User-mode

Bibliography 52

[71] libssh Org. libSSH - The SSH Library. https://www.libssh.org/, 2019.

[72] libssh Org. The libSSH API. https://api.libssh.org/master/group__libssh.html, 2019.

[73] VirtualBox User Manual. 7.2. Teleporting. https://www.virtualbox.org/manual/ch07.

html#teleporting, 2019.

[74] GitHub Issue. runc: checkpointing a rootless container. https://github.com/

opencontainers/runc/issues/2009, 2019.

[75] G. Scrivano and A. Suda. Rootless containers. https://rootlesscontaine.rs/, 2019.

[76] GitHub. CRIU Image Streamer. https://github.com/checkpoint-restore/

criu-image-streamer, 2020.

https://www.libssh.org/
https://api.libssh.org/master/group__libssh.html
https://www.virtualbox.org/manual/ch07.html#teleporting
https://www.virtualbox.org/manual/ch07.html#teleporting
https://github.com/opencontainers/runc/issues/2009
https://github.com/opencontainers/runc/issues/2009
https://rootlesscontaine.rs/
https://github.com/checkpoint-restore/criu-image-streamer
https://github.com/checkpoint-restore/criu-image-streamer

53

Appendix A

Implementation Code Snippets

1 #include <signal.h>

2 #include <stdio.h>

3 #include <stdlib.h> /* atoi */

4 #include <unistd.h>

5

6 static volatile int keep_running = 1;

7

8 /* Handler to graciously stop with Ctrl+C */

9 void int_handler(int tmp)

10 {

11 keep_running = 0;

12 }

13

14 /* Compile with: gcc counter.c -o counter */

15 int main(int argc , char *argv [])

16 {

17 int count = 0;

18 int inc = 0;

19 if (argc > 1)

20 inc = atoi(argv [1]);

21 signal(SIGINT , int_handler);

22

23 fprintf(stdout , "Current count: %i\n", count ++);

24 if (inc)

25 {

26 while (keep_running)

27 {

28 fprintf(stdout , "Current count: %i\n", count ++);

29 sleep (2);

30 }

31 }

32 else

33 {

34 while (keep_running)

35 sleep (20);

36 }

37

38 return 0;

39 }

Appendix A. Implementation Code Snippets 54

Listing A.1: Simple counter in C.

1 int sftp_copy_file(ssh_session session , char *dst_path , char *src_path)

2 {

3 sftp_session sftp;

4 int rc;

5

6 sftp = sftp_new(session);

7 /* Allocate SFTP Session */

8 if (sftp == NULL)

9 {

10 fprintf(stderr , "sftp_copy_file: Error allocating SFTP session: %s\n",

11 ssh_get_error(session));

12 return SSH_ERROR;

13 }

14

15 /* Initialize SFTP Client */

16 rc = sftp_init(sftp);

17 if (rc != SSH_OK)

18 {

19 fprintf(stderr , "sftp_copy_file: Error initializing SFTP session: %d\n",

20 sftp_get_error(sftp));

21 sftp_free(sftp);

22 return rc;

23 }

24

25 if (sftp_xfer_file(sftp , dst_path , src_path , NULL) != SSH_OK)

26 return SSH_ERROR;

27

28 sftp_free(sftp);

29 return SSH_OK;

30 }

31

32 /* Copy the Contents of the Source Directory to the Destination One

33 *

34 * ssh_session session: current authenticated ssh_session.

35 * char *dst_path: path to the (existing) destination directory.

36 * char *ori_path: path to the (existing) origin directory from where to copy.

37 * int rm_ori: if set to 1, it will remove the contents of the origin directory.

38 * int *dir_size: if not null , will return the size of the dir xfered.

39 */

40 int sftp_copy_dir(ssh_session session , char *dst_path , char *src_path ,

41 int rm_ori , double *dir_size)

42 {

43 sftp_session sftp;

44 int rc;

45

46 sftp = sftp_new(session);

47 /* Allocate SFTP Session */

48 if (sftp == NULL)

49 {

50 fprintf(stderr , "sftp_copy_dir: Error allocating SFTP session: %s\n",

51 ssh_get_error(session));

52 return SSH_ERROR;

53 }

55

54

55 /* Initialize SFTP Client */

56 rc = sftp_init(sftp);

57 if (rc != SSH_OK)

58 {

59 fprintf(stderr , "sftp_copy_dir: Error initializing SFTP session: %d\n",

60 sftp_get_error(sftp));

61 sftp_free(sftp);

62 return rc;

63 }

64

65 /* Iterate over source directory. */

66 DIR *d;

67 struct dirent *src_dir;

68 // struct stat src_stat;

69 d = opendir(src_path);

70 if (d)

71 {

72 /* Create remote copy of directory. */

73 /* TODO make this optional?

74 if (sftp_mkdir(sftp , dst_path , 0755) != 0)

75 {

76 fprintf(stderr , "sftp_copy_dir: Error creating remore directory %d\n",

77 sftp_get_error(sftp));

78 sftp_free(sftp);

79 return SSH_ERROR;

80 }

81 */

82 char resolved_path[PATH_MAX + 1];

83 char src_rel_path[PATH_MAX + 1], dst_rel_path[PATH_MAX + 1];

84 memset(src_rel_path , ’\0’, PATH_MAX + 1);

85 memset(dst_rel_path , ’\0’, PATH_MAX + 1);

86 memset(resolved_path , ’\0’, PATH_MAX + 1);

87 while ((src_dir = readdir(d)) != NULL)

88 {

89 if (src_dir ->d_type == DT_REG)

90 {

91 /* Generate full paths */

92 strncpy(src_rel_path , src_path , strlen(src_path));

93 strcat(src_rel_path , "/");

94 strcat(src_rel_path , src_dir ->d_name);

95 strncpy(dst_rel_path , dst_path , strlen(dst_path));

96 strcat(dst_rel_path , "/");

97 strcat(dst_rel_path , src_dir ->d_name);

98 if (realpath(src_rel_path , resolved_path) == NULL)

99 {

100 fprintf(stderr , "sftp_copy_dir: Error obtaining file’s real path: %s\n",

101 src_dir ->d_name);

102 sftp_free(sftp);

103 return SSH_ERROR;

104 }

105 if (sftp_xfer_file(sftp , dst_rel_path , resolved_path , dir_size)

106 != SSH_OK)

107 {

108 fprintf(stderr , "sftp_copy_dir: error copying %s \

109 to %s\n. %i\n", resolved_path ,

Appendix A. Implementation Code Snippets 56

110 dst_rel_path , sftp_get_error(sftp));

111 sftp_free(sftp);

112 return SSH_ERROR;

113 }

114 if (rm_ori && remove(resolved_path) != 0)

115 {

116 fprintf(stderr , "sftp_copy_dir: error removing local \

117 file %s (remove flag set)\n",

118 resolved_path);

119 sftp_free(sftp);

120 return SSH_ERROR;

121 }

122 memset(src_rel_path , ’\0’, PATH_MAX + 1);

123 memset(dst_rel_path , ’\0’, PATH_MAX + 1);

124 memset(resolved_path , ’\0’, PATH_MAX + 1);

125 }

126 else if (src_dir ->d_type == DT_LNK)

127 {

128 /* On iterative migration , each intermediate checkpoint dir

129 * has a symbolic link to its "parent ". Copying it

130 * programatically is more verbose than crafting it ourselves.

131 */

132 strncpy(src_rel_path , src_path , strlen(src_path));

133 strcat(src_rel_path , "/");

134 strcat(src_rel_path , src_dir ->d_name);

135 if (remove(src_rel_path) != 0)

136 {

137 fprintf(stderr , "sftp_copy_dir: error removing \

138 symlink .\n");

139 return 1;

140 }

141 memset(src_rel_path , ’\0’, PATH_MAX + 1);

142 }

143 }

144 closedir(d);

145 }

146 else

147 {

148 fprintf(stderr , "sftp_copy_dir: Error listing source directory !\n");

149 sftp_free(sftp);

150 return SSH_ERROR;

151 }

152

153 if (rm_ori && (rmdir(src_path) != 0))

154 {

155 fprintf(stderr , "sftp_copy_dir: failed removing origin directory \

156 ’%s ’\n", src_path);

157 sftp_free(sftp);

158 return SSH_ERROR;

159 }

160 sftp_free(sftp);

161 return SSH_OK;

162 }

163 \end{listing}

164 int ssh_remote_command(ssh_session session , char *command , int read_output)

165 {

57

166 ssh_channel channel;

167 int rc;

168 char buffer [256];

169 int nbytes;

170

171 /* Open a new SSH Channel */

172 channel = ssh_channel_new(session);

173 if (channel == NULL)

174 {

175 fprintf(stderr , "ssh_remote_command: Error allocating new SSH channel .\n");

176 return SSH_ERROR;

177 }

178 rc = ssh_channel_open_session(channel);

179 if (rc != SSH_OK)

180 {

181 fprintf(stderr , "ssh_remote_command: Error opening new SSH channel .\n");

182 ssh_channel_free(channel);

183 return rc;

184 }

185

186 /* Execute Remote Command

187 *

188 * We need to run the commands as sudo in the remote system as well

189 * (criu needs to run as root) so I thought of two different ways

190 * of tackling the problem:

191 * 1. Passing the password as plain text.

192 * 2. Manually setup each host to allow rootless sudo.

193 * */

194 /*

195 char sudo_command[MAX_CMD_SIZE];

196 memset(sudo_command , ’\0’, MAX_CMD_SIZE);

197 sprintf(sudo_command , "echo %s | sudo -S %s", REMOTE_PWRD , command);

198 */

199 rc = ssh_channel_request_exec(channel , command);

200 if (rc != SSH_OK)

201 {

202 fprintf(stderr , "ssh_remote_command: Error executing remote command: %s\n",

203 command);

204 ssh_channel_close(channel);

205 ssh_channel_free(channel);

206 return rc;

207 }

208

209 /* Check the Exit Status of the Remote Command */

210 rc = ssh_channel_get_exit_status(channel);

211 switch (rc)

212 {

213 case 0:

214 printf("DEBUG: command ’%s’ exitted succesfully !\n", command);

215 break;

216

217 case -1:

218 printf("DEBUG: still no exit code received !\n");

219 break;

220

221 default:

Appendix A. Implementation Code Snippets 58

222 fprintf(stderr , "ssh_remote_command: remote command ’%s’ failed w/ exit status %i\n",

223 command , rc);

224 return SSH_ERROR;

225 }

226

227 if (read_output)

228 {

229 /* Read Output in chunks */

230 nbytes = ssh_channel_read(channel , buffer , sizeof buffer , 0);

231 while(nbytes > 0)

232 {

233 fprintf(stdout , "%s", buffer);

234 /* FIXME check for errors

235 if (fprintf(stdout , "%s", buffer) != (unsigned int) nbytes)

236 {

237 fprintf(stderr , "Error printing results .\n");

238 ssh_channel_close(channel);

239 ssh_channel_free(channel);

240 return SSH_ERROR;

241 }

242 */

243 nbytes = ssh_channel_read(channel , buffer , sizeof buffer , 0);

244 }

245

246 if (nbytes < 0)

247 {

248 ssh_channel_close(channel);

249 ssh_channel_free(channel);

250 return SSH_ERROR;

251 }

252 }

253

254 ssh_channel_send_eof(channel);

255 ssh_channel_close(channel);

256 ssh_channel_free(channel);

257 return SSH_OK;

258 }

259

260 int sftp_copy_file(ssh_session session , char *dst_path , char *src_path)

261 {

262 sftp_session sftp;

263 int rc;

264

265 sftp = sftp_new(session);

266 /* Allocate SFTP Session */

267 if (sftp == NULL)

268 {

269 fprintf(stderr , "sftp_copy_file: Error allocating SFTP session: %s\n",

270 ssh_get_error(session));

271 return SSH_ERROR;

272 }

273

274 /* Initialize SFTP Client */

275 rc = sftp_init(sftp);

276 if (rc != SSH_OK)

277 {

59

278 fprintf(stderr , "sftp_copy_file: Error initializing SFTP session: %d\n",

279 sftp_get_error(sftp));

280 sftp_free(sftp);

281 return rc;

282 }

283

284 if (sftp_xfer_file(sftp , dst_path , src_path , NULL) != SSH_OK)

285 return SSH_ERROR;

286

287 sftp_free(sftp);

288 return SSH_OK;

289 }

290

291 /* Copy the Contents of the Source Directory to the Destination One

292 *

293 * ssh_session session: current authenticated ssh_session.

294 * char *dst_path: path to the (existing) destination directory.

295 * char *ori_path: path to the (existing) origin directory from where to copy.

296 * int rm_ori: if set to 1, it will remove the contents of the origin directory.

297 * int *dir_size: if not null , will return the size of the dir xfered.

298 */

299 int sftp_copy_dir(ssh_session session , char *dst_path , char *src_path ,

300 int rm_ori , double *dir_size)

301 {

302 sftp_session sftp;

303 int rc;

304

305 sftp = sftp_new(session);

306 /* Allocate SFTP Session */

307 if (sftp == NULL)

308 {

309 fprintf(stderr , "sftp_copy_dir: Error allocating SFTP session: %s\n",

310 ssh_get_error(session));

311 return SSH_ERROR;

312 }

313

314 /* Initialize SFTP Client */

315 rc = sftp_init(sftp);

316 if (rc != SSH_OK)

317 {

318 fprintf(stderr , "sftp_copy_dir: Error initializing SFTP session: %d\n",

319 sftp_get_error(sftp));

320 sftp_free(sftp);

321 return rc;

322 }

323

324 /* Iterate over source directory. */

325 DIR *d;

326 struct dirent *src_dir;

327 // struct stat src_stat;

328 d = opendir(src_path);

329 if (d)

330 {

331 /* Create remote copy of directory. */

332 /* TODO make this optional?

333 if (sftp_mkdir(sftp , dst_path , 0755) != 0)

Appendix A. Implementation Code Snippets 60

334 {

335 fprintf(stderr , "sftp_copy_dir: Error creating remore directory %d\n",

336 sftp_get_error(sftp));

337 sftp_free(sftp);

338 return SSH_ERROR;

339 }

340 */

341 char resolved_path[PATH_MAX + 1];

342 char src_rel_path[PATH_MAX + 1], dst_rel_path[PATH_MAX + 1];

343 memset(src_rel_path , ’\0’, PATH_MAX + 1);

344 memset(dst_rel_path , ’\0’, PATH_MAX + 1);

345 memset(resolved_path , ’\0’, PATH_MAX + 1);

346 while ((src_dir = readdir(d)) != NULL)

347 {

348 if (src_dir ->d_type == DT_REG)

349 {

350 /* Generate full paths */

351 strncpy(src_rel_path , src_path , strlen(src_path));

352 strcat(src_rel_path , "/");

353 strcat(src_rel_path , src_dir ->d_name);

354 strncpy(dst_rel_path , dst_path , strlen(dst_path));

355 strcat(dst_rel_path , "/");

356 strcat(dst_rel_path , src_dir ->d_name);

357 if (realpath(src_rel_path , resolved_path) == NULL)

358 {

359 fprintf(stderr , "sftp_copy_dir: Error obtaining file’s real path: %s\n",

360 src_dir ->d_name);

361 sftp_free(sftp);

362 return SSH_ERROR;

363 }

364 if (sftp_xfer_file(sftp , dst_rel_path , resolved_path , dir_size)

365 != SSH_OK)

366 {

367 fprintf(stderr , "sftp_copy_dir: error copying %s \

368 to %s\n. %i\n", resolved_path ,

369 dst_rel_path , sftp_get_error(sftp));

370 sftp_free(sftp);

371 return SSH_ERROR;

372 }

373 if (rm_ori && remove(resolved_path) != 0)

374 {

375 fprintf(stderr , "sftp_copy_dir: error removing local \

376 file %s (remove flag set)\n",

377 resolved_path);

378 sftp_free(sftp);

379 return SSH_ERROR;

380 }

381 memset(src_rel_path , ’\0’, PATH_MAX + 1);

382 memset(dst_rel_path , ’\0’, PATH_MAX + 1);

383 memset(resolved_path , ’\0’, PATH_MAX + 1);

384 }

385 else if (src_dir ->d_type == DT_LNK)

386 {

387 /* On iterative migration , each intermediate checkpoint dir

388 * has a symbolic link to its "parent ". Copying it

389 * programatically is more verbose than crafting it ourselves.

61

390 */

391 strncpy(src_rel_path , src_path , strlen(src_path));

392 strcat(src_rel_path , "/");

393 strcat(src_rel_path , src_dir ->d_name);

394 if (remove(src_rel_path) != 0)

395 {

396 fprintf(stderr , "sftp_copy_dir: error removing \

397 symlink .\n");

398 return 1;

399 }

400 memset(src_rel_path , ’\0’, PATH_MAX + 1);

401 }

402 }

403 closedir(d);

404 }

405 else

406 {

407 fprintf(stderr , "sftp_copy_dir: Error listing source directory !\n");

408 sftp_free(sftp);

409 return SSH_ERROR;

410 }

411

412 if (rm_ori && (rmdir(src_path) != 0))

413 {

414 fprintf(stderr , "sftp_copy_dir: failed removing origin directory \

415 ’%s ’\n", src_path);

416 sftp_free(sftp);

417 return SSH_ERROR;

418 }

419 sftp_free(sftp);

420 return SSH_OK;

421 }

Listing A.2: Signature and schematic implementation of remote execution methods.

Appendix A. Implementation Code Snippets 62

63

Appendix B

Evaluation Code Snippets

1 #!/bin/bash

2 HOME=$(pwd)

3 #IP =127.0.0.1

4 IP =192.168.56.103

5 NUM_TESTS =100

6 acc=0

7 acc2=0

8 for ((i=1; i<= $NUM_TESTS; i++))

9 do

10 # Choose application to run

11 #cd /home/carlos/runc -containers/counter/ && sudo ./run.sh && cd $HOME

12 cd /home/carlos/runc -containers/redis/ && sudo ./ run_redis.sh 10000000 && cd $HOME

13 # Clean working Environment

14 sudo ./clean.sh

15 ssh carlos@${IP} "/home/carlos/runc -diskless/clean.sh"

16 # Start (or not) the page server

17 #sudo ./ page_server.sh &

18 #ssh carlos@${IP} "/home/carlos/runc -diskless/page_server.sh &> /dev/null < /dev/null &"

19 # Start timing

20 ts=$(date +%s%N)

21 # Dump the process

22 sudo ./dump.sh

23 # Copy the remaining images

24 #scp -r ./src -images /* ./dst -images/

25 scp -r ./src -images /* carlos@${IP}:runc -diskless/dst -images/

26 time_elapsed=$((($(date +%s%N) - $ts)/1000000))

27 acc=$(($acc + $time_elapsed))

28 acc2=$(($acc2 + $time_elapsed * $time_elapsed))

29 echo "Test $i: $time_elapsed"

30 done

31 # Compute average and standard deviation

32 avg=$(bc <<<"scale =2; $acc / $NUM_TESTS")

33 std=$(bc <<<"scale =2; sqrt($acc2 / $NUM_TESTS - $avg * $avg)")

34 echo "Average: $avg"

35 echo "Std: $std"

Listing B.1: Full evaluation script for the diskless migration micro-benchmark.

1 #!/bin/bash

2 # Run Process

Appendix B. Evaluation Code Snippets 64

3 # Redis Test (Pre -loading omitted)

4 redis_server --port 9999 &> /dev/null < /dev/null &

5 # Counter Test

6 sudo ./ counter &> /dev/null < /dev/null &

7 # If running with runC

8 cd container -dir && sudo runc run -d container_name &> /dev/null < /dev/null & && cd -

9 PID=$!

10

11 # Clean Environment

12 sudo ./clean.sh

13 echo "Clean Done"

14

15 # First pre -dump

16 sudo ./pre -dump.sh ${PID}

17 echo "Pre -Dump Done"

18

19 # If running the Redis test , run the benchmark

20 redis -benchmark -p 9999 -n 10000 &> /dev/null

21

22 # Second pre -dump

23 sudo ./middle -dump.sh ${PID}

24 echo "Middle -Dump Done"

25

26 # If running the Redis test , run the benchmark

27 redis -benchmark -p 9999 -n 10000 &> /dev/null

28

29 # Last Dump

30 sudo ./dump.sh ${PID}

31 echo "Dump Done"

32

33 # Print results

34 D1=$(ls -lah ./ images /1/pages -1.img | awk ’{ print $5; }’)

35 D2=$(ls -lah ./ images /2/pages -1.img | awk ’{ print $5; }’)

36 D3=$(ls -lah ./ images /3/pages -1.img | awk ’{ print $5; }’)

37 echo "Test finished: -D1: $D1 -D2: $D2 -D3: $D3"

Listing B.2: Full evaluation script for the iterative migration micro-benchmark.

1 #!/bin/bash

2 # Declare Variables

3 CLIENT_IP =192.168.56.103

4 IPERF3 =/home/carlos/iperf/src/iperf3

5 LOG_DIR =./iperf3 -log

6 IMAGES_DIR =./ images

7

8 # Set up Environment

9 mkdir -p ${LOG_DIR}

10

11 # Run iPerf3 server

12 echo "Bootstrapping Server ..."

13 setsid ${IPERF3} \

14 -s --port 9999 \

15 --json \

16 --interval 0.1 \

17 --logfile ${LOG_DIR }/ server.json \

18 --one -off &> /dev/null < /dev/null &

65

19 SERVER_PID=$!

20

21 sleep 3

22

23 # Run iPerf3 client in remote machine

24 echo "Bootstrapping Client ..."

25 ssh carlos@${CLIENT_IP} "/home/carlos/tcp -established/iperf3_client.sh"

26

27 sleep 10

28

29 # CRIU Dump

30 echo "Dumping server ..."

31 sudo criu dump \

32 -t ${SERVER_PID} \

33 --images -dir ${IMAGES_DIR} \

34 --tcp -established &

35

36 sleep 2

37

38 # CRIU Restore

39 echo "Restoring server ..."

40 sudo criu restore \

41 --images -dir ${IMAGES_DIR} \

42 --tcp -established

Listing B.3: Evaluation script for the TCP connection downtime micro-benchmark using CRIU.

1 #!/bin/bash

2 # Declare Variables

3 CLIENT_IP =192.168.56.103

4 IPERF3 =/home/carlos/iperf/src/iperf3

5 LOG_DIR =./iperf3 -log

6 IMAGES_DIR =./ images

7

8 # Set up Environment

9 mkdir -p ${LOG_DIR}

10

11 # Run iPerf3 server

12 echo "Bootstrapping Server ..."

13 setsid ${IPERF3} \

14 -s --port 9999 \

15 --json \

16 --interval 0.1 \

17 --logfile ${LOG_DIR }/ server.json \

18 --one -off &> /dev/null < /dev/null &

19 SERVER_PID=$!

20

21 sleep 3

22

23 # Run iPerf3 client in remote machine

24 echo "Bootstrapping Client ..."

25 ssh carlos@${CLIENT_IP} "/home/carlos/tcp -established/iperf3_client.sh"

26

27 sleep 4

28

29 # CRIU Dump and Restore , one after the other but in the BG (not affecting time)

Appendix B. Evaluation Code Snippets 66

30 echo "Dumping server for the first time ..."

31 (sudo criu dump \

32 -t ${SERVER_PID} \

33 --images -dir ${IMAGES_DIR} \

34 --tcp -established; \

35 echo "Restoring server ..."; \

36 sudo criu restore \

37 --images -dir ${IMAGES_DIR} \

38 --tcp -established) &

39

40 sleep 6

41

42 # CRIU Dump and Restore , one after the other but in the BG (not affecting time)

43 echo "Dumping server for the second time ..."

44 (sudo criu dump \

45 -t ${SERVER_PID} \

46 --images -dir ${IMAGES_DIR} \

47 --tcp -established; \

48 echo "Restoring server ..."; \

49 sudo criu restore \

50 --images -dir ${IMAGES_DIR} \

51 --tcp -established) &

52

53 sleep 4

54

55 # CRIU Dump and Restore , one after the other but in the BG (not affecting time)

56 echo "Dumping server for the last time ..."

57 (sudo criu dump \

58 -t ${SERVER_PID} \

59 --images -dir ${IMAGES_DIR} \

60 --tcp -established;)

61 echo "Restoring server ..."; \

62 sudo criu restore \

63 --images -dir ${IMAGES_DIR} \

64 --tcp -established)

Listing B.4: Evaluation script for the TCP connection reactivity micro-benchmark using CRIU.

1 #!/bin/bash

2 # Declare Variables

3 CLIENT_IP =192.168.56.103

4 IPERF3 =/home/carlos/iperf/src/iperf3

5 LOG_DIR =./iperf3 -log

6 IMAGES_DIR =/home/carlos/criu -lm/experiments/tcp -established/images

7 CWD=$(pwd)

8

9 # Set up Environment

10 mkdir -p ${LOG_DIR}

11

12 # Run iPerf3 server

13 cd /home/carlos/runc -containers/iperf3 -server

14 sudo runc run eureka &> /dev/null < /dev/null &

15 cd ${CWD}

16

17 sleep 3

18

67

19 # Run iPerf3 client in remote machine

20 echo "Bootstrapping Client ..."

21 ssh carlos@${CLIENT_IP} "/home/carlos/tcp -established/iperf3_client.sh"

22

23 sleep 10

24

25 # CRIU Dump

26 echo "Dumping server ..."

27 sudo runc checkpoint \

28 --image -path ${IMAGES_DIR} \

29 --tcp -established \

30 eureka

31

32 sleep 2

33

34 # CRIU Restore

35 echo "Restoring server ..."

36 cd /home/carlos/runc -containers/iperf3 -server

37 sudo runc restore \

38 --image -path ${IMAGES_DIR} \

39 --tcp -established \

40 eureka -restored

41 cd ${CWD}

Listing B.5: Full evaluation script for the TCP connection downtime micro-benchmark using runC.

1 #!/bin/bash

2 # Declare Variables

3 CLIENT_IP =192.168.56.103

4 IPERF3 =/home/carlos/iperf/src/iperf3

5 LOG_DIR =./iperf3 -log

6 IMAGES_DIR =/home/carlos/criu -lm/experiments/tcp -established/images

7 CWD=$(pwd)

8

9 # Set up Environment

10 mkdir -p ${LOG_DIR}

11

12 # Run iPerf3 server

13 cd /home/carlos/runc -containers/iperf3 -server

14 sudo runc run eureka &> /dev/null < /dev/null &

15 cd ${CWD}

16

17 sleep 3

18

19 # Run iPerf3 client in remote machine

20 echo "Bootstrapping Client ..."

21 ssh carlos@${CLIENT_IP} "/home/carlos/tcp -established/iperf3_client.sh"

22

23 sleep 4

24

25 # CRIU Dump

26 echo "Dumping server ..."

27 (sudo runc checkpoint \

28 --image -path ${IMAGES_DIR} \

29 --tcp -established \

30 eureka; \

Appendix B. Evaluation Code Snippets 68

31 cd /home/carlos/runc -containers/iperf3 -server; \

32 sudo runc restore \

33 --image -path ${IMAGES_DIR} \

34 --tcp -established \

35 eureka; \

36 cd ${CWD}) &

37

38 sleep 6

39

40 # CRIU Dump

41 echo "Dumping server ..."

42 (sudo runc checkpoint \

43 --image -path ${IMAGES_DIR} \

44 --tcp -established \

45 eureka; \

46 cd /home/carlos/runc -containers/iperf3 -server; \

47 sudo runc restore \

48 --image -path ${IMAGES_DIR} \

49 --tcp -established \

50 eureka; \

51 cd ${CWD}) &

52

53 sleep 4

54

55 # CRIU Dump

56 echo "Dumping server ..."

57 (sudo runc checkpoint \

58 --image -path ${IMAGES_DIR} \

59 --tcp -established \

60 eureka; \

61 cd /home/carlos/runc -containers/iperf3 -server; \

62 sudo runc restore \

63 --image -path ${IMAGES_DIR} \

64 --tcp -established \

65 eureka; \

66 cd ${CWD})

Listing B.6: Full evaluation script for the TCP connection reactivity micro-benchmark using runC.

	Note from the Author
	Declaration of Authorship
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Introduction
	Objectives, Tasks, and Contributions
	Project Structure

	Background Concepts
	Containers
	An Introduction to Virtualization
	Working Principles of Containers

	Checkpointing
	Checkpoint/Restore
	Live Migration
	Distributed Checkpointing

	CRIU: Checkpoint Restore in Userspace
	A Technical Overview on CRIU
	Comparison with Other C/R Tools

	Related Work
	Containers: Overview, Internals, and Terminology
	Checkpoint Restore and CRIU
	Applications of C/R and Live Migration

	Implementing Efficient Live Migration
	Building Blocks
	Diskless Migration
	Iterative Migration
	Checkpointing TCP Connections

	Putting it All Together
	High Level Specification
	Implementation Details
	Usage

	Evaluation
	Application Downtime
	Scalability regarding the Container's Memory Size

	Conclusions and Future Work
	Conclusions and Lessons Learnt
	Future Work

	Appendix Implementation Code Snippets
	Appendix Evaluation Code Snippets

