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Fitness can be profoundly influenced by the age at first reproduction (AFR), but to date the 110 

AFR-fitness relationship only has been investigated intraspecifically. Here we investigated 111 

the relationship between AFR and average lifetime reproductive success (LRS) across 34 bird 112 

species. We assessed differences in the deviation of the Optimal AFR (i.e., the species-113 

specific AFR associated with the highest LRS) from the age at sexual maturity, considering 114 

potential effects of life-history as well as social and ecological factors. Most individuals 115 

adopted the species-specific Optimal AFR and both the mean and Optimal AFR of species 116 

correlated positively with lifespan. Interspecific deviations of the Optimal AFR were 117 

associated with indices reflecting a change in LRS or survival as a function of AFR: a delayed 118 

AFR was beneficial in species where early AFR was associated with a decrease in subsequent 119 

survival or reproductive output. Overall, our results suggest that a delayed onset of 120 

reproduction beyond maturity is an optimal strategy explained by a long lifespan and costs 121 

of early reproduction. By providing the first empirical confirmations of key predictions of 122 

life-history theory across species, this study contributes to a better understanding of life-123 

history evolution. 124 

 125 

KEY WORDS: Age at first reproduction, comparative method, cost of reproduction, family 126 

formation theory, life-history theory. 127 

DATA ARCHIVING: 128 

Data are provided in the appendix. 129 

ABBREVIATIONS: AFR, age at first reproduction; LRS, lifetime reproductive success; LRT, 130 

likelihood ratio test  131 
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Life-history theory predicts that the timing of reproductive events during an individual’s life 132 

affects its fitness (Cole 1954; Caswell 1982). An early age at first reproduction (hereafter 133 

AFR) can increase the number of lifetime reproductive events and shorten generation time, 134 

which, in a stable or growing population, should be favored by natural selection (Cole 1954; 135 

Bell 1980; Roff 1992; Charlesworth 1994). However, an early AFR may also be costly and 136 

reduce future survival or reproductive investment (Lack 1968; Roff 1992; Stearns 1992). 137 

Additionally, individuals could benefit from deferring breeding beyond sexual maturity if this 138 

enhances parenting skills (‘constraint hypothesis’: Curio 1983), secures access to higher 139 

quality territories or mates (‘queuing hypothesis’: Zack and Stutchbury 1992; van de Pol et 140 

al. 2007), increases reproductive output with age (‘restraint hypothesis’: Williams 1966; 141 

Forslund and Pärt 1995) or decreases reproductive senescence (‘senescence hypothesis’: 142 

Charmantier et al. 2006). If AFR is shaped by natural selection, then individuals should adopt 143 

the AFR that is associated with the highest fitness return, which may depend on individual 144 

quality and annual variation in environmental conditions. 145 

 Individuals of some species express no variation in AFR, while there is a large range 146 

in AFR in other species. In the latter case, only certain AFRs are associated with a high 147 

lifetime reproductive success (hereafter LRS), but the exact association appears to vary 148 

among species (Clutton-Brock 1988; Newton 1989; Oli et al. 2002; Krüger 2005; Charmantier 149 

et al. 2006; Millon et al. 2010; Kim et al. 2011; Tettamanti et al. 2012; Zhang et al. 2015). 150 

Moreover, the relationship between the species-specific AFR that is associated with the 151 

highest LRS (hereafter termed Optimal AFR) and age of sexual maturity can vary across 152 

species (Komdeur 1996; Pyle et al. 1997; Oli et al. 2002; Krüger 2005). Yet, the reasons 153 

underlying this among-species variation remain unclear as we currently lack comparative 154 

studies that investigate the evolution of AFR and deviation in the timing of Optimal AFR 155 
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during reproductive lifespan across species. Such a study could contribute to our 156 

understanding of the general patterns of variation in this crucial life history trait. 157 

Whether species-specific Optimal AFR either approximates or is shifted beyond the 158 

age of sexual maturity of the species may depend on interspecific variation in life-history or 159 

ecological factors. Across species, the pace of life (i.e. slow or fast life history) is likely to be 160 

a major factor influencing variation in AFR and timing of the species-specific Optimal AFR 161 

relative to the age of sexual maturity (Roff 1992; Stearns 1992; Charlesworth 1994). A short 162 

lifespan should be associated with little or no variation in AFR, and with an Optimal AFR that 163 

is close to the species’ age of maturity, as any postponement would increase the risk of 164 

death before reproduction. In contrast, a long lifespan allows for a larger range in AFR and 165 

increases the likelihood of a delayed Optimal AFR, an outcome that is supported by field 166 

studies (Pyle et al. 1997; Tettamanti et al. 2012). In addition to lifespan, other life-history, 167 

ecological or social traits may influence the deviation from the age of sexual maturity in the 168 

species-specific Optimal AFR. Species could benefit from delayed AFR when there is a high 169 

level of parental care (e.g. altricial species), or when requiring time to learn specialized skills 170 

to survive or reproduce successfully. Conversely, a prolonged association of juveniles with 171 

their parents (i.e. family-living; Drobniak et al. 2015) may facilitate skill learning and lead to 172 

an earlier species-specific Optimal AFR (‘skill hypothesis’: Skutch 1961; Langen 1996). An 173 

earlier Optimal AFR may also be found in cooperatively-breeding species, since helpers may 174 

buffer the reproductive costs of early AFR (‘load-lightening hypothesis’: Khan and Walters 175 

2002; Santos and Macedo 2011).  176 

Here, we use data from 34 bird species to investigate the extent of variation in 177 

reproductive strategies and to assess the potential benefits some species may gain from 178 

delaying AFR beyond sexual maturity. We examine interspecific variation in the fitness 179 
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consequences of AFR using within-species relationships between AFR and a fitness proxy 180 

averaged over all individuals within a specific AFR-class. For each of the 34 species, we 181 

identified the species- and sex-specific Optimal AFR and several derived metrics, 182 

summarized in Table 1, to assess changes in LRS or survival as a function of AFR. Information 183 

on species-specific Optimal AFR was previously unavailable for typical meta-analysis 184 

approaches due to the substantial challenge of obtaining fitness estimates of populations 185 

from several species. Its investigation allows us to make inferences about the selection 186 

pressures on AFR that could not be achieved via a simple analysis of interspecific variation in 187 

AFR. As a fitness proxy, we used the most commonly provided measure of an individual’s 188 

productivity, the lifetime number of fledglings or recruits produced (LRS) (Clutton-Brock 189 

1988; Newton 1989 and other references in Table S1). Although it depends on population 190 

dynamics, while rate-sensitive fitness estimates (e.g. lambda λind) theoretically are more 191 

accurate proxies than LRS (Cole 1954; Lewontin 1965; Caswell and Hastings 1980), a number 192 

of studies have shown that LRS is a reliable estimate of fitness (Brommer et al. 2002; Link et 193 

al. 2002; Dugdale et al. 2010).  194 

Specifically, we addressed the following three questions: (i) How does AFR vary 195 

within and among species? (ii) Is variation in AFR associated with differences in LRS, and is 196 

the typical AFR of a species the one associated with the highest LRS? (iii) Which life-history 197 

(chick developmental mode, LRS and survival change with AFR, lifespan), social (family-198 

living, helper presence) and ecological (latitude, nest predation) factors are associated with 199 

among-species variation in deviation of the Optimal AFR from age at maturity? We used a 200 

generalized linear mixed model approach in a model selection framework for the analyses, 201 

with further control for similarity in phenotype among taxa due to a shared phylogenetic 202 

history. 203 
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 204 

Materials and Methods 205 

DATA COLLECTION 206 

We used data from published (N = 15) and unpublished (N = 21) studies on the age at first 207 

reproduction (AFR) and lifetime reproductive success (LRS) for 34 avian species (Table S1). 208 

To find published data, we searched online databases (ISI Web of Science, Scopus) using the 209 

terms “age at first reproduction”, “age at first breeding”, or “age at maturity” in 210 

combination with “lifetime reproductive success”, “lifetime reproductive output”, or 211 

“fitness” and “avian” or “bird”. We included data from long-term studies (years of 212 

monitoring exceeding the mean lifespan) in which individuals were followed for a sufficient 213 

period to accurately measure LRS (mean duration of study: 20.75 years; range: 8 to 48 214 

years) and where LRS (including its mean, standard deviation and sample size) was reported 215 

separately for each category of AFR. We used GetData Graph Digitizer 2.25 216 

(http://www.getdata-graph-digitizer.com/) to extract values from published data that were 217 

only presented in figures. Unpublished data were requested from researchers who 218 

coordinated long-term monitoring studies. 219 

We collected species-specific data on key life-history, ecological and social lifestyle 220 

factors that might influence the effect of AFR on LRS (italicized words represents variable 221 

names used in the models), including chick development mode (altricial or precocial), mean 222 

lifespan, mean body mass, latitude, nest predation risk, family-living and helper presence. 223 

We also collected data on the age of maturity for the estimation of an index used as 224 

variables in the model (see INDICES AND ESTIMATES). Age of maturity corresponded to the 225 

age at which an individual is physiologically able to reproduce, or the minimum age 226 

recorded for breeders. Among ecological factors that can contribute to nest predation risk, 227 
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nest location is well known and important (Martin and Li 1992; Martin 1993). Based on this 228 

information, we ordinally ranked the nest predation risk as high risk – ground nesters, 229 

medium risk – nests in shrubs, low risk – nests in trees, or very low risk – cavity breeders or 230 

species that build their nest floating on water and thus difficult for nest predators to access. 231 

We considered species to be family-living when offspring remain with the parents beyond 232 

independence and non-family living when juveniles disperse soon after becoming 233 

independent (Drobniak et al. 2015). Species were categorized with helper when offspring 234 

regularly engage in cooperative breeding and without helper when offspring do not engage 235 

in cooperative breeding. Variables not provided for the populations studied were obtained 236 

from the Animal Ageing and Longevity database (http://genomics.senescence.info/species/) 237 

or the Handbooks of the Birds of the World (del Hoyo et al. 1992-2006). 238 

 239 

DATA COMPOSITION 240 

The 34 species included in our study (Figure S1) comprise 10 taxonomic orders and 22 241 

families, with mean lifespan ranging from 1.4 to 18.5 years and mean LRS ranging from 0.67 242 

to 21.16 fledglings produced over the lifetime, or from 0.54 to 2.53 recruits. For blue tits 243 

(Cyanistes caeruleus) and western gulls (Larus occidentalis), we included data from two 244 

different populations that were analyzed separately. While age at first reproduction might 245 

be influenced by individual quality (Forslund and Pärt 1995; Kim et al. 2011), only few 246 

studies provide such information, limiting our ability to include this factor in our analyses. 247 

Data collected consisted of average values per species (i.e. body mass) or per AFR age-class 248 

category combining data from all cohorts and years. Therefore, annual or cohort variation 249 

could not be addressed here but we hope to do so in future work. Note that not controlling 250 

for intraspecific individual quality and combining data across cohorts and years is 251 
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conservative as it reduces the chance of observing biological patterns. Values of mean LRS 252 

(N = 34 species) and lifespan (N = 21 species), as well as their standard deviation and sample 253 

size (number of individuals), were determined for each AFR age-class category (e.g. from all 254 

individuals starting to reproduce at AFR = 1-year old, at AFR = 2, at AFR = 3, and so on), and 255 

for each sex if possible. While it would have been more appropriate to use the geometric 256 

rather than the arithmetic mean, as it takes into account variability in fitness (see Liou et al. 257 

1993), such data were unavailable. Age at first reproduction was defined as the age at which 258 

an individual first reproduced during its life. In most species, this value corresponds to the 259 

age when a female laid at least one egg, although in some species the value reflects when a 260 

female laid a full clutch. For males, AFR corresponds to the age where its mate laid eggs, 261 

and, accordingly, reproductively competent males that failed to acquire a mate were not 262 

considered as reproductive at that time. The LRS data were based on the number of 263 

fledglings or recruits produced over the lifetime of an individual (Table S1). All LRS values 264 

were centered and scaled within species and sexes to convert the original units to those of 265 

standard deviations and make them comparable (Schielzeth 2010). For species with only 266 

one AFR age-class category, only a single data point was available. Thus we could not 267 

estimate the standard deviation necessary for scaling. Instead, we used the standard 268 

deviation of the same sex of a species with a similar value of unscaled LRS to calculate the 269 

scaled LRS. Accurate estimation of AFR and fitness proxies is challenging as it requires 270 

known-aged individuals and intensive individual-based monitoring of reproductive output 271 

throughout the lifespan of a representative sample of individuals, as well as data on the 272 

survival and reproduction of descendants. Age at first reproduction and fitness proxies may 273 

be biased due to extra-pair paternity, or because not all reproductive events of individuals 274 

are followed due to emigration from or immigration into the study population. 275 
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Consequently, AFR might be overestimated and LRS underestimated for males and 276 

overestimated for females. Such biases affect the interpretation of the relationship between 277 

AFR and fitness components, and add noise to the data. However, because a relation 278 

between AFR and extra-pair paternity and or migration has never been documented, we do 279 

not know how and to what extent such a bias would affect our interpretation. 280 

 281 

INDICES AND ESTIMATES 282 

Interspecific variation in deviations of the Optimal AFR from the age at sexual maturity 283 

might be explained by the association of an early or a late AFR with an increase or a 284 

decrease in subsequent survival or reproductive output. However, given the heterogeneity 285 

of the data distribution between species and sexes, conventional methods are unable to 286 

estimate changes in reproductive output or survival with a changing AFR. Thus, we 287 

calculated five derived metrics from the raw data per AFR age-class category to investigate 288 

this hypothesis (i.e. average values over all individuals from a specific AFR age-class, 289 

combining cohorts and years, for each species and where possible split by sex). These 290 

included the Delay Index, which assessed the deviations of the Optimal AFR from the age at 291 

sexual maturity, and four indices which assess the relationship between AFR and LRS or 292 

survival: the Before Variation Index and the After Variation Index, the Choice Index, and the 293 

Lifespan Effect Index (see Table 1).  294 

We visually determined the species-specific AFR that maximized LRS (“Optimal AFR”- 295 

Table 1). The use of a single statistical optimization method was not feasible due to the large 296 

diversity of patterns in the relationship between AFR and LRS.  297 
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Based on the Optimal AFR, the age at sexual maturity and the latest AFR observed 298 

within focal species and sex, we assessed the “Delay Index” representing the timing of the 299 

Optimal AFR in relation to the reproductive lifespan (illustrated in Table 1): 300 

Delay	Index	 = 	
Optimal	AFR −maturity	age

latest	AFR −maturity	age
 

A Delay Index equal to zero always resulted from the Optimal AFR being the age of maturity. 301 

For 35 out of 62 cases several AFR categories had mean LRS values near that of the 302 

Optimal AFR. Hence, we determined the range of the species-specific optimum ages for the 303 

onset of reproduction, referred as the “Optimal AFR Range”. The Optimal AFR Range 304 

included the AFR categories adjacent to the Optimal AFR, with mean LRS values included in 305 

the calculation of the standard error bar for the mean LRS of the Optimal AFR (Table 1). The 306 

AFR categories forming the Optimal AFR Range are therefore assumed to be similarly 307 

beneficial in terms of LRS than the Optimal AFR.  308 

Based on the Optimal AFR Range, we estimated the Before Variation Index and the 309 

After Variation Index. These indices correspond to the slope of the relationship between LRS 310 

and AFR from the earliest and the latest AFR to the center of the Optimal AFR Range. The 311 

slopes were estimated in the whole data set with all AFR age-class categories, and in a data 312 

set only including categories with more than 5% or 10% of the individuals (Table 1).  Before 313 

and After Variation Indices represent the average of the three estimated slopes. We 314 

assumed that a delayed AFR should be favored if an early AFR is associated with a lower LRS, 315 

while an earlier AFR should be favored if a late AFR is associated with a lower LRS. 316 

Therefore, we expected the Delay Index to be positively correlated with the Before Variation 317 

Index but negatively with the After Variation Index.  318 
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 Based on the Optimal AFR Range and the actual value observed for the AFR, we 319 

calculated the Choice Index (Table 1), which represented the probability that individuals 320 

adopt AFR(s) with highest fitness return: 321 

Choice	Index	 = 	
Optimal	AFR	Range

number	of	AFR	categories
 

In cases with only one AFR category (N = 6 out of 62 cases), the Choice Index was assigned a 322 

zero, as in such cases there is no variation in AFR. We assumed that species with a large 323 

Optimal AFR Range relative to the number of AFR categories (i.e. with a large Choice Index) 324 

would have a lower probability of suffering a LRS cost when initiating reproduction earlier or 325 

later than the Optimal AFR. Consequently, such species may have a higher likelihood of 326 

benefiting from delayed reproduction than species with only a low number of beneficial 327 

AFR. Therefore, we expected the Delay Index to be positively correlated with the Choice 328 

Index.  329 

The association between AFR and subsequent survival was calculated via the 330 

Lifespan Effect Index, i.e. the correlation coefficient of the reproductive lifespan plotted 331 

against AFR per age-class category. We were able to estimate the Lifespan Effect Index for 332 

21 out of 34 species only, due to missing data for mean lifespan for the different AFR age-333 

class categories for 13 species. As causes and consequences cannot be disentangled from a 334 

correlation, negative values could indicate a reproductive cost in terms of survival for 335 

individuals with a late AFR or an early AFR favored by high intrinsic mortality. By contrast, 336 

positive values could indicate a survival cost of early AFR or a late AFR favored by low 337 

intrinsic mortality (Table 1, Figure S2). We assumed a survival cost of early AFR to be 338 

associated with a late Optimal AFR. Therefore, we expected the Delay Index to be positively 339 

correlated with the Lifespan Effect Index.  340 
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We verified the robustness of our results based on the indices involving the Optimal 341 

AFR Range by considering a second method to estimate it. In this second method, the 342 

Optimal AFR Range included AFR(s) adjacent to the Optimal AFR with their 90% CIs 343 

overlapping those of the Optimal AFR. The first method (method used in the manuscript 344 

abovementioned) represents the logic of a null-hypothesis-like test, which assumes an error 345 

distribution around the hypothesis (the Optimal AFR’s LRS mean), and if our statistics (the 346 

other AFRs’ LRS mean) do or do not fall within this range. We also considered this first 347 

method to be more straightforward while the use of the second method is more 348 

conservative. This is because the use of 90% CI indicates that the LRS population’s mean of 349 

the focal AFR will fail in 90% of the time, while for the use of the standard error it would do 350 

so in around 68% of the time. However, we preferred to present the results from the first 351 

method in the manuscript for two reasons. First, most of our data comes from studies with 352 

intensive monitoring of a population (Table 1, some of which pretty much sample all 353 

individuals in the population) and thus, the LRS means approach the population mean with 354 

little error. Second, for some AFRs the LRS estimates were based on a single individual (thus 355 

without CI). Note that one could prefer to consider one or the other method depending on 356 

their data characteristics and questions. 357 

 358 

STATISTICAL ANALYSIS 359 

General procedure 360 

All statistical analyses were carried out in R version 3.0.2 ((R Core Team 2013), 361 

http://www.R-project.org/) using linear mixed-effects models (lmer function, lme4 package: 362 

Bates et al. 2014) that allow for the non-independence of data from a single species by 363 

including species as a random factor in the model. To account for differences in sample size 364 
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(N, Table S1) and decrease noise by giving greater emphasis to the more reliable species-365 

specific estimates, all models were weighted (Garamszegi and Møller 2011) by incorporating 366 

N-1 in the “weights” argument of the lmer function (Hansen and Bartoszek 2012). Note that 367 

removing the weighting did not change the results (Table S2 to S7). To compare coefficients, 368 

all continuous predictors were centered (around the mean) and scaled (by the standard 369 

deviation) before incorporation in the models (Schielzeth 2010), but we present raw data in 370 

the figures. Model assumptions of normality and homogeneity of residuals were checked by 371 

visually inspecting histograms and qq-plots of the residuals as well as by plotting residuals 372 

against fitted values. For each analysis, we used a model selection process to identify the 373 

predictors that best explained variation in the response variable. Model selection was based 374 

on minimization of the corrected Akaike's information criterion (AICc) (Burnham and 375 

Anderson 2011). Support for an effect of an explanatory variable on the response variable 376 

was based on comparison of AICc values between the full model with the effect of interest 377 

included vs. excluded, and when ΔAICc (AICcincluded – AICcexcluded) was less than or equal to 378 

minus five (Burnham and Anderson 2011). The 95% confidence interval (CI) of the predictor 379 

estimates was obtained using the confint function (stats package: R Core Team 2013). 380 

The influence of phylogenetic similarity among species was tested in the “best 381 

model” obtained during the lmer model selection process (model including only explanatory 382 

variables with ΔAICc ≤ -5). This was done by running a phylogenetically controlled mixed-383 

effects model in ASReml-R (VSN International, Hempstead, U.K.; www.vsn-intl.com) with the 384 

same set of predictors as the lmer “best model” for each analysis. The phylogeny was 385 

included as a random effect in the form of a correlation matrix of distances from the root of 386 

the tree to the most recent common ancestor between two species. The phylogenetic effect 387 

was tested by performing a REML likelihood ratio test (comparing the REML likelihood of the 388 
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same ASReml model with and without phylogeny; the log-likelihood ratio test statistic was 389 

assessed against a χ2 distribution with one degree of freedom). The phylogenetic tree used 390 

in this comparative study was adapted from a recent species-level molecular phylogenetic 391 

assessment (Jetz et al. 2012; Ericson backbone phylogeny) (Figure S1). 392 

 393 

Variation in age at first reproduction 394 

To determine how AFR varied within and among species, we noted how often an AFR was 395 

the most frequently observed AFR within a species (mode) (Figure S3A) and considered the 396 

frequency of a specific AFR age-class across all species (Figure S3B). Then, mean AFR and its 397 

standard deviation were calculated for each of the 34 species. We tested the influence of 398 

sex, mean lifespan and social lifestyle (family-living and presence of helpers) on variation in 399 

mean AFR across the 24 species for which we had data for both sexes (Table S1). We used a 400 

weighted linear mixed-effect model with population mean AFR as the unit of analysis, and 401 

included species as a random effect. Since AFR cannot exceed the mean lifespan, AFR and 402 

mean lifespan should be correlated positively. Therefore, we tested whether the estimated 403 

correlation between AFR and mean lifespan differed significantly from the null expectation. 404 

To do so, we performed a conservative permutation analysis (following Charmantier et al. 405 

2006; Lane et al. 2011). For each mean lifespan, a mean AFR value was randomly selected 406 

with replacement from our dataset. During re-sampling we fixed the rule that AFR was 407 

smaller than mean lifespan. Data were re-sampled 500 times and analyzed using the same 408 

weighted linear mixed-effect model as described above. We estimated the average 409 

estimates and 95% CIs over the 500 model outputs and compared them to those observed. 410 

 411 

Fitness consequences of age at first reproduction 412 
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To determine whether variation in AFR has consequences for LRS, the correlation between 413 

AFR and LRS (within-species) as well as its average influence (among-species effect) was 414 

investigated using within-subject centering (van de Pol and Wright 2009). The within-species 415 

effect was calculated for each sex and species by subtracting the species- and sex-specific 416 

mean AFR from each AFR age-class category observed within sex and species (within-species 417 

AFR effect; van de Pol and Wright 2009). The among-species effect was determined as the 418 

mean AFR within sex and species (between-species AFR effect; van de Pol and Wright 2009). 419 

To test for non-linear effects of AFR on LRS within species, a quadratic term of the within-420 

species AFR effect was included in the model. The AFR values were centered to reduce 421 

collinearity between the within-species AFR effect and the within-species AFR2 effect. 422 

Centering enabled independent interpretation of the linear and the curvature effect 423 

(Schielzeth 2010). Due to apparent interspecific variation in the relationship between AFR 424 

and LRS, the ideal analytical framework would have been a random intercept and slope 425 

model that estimated separate intercepts and slopes for each species. However, our sample 426 

size did not provide sufficient power to support such a model (Martin et al. 2011; van de Pol 427 

2012). Therefore, we ran a standard weighted linear mixed-effect model using the average 428 

LRS within AFR age-class categories, with sex and population as units of analysis. Species 429 

was included as a random effect in this analysis, along with the natural log of mean body 430 

mass as a covariate. We included lifespan in this model as a covariate, since reproductive 431 

performance corrected for survival estimates approximates real fitness better (Roff 1992). 432 

While the output of the analysis with and without lifespan were similar, lifespan is strongly 433 

correlated with the between-species AFR effect. Therefore, we present the analysis without 434 

lifespan to avoid issues caused by collinearity (Dormann et al. 2013). 435 
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To assess whether the most frequently observed AFR within each species was an 436 

optimal strategy, the AFR mode within each species was correlated with the AFR that 437 

maximized LRS (i.e., Optimal AFR, Table 1). Then, the species-specific Optimal AFR was 438 

compared to the age at sexual maturity to identify species with optimal delayed 439 

reproduction (i.e., species with Optimal AFR > Age at maturity). Finally, the Optimal AFR was 440 

correlated with lifespan to identify if a benefit from delaying the onset of reproduction 441 

beyond sexual maturity coincided with long lifespan. 442 

 443 

Among-species variation in the relative timing of optimal age at first reproduction 444 

We used a model selection and model averaging approach (Grueber et al. 2011) to 445 

determine the factors that explain interspecific variation in deviations of the Optimal AFR 446 

from the age of sexual maturity (i.e., Delay Index, Table 1). All life-history, social and 447 

ecological factors listed above were included (see DATA COLLECTION), as well as indices 448 

reflecting the relationship between LRS and AFR: the Choice Index, and the Before and After 449 

Variation Indices (see above, Table 1). In a second analysis, the Lifespan Effect Index was 450 

included for the 21 species for which we had detailed data on lifespan mean for each AFR 451 

age-class category (Table 1, Figure S2). Due to reduced statistical power of the latter (as on 452 

restricted dataset, see above), in the results section we present only the estimates and 95% 453 

CI of the analysis excluding the Lifespan Effect Index. Each of the before mentioned 454 

variables, and the biologically relevant interactions (Before Variation Index x After Variation 455 

Index, Choice Index x Before Variation Index, Choice Index x After Variation Index, Choice 456 

Index x Family-living, Choice Index x Helper presence, Mean lifespan x Family-living, Mean 457 

lifespan x Helper presence, Nest predation risk x Family-living, Nest predation risk x Helper 458 

presence; Table S8 lists predictions associated with these interactions) were tested against 459 
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the Delay Index in a weighted linear mixed-effect models with Delay Index for each sex and 460 

population as a unit of analysis. Species was added as a random effect. Sex and the natural 461 

logarithm of body mass were included as default fixed-effects variables to control for 462 

allometry and any differences between sexes. Due to a large number of possible 463 

combinations between all predictors, we used the R package MuMIn (Barton 2013) to 464 

perform model selection. The candidate model set included models with Δ AICc ≤ 5, Δ AICc 465 

being the AICc of the focal model minus the AICc of the best model (see Table S9 for analysis 466 

excluding Lifespan Effect Index and Table S10 for analysis including Lifespan Effect Index). To 467 

estimate the relative importance of a factor, we summed the Akaike’s weights of the models 468 

in the set of best models including the focal factor, following the method described by 469 

Symonds and Moussalli (2011). 470 

 471 

Results 472 

VARIATION IN AGE AT FIRST REPRODUCTION 473 

Across species (N = 34), age at first reproduction (AFR) ranged from one to 20 years. In 11 474 

species, the modal AFR was one year (Figure S3A). In 70% of species, AFR was age 3 or less 475 

and only 20% of species had an AFR that was greater than 6 years of age (Figure S3B). 476 

Within species, the number of AFR categories ranged from one to 15 (average = 4.8 years; 477 

SD = 3.1; N = 34) and the mean AFR and its standard deviation varied among species (Figure 478 

1). Removing sex or social variables (i.e. family-living, helper presence) from the model did 479 

not influence mean AFR (Table 2). However, mean AFR correlated positively with mean 480 

lifespan (parameter estimate for mean lifespan = 0.87, 95% CI (hereafter given in brackets 481 

after all estimates): 0.72 to 1.02, Table 2), and this correlation exceeded that expected from 482 

the mathematical interdependence of AFR and mean lifespan (estimated by the 483 
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permutation test: mean of 500 simulations: 0.63 (0.87 to 0.79), Δ AICc = -22.24). A positive 484 

relationship between AFR and mean lifespan was also apparent when comparing the AFR 485 

age-class categories within each species (Figure 2). The phylogenetic effect on mean AFR 486 

was significant (likelihood ratio test: LRT = 6.99, df = 1, p < 0.01). 487 

 488 

FITNESS CONSEQUENCES OF AGE AT FIRST REPRODUCTION 489 

Our within-subject centering approach revealed no among-species effect of AFR on LRS, but 490 

a within-species effect of both AFR and AFR2 (Figure 3). Within species, there was strong 491 

directional selection for an early AFR (within-species AFR effect estimate = -0.54 (-0.70 to -492 

0.39), Table S11), as well as stabilizing selection (within-species AFR2 effect estimate = -0.26 493 

(-0.43 to -0.10), Table S11) (Figure 3). The phylogenetic effect on mean LRS for the 494 

corresponding AFR was not significant (likelihood ratio test: p = 1). Twenty-six out of 34 495 

species (76%) had an Optimal AFR delayed beyond the age at maturity, and this delay 496 

correlated positively with a longer mean lifespan (slope = 0.28, rSpearman = 0.61, p < 0.005; 497 

Figure 4). Both the most-observed AFR and mean AFR correlated with the AFR with the 498 

highest LRS (Optimal AFR vs. modal AFR: slope = 0.98, rSpearman = 0.80, p < 0.0001; Optimal 499 

AFR vs. mean AFR: slope = 0.95, rSpearman = 0.84, p < 0.0001). The latter was true even when 500 

only looking at species with a large number of observed AFR age-class categories (Table 501 

S12). 502 

 503 

AMONG-SPECIES VARIATION IN THE RELATIVE TIMING OF OPTIMAL AGE AT FIRST 504 

REPRODUCTION 505 

While the Delay Index was associated with indices that reflect a change in LRS and survival 506 

as a function of AFR (i.e. Choice, Before Variation and Lifespan Effect Indices; Table 1, all 507 
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predictor weights ≥ 0.45), it was only marginally related to social (predictor weights < 0.45) 508 

or ecological factors (predictor weights ≤ 0.30; Tables 3 and 4). A delayed optimal onset of 509 

reproduction (i.e. large Delay Index) was found in species with a large range of optimal AFR 510 

relative to reproductive lifespan (Choice Index: estimate = 0.44 (0.15 to 0.72), Table 3). 511 

Moreover, a large Delay Index was found in species in which early AFR was associated with a 512 

decreased LRS (Before Variation Index estimate = 0.30 (0.07 to 0.54), Table 3 and Figure 3) 513 

and a reduced reproductive lifespan (Lifespan Effect Index estimate = 0.54 (0.37 to 0.72), 514 

Table 4). Finally, larger species showed later optimal onset of reproduction than smaller 515 

species (ln (body mass) estimate: 0.35 (0.01 to 0.69), Table 3). These results remained 516 

quantitatively similar when using indices estimated with the Optimal AFR Range determined 517 

under the criterion where AFR categories included in the Optimal AFR Range were AFR(s) 518 

adjacent to the Optimal AFR with their 90% CIs overlapping those of the Optimal AFR 519 

(Tables S13 to S16). 520 

 521 

Discussion 522 

Age at first reproduction (AFR) is a key life-history parameter with consequences for 523 

individual reproductive output, and hence its effect on fitness has been studied in a number 524 

of intraspecific studies (see references in Table S1). Here we provide a first comparative 525 

analysis using a representative amount of averaged within-species information to examine 526 

interspecific variation in the relationship between AFR and lifetime reproductive success 527 

(LRS). Identifying the species-specific AFR that results in the highest LRS (i.e. Optimal AFR) 528 

allowed us to investigate not only within- and among-species variation in the relationship 529 

between AFR and LRS, but also differences in the benefits and costs associated with variable 530 

timing in the onset of reproduction among species. Our results demonstrated that the most 531 
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commonly observed AFR within a species corresponds to the species-specific Optimal AFR. 532 

Among species, Optimal AFR varied considerably. This study showed that lifespan was a 533 

major predictor of the relative timing of the Optimal AFR within the reproductive lifespan 534 

and that they correlated positively. Additionally, our analyses revealed that Optimal AFR 535 

beyond the age of maturity was associated with a decrease in fitness and survival that arose 536 

from starting to reproduce at earlier ages than the Optimal AFR. 537 

Age at first reproduction varied considerably both within and among species (Figure 538 

1). Some species displayed no variation in AFR (e.g. long-tailed tit Aegithalos caudatus, 539 

indigo bunting Passerina cyanea, common buzzard Buteo buteo), while others exhibited 540 

large variation (e.g. mute swan Cygnus olor, wandering albatross Diomedea exulans, 541 

eurasian oystercatcher Haematopus ostralegus). Most species that expressed variation in 542 

AFR experienced negative consequences for LRS from initiating reproduction either too 543 

early or too late in life (e.g. the Optimal AFR was at an intermediate point in the 544 

reproductive lifespan: between the age of sexual maturity and the oldest AFR observed 545 

within a population), while for others the earliest or latest observed AFR resulted in the 546 

highest LRS (Figure 3). This suggests simultaneous directional and stabilizing selection. If the 547 

pattern observed is a footprint of selection acting at the individual level, this should lead to 548 

a decrease in average AFR and a reduction in its evolvability. However, a comparative study 549 

directly investigating individual variance would be needed to assess this hipothesis. 550 

While there was no overall interspecific relationship between AFR and LRS, a within-551 

species relationship between AFR and LRS (Table S11) indicates that evolutionary processes 552 

operate at different scales. On the one hand, large-scale evolution acts on all individuals 553 

within a population, which might confound the detection of a relationship between AFR and 554 

LRS. On the other hand, local-scale evolution acts on individuals, such as on variation in 555 
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individual quality (Van Noordwijk and De Jong 1986; Kim et al. 2011), food availability 556 

(Brommer et al. 1998), territory quality (Krüger 2005), population density (Krüger 2005) or 557 

climatic conditions (Gibbs and Grant 1987; Kim et al. 2011), which also might drive the 558 

relationship between AFR and LRS. Differences among cohorts in the relationship between 559 

AFR and LRS (Brommer et al. 1998; Kim et al. 2011) might additionally explain the absence 560 

of a between-species effect of AFR on LRS, but our data did not allow us to take potential 561 

differences in individual or cohort quality into account. 562 

Among-species variation in mean AFR correlated positively with lifespan (Table 2), 563 

supporting the life-history paradigm that the pace of life fundamentally affects reproductive 564 

timing (Roff 1992; Stearns 1992; Charlesworth 1994). Furthermore, the species-specific 565 

optimal reproductive strategy varied among species, where species with a mean lifespan of 566 

up to six years (median mean lifespan: 1.9 years) had an Optimal AFR of one year, providing 567 

a quantitative benchmark to differentiate between short- and long-lived bird species. At the 568 

other extreme, species with a longer lifespan had a later mean AFR (Table 2) and a later 569 

Optimal AFR (Figure 4). 570 

When relating the position of the Optimal AFR to the age of sexual maturity of a 571 

species, our results revealed that the Optimal AFR was beyond the age of maturity in 26 of 572 

34 species. Thus, individuals in these species appear to benefit from delaying their onset of 573 

reproduction (e.g. female tawny owl Strix aluco (Millon et al. 2010); female goshawk 574 

Accipiter gentilis (Krüger 2005); sexes combined short-tailed shearwater Puffinus tenuirostris 575 

(Wooller et al. 1989)). The association of an Optimal AFR beyond the age of sexual maturity 576 

with a long mean lifespan suggests that the positive effect of lifespan on mean AFR is not 577 

caused by physiological constraints associated with maturity. Indeed, longer-lived species 578 

mature later and still adopt an AFR past their age of maturity, and they experienced a larger 579 
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LRS as a consequence (Figure 4). Such a benefit from delayed AFR until after the age of 580 

sexual maturity was found not only in long-lived species, but also in six out of 11 short-lived 581 

species with a mean lifespan of less than three years (Figure 4).  582 

When controlling for reproductive lifespan, we found that interspecific variation in 583 

deviation of the Optimal AFR from the age at maturity was primarily associated with a 584 

change in survival and fitness with AFR (Tables 3 and 4). Moreover, our results confirmed 585 

that an early AFR might be favored by a short reproductive lifespan and vice versa (Roff 586 

1992; Stearns 1992; Charlesworth 1994) (Table 4 and Figure 2). Species in which an early 587 

onset of reproduction was associated with a reduced reproductive lifespan benefited from 588 

delaying AFR (Table 4 and Figure S2), which supports the restraint hypothesis (Williams 589 

1966; Forslund and Pärt 1995). Moreover, the cost of early reproduction, measured as a 590 

decrease in LRS relative to the optimum, correlated positively with the optimal delayed 591 

reproductive onset (Table 3). An early reproductive onset might be costly because of 592 

differences in individual competitive ability, if this early onset leads to unequal probabilities 593 

of acquiring a high-quality territory (Ens et al. 1995; Ekman et al. 2001; Prevot-Julliard et al. 594 

2001; Cooper et al. 2009) or to high physiological costs (Hawn et al. 2007). This pattern 595 

suggests that different factors affect the evolution of sexual maturity and the onset of 596 

reproduction. Interestingly, in species where there was limited change in LRS relative to 597 

AFR, postponing the onset of reproduction beyond sexual maturity was chosen over other 598 

earlier AFR leading to similar fitness. Therefore, not reproducing as soon as physiologically 599 

capable might provide further benefits. Our results provide empirical support for the 600 

hypothesis that costs of reproduction shape the onset of reproduction (Lack 1968; Roff 601 

1992; Stearns 1992).  602 
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It has been argued that variation in AFR might be sub-optimal, reflecting constraints 603 

on early breeding, such as limited access to high-quality mates or to high-quality breeding 604 

sites (Lack 1968; Emlen 1982; Stearns 1989; Koenig et al. 1992). However, our results 605 

suggest that the onset of reproduction most likely is an optimal strategy, since the most 606 

commonly observed AFR coincides with the Optimal AFR. A number of theories developed 607 

to explain the evolution of cooperative breeding depicts the decision of offspring to remain 608 

with their parents beyond sexual maturity as a “best of a bad job” strategy that reflects 609 

dispersal constraints (Emlen 1982; Koenig et al. 1992; Arnold and Owens 1998; Hatchwell 610 

and Komdeur 2000). The lack of a strong correlation between the Delay Index and the 611 

different social lifestyles suggests that delayed onset of reproduction might not have 612 

evolved due to constraints (Ekman et al. 2004; Ekman 2007), but instead constitutes a 613 

beneficial life-history decision, which correlates positively with lifespan (Covas and Griesser 614 

2007). Still, the lack of a correlation between social factors and variation in the optimal 615 

timing of reproduction could reflect the fact that our data is skewed towards pair-breeding, 616 

northern hemisphere species. Including more tropical and southern hemisphere species 617 

might alter our results and magnify the role of social factors in our analyses, as the latter 618 

two groups are often long-lived (Valcu et al. 2014), stay longer with their parents (Russell 619 

2000) and are more likely to breed cooperatively (Jetz and Rubenstein 2011). The current 620 

paucity of long-term studies in these regions potentially biases our view of life-history 621 

evolution (Martin 2004).  622 

Although we found no significant effect of sex in our study, the relationship between 623 

AFR and LRS, and the optimal timing of reproduction, sometimes differed between sexes 624 

(Figures 3 and S4). Twelve out of 24 species showed sex-specific differences in the Delay 625 

Index; females benefited more from earlier onset than males in seven species, whereas the 626 
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opposite was true in five species (Figure S4). Intraspecific studies have demonstrated sex 627 

differences in the relationship between LRS and AFR (e.g. western gull Larus occidentalis 628 

(Pyle et al. 1997); green woodhoopoe Phoeniculus purpureus (Hawn et al. 2007); blue-629 

footed booby Sula nebouxii (Kim et al. 2011)), highlighting the need to consider sex-specific 630 

variation in life-history traits (McDonald 1993; Santos and Nakagawa 2012). The positive 631 

correlation between the relative timing of Optimal AFR and body mass concurs with findings 632 

in mammals where AFR is correlated strongly with body mass (larger mammals having later 633 

AFR; Estern 1979; Wootton 1987). Nevertheless, we additionally demonstrated that, in 634 

birds, larger species benefited more from delaying the onset of reproduction beyond sexual 635 

maturity than smaller species. Therefore, body mass seems to be an important factor 636 

associated with variation in reproductive strategy. Animals with a large body size invest 637 

substantial amounts of resources into growth. Although, in birds, growth after sexual 638 

maturity is negligible (Ricklefs 1983), postponing the onset of reproduction might 639 

counterbalance the cost endured during the development phase and increase the 640 

probability of a high lifetime reproductive output. 641 

In conclusion, AFR varies both within and among species, and this variation is 642 

reflected in LRS. The most frequently observed AFR within a species results in the highest 643 

LRS. Where an AFR delayed beyond physiological maturity co-occurred with the highest LRS, 644 

this delay was mainly associated with a long lifespan and a decrease in LRS and future 645 

survival linked to early reproduction. Our study is the first to provide empirical confirmation 646 

of several key predictions of life-history theory across species that lifespan and costs of 647 

reproduction shape reproductive timing (Lack 1968; Roff 1992; Stearns 1992; Charlesworth 648 

1994). Moreover, the finding that, in long-lived species, postponing the onset of 649 

independent reproduction is an optimal strategy has important implications for long-held 650 
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perspectives on the evolution of sociality. Hitherto, the decision of young birds to remain 651 

with their parents and become helpers has been viewed as a sub-optimal response to the 652 

lack of breeding opportunities (Emlen 1982; Koenig et al. 1992; Arnold and Owens 1998). 653 

Our results clearly indicate that this decision can be a strategy to mitigate the costs of early 654 

reproduction. Overall, our results are consistent with life-history theory and challenge 655 

current theories on the evolution of family formation and cooperative breeding.  656 
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Table 1. Definitions and descriptions of the parameters and indices estimated for each sex (when 847 

possible) and each species followed by a graph illustrating the description based on the case of the 848 

Eurasian sparrowhawk (Accipiter nisus). See also Indices and estimates section in Materials and 849 

Methods. 850 

 851 

Species parameter Definition Biological description Technical description 

Optimal AFR AFR that results in the 
highest LRS 

Reflects the species-average 
optimum strategy of onset of 
reproduction 

AFR that maximizes mean LRS excluding AFR 
categories with <10% individuals. Extracted visually 

Optimal AFR Range Range of optimal AFR(s)  Reflects the range of the species-
average optimum strategy of onset 
of reproduction 

Number of AFR(s) adjacent to the Optimal AFR with 
mean LRS values overlapped by the standard error 
bars of the Optimal AFR. Extracted visually. Range 
from 1 to 15 

Before Variation Index LRS cost of initiating 
reproduction before the 
Optimal AFR Range 

Reflects the LRS cost of adopting a 
reproductive strategy which is 
earlier than the range of species-
average optimum strategy of onset 
of reproduction 

Slope before the Optimal AFR Range (center of the 
range) between mean LRS and AFR; Average of slopes 
obtained when all individuals were included, when 
excluding AFR categories with <5% and <10 % 
individuals (mean standard error slope = 0.21). A large 
positive value indicates a strong negative fitness 
impact of reproducing before the Optimal AFR Range 

After Variation Index LRS cost of initiating 
reproduction after the 
Optimal AFR Range 

Reflects the LRS cost of adopting a 
reproductive strategy which is later 
than the range of species-average 
optimum strategy of onset of 
reproduction 

Slope after the Optimal AFR Range (center of the 
range) between mean LRS and AFR; Average of slopes 
obtained when all individuals were included, when 
excluding AFR categories with <5% and <10 % 
individuals (mean standard error slope = 0.18). A large 
negative value indicates a strong negative fitness 
impact of reproducing after the Optimal AFR Range 

Delay Index  Relative position of the 
Optimal AFR during the 
reproductive lifespan 

Reflects when – during the average- 
reproductive lifespan of a species – 
individuals from a species benefit 
the most from initiating their 
reproduction 

Varies between 0 and 1. Delay Index 0: the optimal 
strategy is to start reproduction at physiological 
maturity; Delay Index 1: the optimal strategy is to 
delay the onset of reproduction to maximum AFR 

Choice Index Range of optimal AFR(s) 
relative to the number 
of AFR observed 

Reflects the species-average span of 
“beneficial choice” in AFR, (i.e. AFRs 
leading to higher LRS) 

Varies between 0 and 1. Choice Index of 0: species 
has only one optimal AFR; Choice Index of 1: all AFR 
are optimal 

Lifespan Effect Index Effect of AFR on the 
mean reproductive 
lifespan (for each AFR 
category: see Figure S2)  

Reflects the species-specific average 
effect of the onset of reproduction 
on survival 

Correlation coefficient between mean reproductive 
lifespan and AFR (Fisher’s z transformed) (Koricheva 
et al. 2013). Positive values suggest a cost of early 
onset of reproduction, while negative values suggest 
a cost of late onset 
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Table 2. Effect of sex, mean lifespan of species, family-living and presence of helpers on mean AFR 852 

within a species (N = 26 populations, 24 species for which data were available for both sexes). 853 

Estimates and 95% confidence intervals (CI) are presented. Δ AICc corresponds to the change in AICc 854 

when the specific parameter was included vs. excluded from the full model. 855 

 856 
 857 

 858 

 859 

 860 

 861 

 862 

 863 

 864 

 865 

 866 
 867 

 868 
* factor centered and scaled; na – not applicable; † support for inclusion of the factor 869 

  870 

  
Standard 

deviation 
Estimate 95% CI Δ AICc 

Fixed effects:     

     intercept  0.10 (-0.14, 0.34) - 

     sex: Female  0.00 na 
-2.51 

     sex: Male  0.03 (0.01, 0.05) 

     mean lifespan species*  0.87 (0.72, 1.02) -61.65† 

     family-living: NO  0.00 na 
2.58 

     family-living: YES  -0.12 (-0.89, 0.64) 

     helper presence: NO  0.00 na 
2.08 

     helper presence: YES  -0.33 (-1.16, 0.50) 

Random effects:  
   

     species 0.52 
 

(0.40, 0.70) 
 

     residuals 0.93  (0.72, 1.26)  
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Table 3. Relative importance of predictors included in the full model for the analysis of Delay Index 871 

variation excluding Lifespan Effect Index (N = 36 populations, 34 species) and model averaging 872 

estimates (based on 53 models with Δ AICc (AICc focal model – AICc best model) ≤ 5, see Table S9). 873 

Predictors 

Predict

or 

weight* 

Relative 

importance 

of 

predictors† 

Model 

averaging 

estimates‡,§ 

95% CI 

intercept 
  

0.14 (-0.71, 1.00) 
ln(body mass) 0.49 1.00 0.35 (0.01, 0.69) 

sex 0.49 1.00 
           Both:   0.00 na 
      Female:   -0.06 (-0.94, 0.82) 
          Male:   -0.24 (-1.12, 0.65) 

Choice Index ¶ 0.49 1.00 0.44 (0.15, 0.72) 
Before Variation Index ¶ 0.48 0.98 0.30 (0.07, 0.54) 

family-living 0.40 0.82 
NO:  0.00 na 
YES:  0.01 (-1.45, 1.48) 

helper presence 0.40 0.82 
NO:  0.00 na 
YES:  0.49 (-2.12, 3.31) 

nest predation risk 0.28 0.56 0.03 (-0.34, 0.43) 

Choice Index: helper presence 0.25 0.51 
NO:  0.00 na 
YES:  -0.67 (-2.45, -0.18) 

mean lifespan 0.25 0.50 0.09 (-0.26, 0.60) 

Choice Index: family-living 0.23 0.46 
NO:  0.00 na 
YES:  0.57 (-0.50, 3.00) 

mean lifespan: helper presence 0.22 0.44 
NO:  0.00 na 
YES: 2.48 (2.66, 8.49) 

mean lifespan: family-living 0.21 0.43 
NO:  0.00 na 
YES: -1.91 (-6.12, -2.72) 

nest predation risk: family-living 0.21 0.43 
NO:  0.00 na 
YES:  0.91 (1.23, 2.97) 

Before Variation Index: Choice Index 0.17 0.35 0.13 (-0.08, 0.82) 
After Variation Index ¶ 0.14 0.28 -0.04 (-0.37, 0.05) 

nest predation risk: helper presence 0.10 0.21 
NO:  0.00 na 
YES: -0.41 (-3.82, -0.13) 

chick development mode 0.05 0.11 
Altricial:  0.00 na 

Precocial: -0.02 (-1.20, 0.74) 
latitude 0.03 0.07 -0.01 (-0.41, 0.23) 
Before Variation Index: After Variation Index 0.00 0.01 0.00 (-0.08, 0.19) 

*: sum of model weights from Table S9 including the focal predictor. na – not applicable; 874 

†: predictor weight relative to the highest weighted predictor. 875 
‡: model averaging esjmates according to full model averaging approach since the best AICc model 876 
is not strongly weighted (weight = 0.05) (Symonds and Moussalli 2011).  877 
§: reference levels of categorical variables have an estimate of 0; estimates reflect difference in 878 
slope between the reference level and focal level. 879 
Note: The relative importance of body mass and sex is due to their inclusion by default in each 880 
model to control for allometry and sex differences. All continuous variables are centered and scaled. 881 
¶: predictors reflecting the relationship between LRS and AFR, see Table 1 and the Indices and 882 

estimates section of Materials and methods.  883 
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Table 4. Relative importance of predictors included in the full model for the analysis of Delay Index 884 

variation including Lifespan Effect Index (N = 22 populations, 21 species) and model averaging 885 

estimates (based on 28 models with Δ AICc (AICc focal model – AICc best model) ≤ 5, see Table S10). 886 

Predictors 
Predictor 

weight* 

Relative 

importance 

of  

predictors† 

Model  

averaging 

estimates‡,§  

95% CI 

intercept     0.42 (-0.34, 1.18) 

ln(body mass) 0.57 1.00 0.36 (-0.23, 0.95) 

sex 0.57 1.00 

           Both:   0.00 Na 

      Female:   -0.67 (-1.43, 0.09) 

          Male:   -0.35 (-1.11, 0.42) 

Choice Index ¶ 0.57 1.00 0.35 (0.17, 0.52) 

Lifespan Effect Index ¶ 0.57 1.00 0.54 (0.37, 0.72) 

After Variation Index ¶ 0.38 0.66 -0.20 (-0.56, -0.05) 

helper presence 0.26 0.46 
NO:  0.00 Na 

YES:  0.56 (0.03, 2.40) 

family-living 0.24 0.42 
NO:  0.00 Na 

YES:  -0.32 (-1.59, 0.08) 

mean lifespan 0.23 0.41 0.20 (-0.01, 0.98) 

chick development mode 0.10 0.17 
Altricial:  0.00 Na 

Precocial:  -0.11 (-1.28, 0.04) 

nest predation risk 0.10 0.17 0.06 (-0.08, 0.74) 

latitude 0.07 0.13 0.02 (-0.32, 0.56) 

Choice Index: family-living 0.04 0.07 
NO:  0.00 Na 

YES:  0.03 (-0.14, 0.87) 

Choice Index: helper presence 0.04 0.07 
NO:  0.00 Na 

YES:  0.03 (-0.18, 1.07) 

Before Variation Index ¶ 0.03 0.06 0.01 (-0.16, 0.35) 

*: sum of model weights from Table S10 including the focal predictor. na – not applicable; 887 

†: predictor weight relajve to the highest weighted predictor. 888 
‡: model averaging estimates according to full model averaging approach since the best AICc model 889 
is not strongly weighted (weight = 0.10) (Symonds and Moussalli 2011).  890 
§: reference levels of categorical variables have an estimate of 0; estimates reflect difference in 891 
slope between the reference level and focal level. 892 
Note: The relative importance of body mass and sex is due to their inclusion by default in each 893 
model to control for allometry and sex differences. All continuous variables are centered and scaled. 894 
¶: predictors reflecting relationship between LRS or survival and AFR, see Table 1 and the Indices 895 
and estimates section of Materials and methods.  896 
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Figure legends  897 

Figure 1. Mean AFR (years) and standard deviation for all 36 populations (34 species) 898 

(both sexes combined). Mean AFR ranged from 1 to 12.8 years (mean ± SD = 3.0 ± 2.6, N = 899 

36), and standard deviation from 0 to 2.31 (mean ± SD = 0.80 ± 0.58, N = 36). A number 900 

after the name of a species indicates different populations. 901 

Figure 2. Relationship between AFR (years) and the associated mean lifespan within 902 

species and sexes (years, N = 22 populations (21 species) for which detailed data on mean 903 

lifespan per AFR category were available). Each point is the mean lifespan of individuals 904 

within each AFR category. A number after the name of a species indicates different 905 

populations. Regression lines are based on the raw data and were drawn for all cases 906 

independent of whether the correlation was significant or not. 907 

Figure 3. Variation in AFR and consequences on fitness - Relationship between 908 

standardized LRS and AFR for the 36 populations of the 34 species, separated by sex 909 

where possible (a point is the mean LRS (centred and scaled) over all individuals that 910 

started to reproduce at a specific AFR). Curves represent quadratic fit of the relationship 911 

between standardized LRS and AFR independent of whether the relationship was 912 

significant or not. 913 

Figure 4. Species-specific Optimal AFR presented relative to the species age at maturity 914 

(left y-axis) with species ordered by mean lifespan (both sexes combined). Mean lifespan 915 

values are represented by the grey line and the right y-axis. A number after the name of a 916 

species indicates the different populations included in the study. 917 

 918 

 919 
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 920 

Supporting Information 921 

Additional Supporting Information may be found in the online version of this article at the 922 

publisher’s website: 923 

Table S1. Information on the source and the type of LRS data for each study 924 

Table S2. Model without weighting – Variation in AFR analysis  925 

Table S3. Model without weighting – Fitness consequence of AFR analysis 926 

Table S4. Model without weighting – Delay Index analysis excluding Lifespan Effect Index 927 

Table S5. Model without weighting – Delay Index analysis including Lifespan Effect Index 928 

Table S6. Model without weighting – Model selection output for the analysis of Delay Index 929 

variation excluding Lifespan Effect Index 930 

Table S7. Model without weighting – Model selection output for the analysis of Delay Index 931 

variation including Lifespan Effect Index 932 

Table S8. Justification for the interactions used in the analysis of the Delay Index 933 

Table S9. Model selection output for the analysis of Delay Index variation excluding Lifespan 934 

Effect Index 935 

Table S10. Model selection output for the analysis of Delay Index variation including 936 

Lifespan Effect Index 937 

Table S11. Fitness consequence of AFR analysis 938 

Table S12. Correlation between Optimal AFR vs. modal AFR and mean AFR for different sest 939 

of species 940 

Table S13. Model with 90CI Indices – Delay Index analysis excluding Lifespan Effect Index 941 

Table S14. Model with 90CI Indices – Delay Index analysis including Lifespan Effect Index 942 
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Table S1. Information on the source and the type of LRS data for each study. 

Bold reference indicates unpublished data provided directly by researchers.* number of individuals of F: female, M: male, B: both sexes

Species Scientific name Location LRS type Sample size* Reference 
alpine swift Apus melba North-Western Switzerland fledglings F: 157; M: 121 Pierre Bize 
azure-winged magpie Cyanopica cyanus Valdesequera, Spain fledglings F: 200; M: 104 Juliana Valencia & Carlos de la Cruz 
barn swallow Hirundo rustica Kraghede, Denmark fledglings F: 1394; M: 1360 Anders Pape Møller 
black-browed albatross Thalassarche melanophris Bird Island, UK fledglings B: 76 Richard Phillips & Andrew G. Wood 
blue Tit 1 Cyanistes caeruleus Oxford, UK recruits F: 1177; M: 972 Sandra Bouwhuis & Ben Sheldon 
blue Tit 2 Cyanistes caeruleus Vienna, Austria recruits F: 261; M: 211 Bart Kempenaers & Emmi Schlicht 
blue-footed booby Sula nebouxii Isla Isabela, Mexico fledglings F: 222; M: 246 Kim et al. (2011) 
collared flycatcher Ficedula albicollis Budapest, Hungary recruits F: 453; M: 481 Márton Herényi & János Török 
common barn owl Tyto alba Payerne, Switzerland fledglings F: 170; M: 174 Alexandre Roulin 
common buzzard Buteo buteo Eastern Westphalia, Germany fledglings F: 239 Olivier Krüger 
Eurasian sparrowhawk Accipiter nisus Annandale, Eskdale, Scotland fledglings F: 52 McGraw & Caswell (1996) 
Eurasian oystercatcher Haematopus ostralegus Schiermonnikoog, Netherlands fledglings F: 19; M: 33 Martijn Van de Pol 
Florida scrub-jay Aphelocoma coerulescens Archbold, USA fledglings F: 37; M: 43 Fitzpatrick & Woolfenden (1988) 
goshawk Accipiter gentilis Bissendorf, Spenge, Germany fledglings F: 74 Krüger (2005) 
great tit Parus major Oxford, UK recruits F: 4935; M: 4370 Sandra Bouwhuis  & Ben Sheldon 
green woodhoopoe Phoeniculus purpureus Eastern Cape, South Africa fledglings F: 59; M: 62 Andrew Radford 
grey-headed albatross Thalassarche chrysostoma Bird Island, UK fledglings B: 74 Richard Phillips & Andrew G. Wood 
house sparrow Passer domesticus Lundy Island, UK fledglings F: 287; M: 265 Terry Burke & colleagues 
indigo bunting Passerina cyanea Southern Michigan, USA fledglings F: 360; M: 357 Payne (1989) 
lesser snow goose Chen caerulescens La Perouse Bay, Canada 1st 4 years of life F: 2616 Viallefont et al. (1995) 
long-tailed tit Aegithalos caudatus Sheffield, UK recruits F: 119; M: 109 Ben Hatchwell 
meadow pipit Anthus pratensis North-west Germany fledglings F: 33; M: 49 Hermann Hötker 
merlin Falco columbarius Saskatoon, Canada fledglings F: 26; M: 68 Richard Espie & Ian G. Warkentin 
mute swan Cygnus olor Abbotsbury, UK recruits F: 252; M: 277 Anne Charmantier, Ben Sheldon & Chris Perrins 
osprey Pandion haliaetus Michigan, USA fledglings B: 40 Postupalsky (1989) 
pied flycatcher Ficedula hypoleuca Wolfsburg, Germany fledglings F: 1411; M: 1135 Sternberg (1989) 
pinyon jay Gymnorhinus cyanocephalus Flagstaff, USA yearlings F: 39; M: 41 John Marzluff 
Seychelles warbler Acrocephalus sechellensis Cousin Island, Seychelles fledglings F: 41; M: 37 Komdeur (1996) 
short-tailed shearwater Puffinus tenuirostris Fisher Island, Australia fledglings B: 186 Wooller et al. (1989) 
Siberian jay Perisoreus infaustus Arvidsjaur, Sweden fledglings F: 44; M: 56 Ekman & Griesser (2016) 
tawny owl Strix aluco Kielder Forest, UK fledglings F: 83; M: 51 Millon et al. (2010) 
ural owl Strix uralensis Päijät-Häme, Finland fledglings F: 57 Brommer et al. (1998) 
wandering albatross Diomedea exulans Bird Island, UK fledglings F: 1819; M: 1519 Richard Phillips & Andrew G. Wood 
western gull 1 Larus occidentalis Farallon Island, USA fledglings F: 163; M: 108 Pyle et al. (1997) 
western gull 2 Larus occidentalis Farallon Island, USA fledglings F: 66; M: 93 Russell Bradley 
wood duck Aix sponsa South Carolina, USA fledglings F: 90 Oli et al. (2002) 



Table S2. Model without weighting (see Table 2 for output model with weighting) - Effect of sex, mean lifespan 
of species, family-living and presence of helpers on mean AFR within a species (N = 26 populations, 24 species 
for which data were available for both sexes). Estimates and 95% confidence intervals (CI) are presented. Δ 
AICc corresponds to the change in AICc when the specific parameter was included vs. excluded from the full 
model. 
 

 

 

 

 

 

 

 

 

 

 
* factor centered and scaled; na – not applicable; † support for inclusion of the factor 

 

Table S3. Model without weighting (see Table S11 for output model with weighting). Results from models 
testing the within- and among-species effect of AFR on LRS (N = 36 populations, 34 species). Estimates and 95% 
confidence intervals (CI) are presented. Δ AICc corresponds to the change in AICc when the specific parameter 
was included vs. excluded from the full model. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* factor centered and scaled; na – not applicable; † support for inclusion of the factor 

  Standard 
deviation Estimate 95% CI Δ AICc 

Fixed effects:     
     intercept  0.10 (-0.14, 0.34) - 
     sex: Females  0.00 na 

1.99 
     sex: Male  0.02 (-0.03, 0.07) 
     mean lifespan species*  0.82 (0.67, 0.96) -58.68† 
     family-living: NO  0.00 na 

2.60 
     family-living: YES  -0.11 (-0.87, 0.66) 
     helper presence: NO  0.00 na 

2.07 
     helper presence: YES  -0.34 (-1.18, 0.50) 
Random effects:     
     species 0.52  (0.40, 0.70)  
     residuals 0.09  (0.07, 0.12)  

  
Standard 
deviation Estimate 95% CI Δ AICc 

Fixed effects:     
     intercept  0.00 (-0.36, 0.37) - 
     ln(body mass)*  -0.01 (-0.17, 0.14) 2.10 
     sex: Both  0.00 na 

3.76 
 

     sex: Female  0.12 (-0.28, 0.54) 
     sex: Male  0.14 (-0.26, 0.54) 
     within-species AFR*  -0.38 (-0.56, -0.20) -14.97† 

     within-species AFR2*  -0.30 (-0.51, -0.10) -6.36† 
     between-species AFR  0.03 (-0.16, 0.22) 2.03 
Random effects:     
     species 0.00  (0.00, 0.13)  
     residuals 0.86  (0.79, 0.93)  



Table S4. Model without weighting (see Table 3 for output model with weighting). Relative importance of 
predictors included in the full model for the analysis of Delay Index variation excluding Lifespan Effect Index 
(N = 36 populations, 34 species) and model averaging estimates (based on 58 models with Δ AICc (AICc focal 

model – AICc best model) ≤ 5, see Table S6). 
 

Predictors 
Predict

or  
weight* 

Relative 
importance 

of 
predictors† 

Model                                                                         
averaging                                                                             

estimates‡,§ 
95% CI 

intercept   0.07 (-0.78, 0.92) 
ln(body mass) 0.49 1.00 0.36 (0.08, 0.64) 

sex 0.49 1.00 
           Both:   0.00 na 
      Female:   -0.01 (-0.92, 0.89) 
          Male:   -0.05 (-0.97, 0.87) 

Choice Index ¶ 0.49 1.00 0.59 (0.34, 0.85) 
Before Variation Index ¶ 0.48 0.98 0.30 (0.08, 0.52) 
Before Variation Index: Choice Index 0.34 0.70 0.25 (0.01, 0.71) 
latitude 0.17 0.35 -0.06 (-0.42, 0.06) 
After Variation Index ¶ 0.12 0.25 -0.03 (-0.31, 0.09) 
mean lifespan 0.10 0.20 0.04 (-0.16, 0.54) 

family-living 0.08 0.16 NO:  0.00 na 
YES:  -0.03 (-0.65, 0.31) 

nest predation risk 0.07 0.14 0.01 (-0.20, 0.31) 

helper presence 0.06 0.12 NO:  0.00 na 
YES:  -0.00 (-0.69, 0.66) 

chick development mode 0.05 0.11 Altricial:  0.00 na 
Precocial: 0.00 (-0.75, 0.76) 

Choice Index: family-living 0.01 0.03 NO:  0.00 na 
YES:  0.02 (-0.42, 1.38) 

After Variation Index: Choice Index 0.01 0.02 0.00 (-0.15, 0.34) 
Before Variation Index: After Variation Index 0.01 0.02 -0.00 (-0.17, 0.11) 
mean lifespan: helper presence 0.00 0.01 0.01 (-0.26, 2.12) 

Choice Index: helper presence 0.00 0.01 NO:  0.00 na 
YES:  -0.01 (-1.99, -0.14) 

*: sum of model weights from Table S6 including the focal predictor. na – not applicable.  
†: predictor weight relative to the highest weighted predictor. 
‡: model averaging estimates according to full model averaging approach since the best AICc model is not strongly 
weighted (weight = 0.04) (Symonds and Moussalli 2011).  
§: reference levels of categorical variables have an estimate of 0; estimates reflect difference in slope between the 
reference level and focal level. 
Note: The relative importance of body mass and sex is due to their inclusion by default in each model to control for 
allometry and sex differences. All continuous variables are centered and scaled. 
¶: predictors reflecting the relationship between LRS and AFR, see Table 1 and the Indices and estimates section of 
Materials and methods. 

  



Table S5. Model without weighting (see Table 4 for output model with weighting). Relative importance of 
predictors included in the full model for the analysis of Delay Index variation including Lifespan Effect Index (N 
= 22 populations, 21 species) and model averaging estimates (based on 28 models with Δ AICc (AICc focal model – 
AICc best model) ≤ 5, see Table S7).  
 

Predictors Predictor  
weight* 

Relative 
importance 

of  
predictors† 

Model                                                                         
averaging                                                                             

estimates‡,§  
95% CI 

intercept     0.16 (-0.67, 0.99) 
ln(body mass) 0.51 1.00 0.24 (-0.44, 0.92) 

sex 0.51 1.00 
           Both:   0.00 na 
      Female:   -0.26 (-1.17, 0.65) 
          Male:   -0.03 (-0.92, 0.87) 

Lifespan Effect Index ¶ 0.51 1.00 0.54 (0.32, 0.77) 
Choice Index ¶ 0.49 0.96 0.32 (0.07, 0.60) 
mean lifespan 0.30 0.59 0.33 (0.02, 0.10) 
After Variation Index ¶ 0.25 0.48 -0.13 (-0.51, -0.03) 

helper presence 0.24 0.47 
NO:  0.00 na 
YES:  0.47 (-0.10, 2.06) 

family-living 0.18 0.35 
NO:  0.00 na 
YES:  -0.26 (-1.57, 0.08) 

latitude 0.08 0.15 -0.04 (-0.60, 0.06) 
mean lifespan: helper presence 0.05 0.10 0.15 (0.21, 2.82) 

Choice Index: family-living 0.05 0.09 
NO:  0.00 na 
YES:  0.04 (-0.01, 0.95) 

Choice Index: helper presence 0.04 0.08 
NO:  0.00 na 
YES:  0.04 (-0.04, 1.04) 

Before Variation Index ¶ 0.03 0.05 0.01 (-0.16, 0.34) 

chick development mode 0.03 0.05 
Altricial:  0.00 na 

Precocial:  -0.02 (-1.00, 0.22) 
nest predation risk 0.02 0.03 0.00 (-0.32, 0.34) 

*: sum of model weights from Table S7 including the focal predictor. na – not applicable.  
†: predictor weight relative to the highest weighted predictor. 
‡: model averaging estimates according to full model averaging approach since the best AICc model is not strongly 
weighted (weight = 0.08) (Symonds and Moussalli 2011).  
§: reference levels of categorical variables have an estimate of 0; estimates reflect difference in slope between the 
reference level and focal level. 
Note: The relative importance of body mass and sex is due to their inclusion by default in each model to control for 
allometry and sex differences. All continuous variables are centered and scaled. 
¶: predictors reflecting the relationship between LRS or survival and AFR, see Table 1 and the Indices and estimates 
section of Materials and methods. 

 



 

Table S6.  Model without weighting (see Table S9 for output model with weighting). Model selection output for the analysis of Delay 
Index variation excluding Lifespan Effect Index (following on the next page). 
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0.20 0.42 + - - - - - - 0.63 0.30 - - - 0.34 - - - - - - 9 -68.56 158.58 0.00 0.04 
-0.06 0.37 + -0.17 - - - - - 0.64 0.34 - - - 0.35 - - - - - - 10 -67.44 159.19 0.61 0.03 
0.14 0.40 + - - - - - - 0.50 0.23 - - - - - - - - - - 8 -70.52 159.75 1.17 0.02 
0.05 0.28 + - - - - 0.20 - 0.65 0.31 - - - 0.34 - - - - - - 10 -67.80 159.91 1.33 0.02 
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-0.12 0.35 + -0.17 - - - - - 0.51 0.27 - - - - - - - - - - 9 -69.52 160.49 1.92 0.02 
0.19 0.35 + - 0.12 - - - - 0.64 0.32 - - - 0.41 - - - - - - 10 -68.10 160.52 1.94 0.02 
-0.03 0.34 + -0.19 - - - - - 0.63 0.35 -0.11 - - 0.36 - - - - - - 11 -66.71 160.70 2.12 0.01 
0.20 0.42 + - - + - - - 0.62 0.29 - - - 0.35 - - - - - - 10 -68.29 160.90 2.32 0.01 
-0.02 0.25 + - - - - 0.20 - 0.52 0.25 - - - - - - - - - - 9 -69.77 161.00 2.42 0.01 
-0.09 0.37 + -0.19 - + - - - 0.63 0.33 - - - 0.36 - - - - - - 11 -66.94 161.15 2.57 0.01 
0.08 0.22 + - - - - 0.24 - 0.64 0.33 -0.12 - - 0.35 - - - - - - 11 -67.00 161.29 2.71 0.01 
0.22 0.41 + - - - - - + 0.63 0.30 - - - 0.36 - - - - - - 10 -68.54 161.39 2.81 0.01 
0.20 0.42 + - - - + - - 0.63 0.30 - - - 0.34 - - - - - - 10 -68.56 161.43 2.85 0.01 
-0.10 0.34 + -0.21 - - + - - 0.63 0.33 - - - 0.35 - - - - - - 11 -67.18 161.64 3.07 0.01 
-0.03 0.32 + -0.19 - - - - + 0.66 0.34 - - - 0.41 - - - - - - 11 -67.21 161.70 3.12 0.01 
-0.04 0.33 + -0.15 0.08 - - - - 0.64 0.35 - - - 0.39 - - - - - - 11 -67.25 161.78 3.20 0.01 
0.25 0.29 + - 0.16 - - - - 0.64 0.35 -0.13 - - 0.44 - - - - - - 11 -67.25 161.78 3.20 0.01 
0.17 0.38 + - - - - - - 0.50 0.24 -0.08 - - - - - - - - - 9 -70.17 161.81 3.23 0.01 
-0.08 0.31 + -0.13 - - - 0.10 - 0.64 0.33 - - - 0.35 - - - - - - 11 -67.29 161.86 3.28 0.01 
-0.01 0.48 + - - - - - - 0.49 - - - - - - - - - - - 7 -72.98 162.03 3.45 0.01 
0.09 0.44 + - - - - - + 0.50 0.24 - - - - - - - - - - 9 -70.30 162.05 3.47 0.01 
0.18 0.43 + - - + - - - 0.54 0.28 - - - 0.34 - + - - - - 11 -67.39 162.06 3.48 0.01 
0.13 0.40 + - - + - - - 0.50 0.23 - - - - - - - - - - 9 -70.34 162.15 3.57 0.01 



 
Table S6 following. Model without weighting (see Table S9 for output model with weighting). Model selection output for the analysis of  
Delay Index variation excluding Lifespan Effect Index (following on the next page). 
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-0.10 0.32 + -0.18 - - - - - 0.50 0.28 -0.10 - - - - - - - - - 10 -68.99 162.29 3.71 0.01 
0.13 0.39 + - 0.02 - - - - 0.50 0.24 - - - - - - - - - - 9 -70.50 162.47 3.89 0.01 
0.13 0.40 + - - - + - - 0.50 0.23 - - - - - - - - - - 9 -70.51 162.49 3.91 0.01 
0.06 0.29 + - - + - 0.18 - 0.64 0.30 - - - 0.35 - - - - - - 11 -67.64 162.56 3.98 0.01 
-0.15 0.35 + -0.18 - + - - - 0.50 0.26 - - - - - - - - - - 10 -69.16 162.64 4.06 0.01 
0.01 0.20 + - - - - 0.24 - 0.52 0.26 -0.11 - - - - - - - - - 10 -69.17 162.66 4.08 0.01 
-0.06 0.34 + -0.21 - + - - - 0.63 0.35 -0.11 - - 0.37 - - - - - - 12 -66.20 162.77 4.19 0.01 
0.08 0.28 + - 0.05 - - 0.16 - 0.65 0.32 - - - 0.37 - - - - - - 11 -67.75 162.77 4.20 0.01 
-0.08 0.29 + -0.24 - - + - - 0.63 0.35 -0.13 - - 0.37 - - - - - - 12 -66.23 162.82 4.24 0.01 
0.26 0.40 + - - - - - - 0.62 0.31 -0.12 - 0.10 0.39 - - - - - - 11 -67.77 162.83 4.25 0.01 
0.06 0.27 + - - - + 0.20 - 0.65 0.31 - - - 0.34 - - - - - - 11 -67.79 162.87 4.29 0.00 
0.05 0.28 + - - - - 0.20 + 0.65 0.31 - - - 0.34 - - - - - - 11 -67.80 162.87 4.29 0.00 
0.01 0.27 + -0.16 0.12 - - - - 0.64 0.38 -0.14 - - 0.43 - - - - - - 12 -66.25 162.88 4.30 0.00 
0.24 0.40 + - - + - - - 0.62 0.30 -0.09 - - 0.36 - - - - - - 11 -67.82 162.91 4.33 0.00 
0.16 0.46 + - - + + - - 0.62 0.30 - - - 0.35 - - - - - - 11 -67.85 162.98 4.40 0.00 
-0.15 0.33 + -0.20 - - + - - 0.51 0.27 - - - - - - - - - - 10 -69.34 162.99 4.41 0.00 
-0.14 0.28 + -0.13 - - - 0.11 - 0.52 0.27 - - - - - - - - - - 10 -69.35 163.01 4.43 0.00 
0.19 0.36 + - 0.11 + - - - 0.64 0.32 - - - 0.41 - - - - - - 11 -67.87 163.01 4.44 0.00 
-0.10 0.29 + - - - - 0.22 + 0.52 0.26 - - - - - - - - - - 10 -69.39 163.08 4.51 0.00 
0.11 0.41 + - - + - - - 0.41 0.21 - - - - - + - - - - 10 -69.39 163.09 4.51 0.00 
-0.13 0.37 + -0.16 - - - - + 0.51 0.27 - - - - - - - - - - 10 -69.46 163.24 4.66 0.00 
-0.05 0.25 + -0.14 - - - 0.14 - 0.64 0.35 -0.12 - - 0.36 - - - - - - 12 -66.44 163.25 4.67 0.00 
0.25 0.40 + - - - - - - 0.63 0.33 -0.09 -0.03 - 0.35 - - - - - - 11 -67.98 163.25 4.67 0.00 
-0.01 0.35 + -0.19 - - - - - 0.63 0.35 -0.14 - 0.09 0.39 - - - - - - 12 -66.44 163.25 4.67 0.00 



Table S6 following. Model without weighting (see Table S9 for output model with weighting). Model selection output for the analysis of  
Delay Index variation excluding Lifespan Effect Index (following on the next page). 
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-0.12 0.36 + -0.17 -0.02 - - - - 0.51 0.27 - - - - - - - - - - 10 -69.50 163.32 4.74 0.00 
0.25 0.39 + - - - + - - 0.62 0.31 -0.10 - - 0.36 - - - - - - 11 -68.06 163.40 4.82 0.00 
0.26 0.39 + - - - - - + 0.63 0.31 -0.09 - - 0.36 - - - - - - 11 -68.06 163.41 4.83 0.00 
0.00 0.29 + -0.21 - - - - + 0.65 0.36 -0.11 - - 0.41 - - - - - - 12 -66.53 163.43 4.85 0.00 
0.18 0.36 + - 0.13 - - - + 0.64 0.33 - - - 0.40 - - - - - - 11 -68.09 163.46 4.88 0.00 
0.19 0.35 + - 0.12 - + - - 0.64 0.33 - - - 0.41 - - - - - - 11 -68.10 163.48 4.90 0.00 
-0.03 0.34 + -0.19 - - - - - 0.64 0.37 -0.10 -0.04 - 0.36 - - - - - - 12 -66.57 163.50 4.92 0.00 
0.11 0.28 + - - - + 0.16 - 0.60 0.29 - - - 0.33 - - + - - - 12 -66.58 163.52 4.94 0.00 
-0.04 0.26 + - -0.08 - - 0.26 - 0.53 0.24 - - - - - - - - - - 10 -69.61 163.53 4.95 0.00 
0.02 0.48 + - - + + - - 0.42 0.20 - - - - + + - - - - 12 -66.59 163.54 4.96 0.00 

Model set with Δ AICc ≤ 5. N = 36 populations, 34 species. 
“+” and “-“ indicate the presence or absence of the parameter in the model, respectively. “df” is the degree of freedom. “log Likelihood” is the log 
likelihood of the model. “AICc” represents the Akaike’s information criterion corrected for sample size. “Δ AICc” is the difference in AICc between 
the focal model and the model with the lowest AICc. “weight” represents the relative probability of a model within the full set of models. 



Table S7. Model without weighting (see Table S10 for output model with weighting). Model selection output for the analysis of Delay 
Index variation including Lifespan Effect Index (following on the next page). 
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0.11 -0.07 + - - - - 0.66 - 0.36 - -0.27 0.54 - - - - - - 10 -30.40 89.61 0.00 0.08 
0.31 0.65 + - - + + - - 0.35 - - 0.57 - - - - - - 10 -31.00 90.79 1.19 0.05 
0.31 0.60 + - - + + - - 0.20 - - 0.52 - - + - - - 11 -29.15 91.29 1.69 0.04 
0.08 0.17 + - - - - 0.47 - 0.40 - - 0.56 - - - - - - 9 -33.33 91.59 1.99 0.03 
0.36 0.56 + - - + + - - 0.22 - - 0.57 - + - - - - 11 -29.38 91.76 2.15 0.03 
-0.08 0.43 + -0.31 - - - - - 0.40 - - 0.54 - - - - - - 9 -33.56 92.04 2.44 0.02 
0.03 -0.03 + - - - - 0.70 + 0.36 - -0.33 0.52 - - - - - - 11 -29.56 92.12 2.52 0.02 
-0.12 -0.03 + -0.19 - - - 0.54 - 0.37 - -0.27 0.53 - - - - - - 11 -29.58 92.16 2.56 0.02 
0.18 -0.06 + - - - + 0.59 - 0.28 - -0.28 0.51 - - - + - - 12 -27.39 92.36 2.75 0.02 
0.09 0.01 + - - - + 0.62 - 0.39 - -0.27 0.52 - - - - - - 11 -29.71 92.41 2.81 0.02 
0.45 0.52 + - - - - - - 0.38 - - 0.56 - - - - - - 8 -35.72 92.77 3.16 0.02 
0.15 -0.12 + - - - + 0.64 - 0.25 - -0.30 0.53 - + - - - - 12 -27.68 92.92 3.31 0.02 
-0.01 0.36 + -0.33 - - - - - 0.37 - -0.17 0.53 - - - - - - 10 -32.30 93.39 3.79 0.01 
0.09 -0.09 + - - + - 0.69 - 0.38 - -0.29 0.53 - - - - - - 11 -30.33 93.65 4.05 0.01 
-0.18 0.21 + -0.21 - - - 0.34 - 0.40 - - 0.54 - - - - - - 10 -32.46 93.73 4.12 0.01 
0.35 0.42 + - - + + 0.04 - - - - 0.57 - - - + - - 11 -30.36 93.73 4.12 0.01 
0.10 -0.08 + - 0.05 - - 0.64 - 0.37 - -0.27 0.56 - - - - - - 11 -30.37 93.75 4.14 0.01 
0.11 -0.07 + - - - - 0.66 - 0.36 0.02 -0.27 0.54 - - - - - - 11 -30.39 93.77 4.16 0.01 
0.34 0.63 + - - + + - - 0.36 0.12 - 0.52 - - - - - - 11 -30.43 93.86 4.25 0.01 
0.25 -0.19 + - - - + 0.58 - - - -0.32 0.53 - - - + - - 11 -30.46 93.92 4.32 0.01 
0.26 0.44 + - - + + 0.14 - 0.25 - - 0.55 - - - + - - 12 -28.19 93.95 4.34 0.01 
0.42 0.46 + - - + - - - 0.14 - - 0.52 - - + - - - 10 -32.59 93.97 4.36 0.01 
0.06 0.25 + - - - + 0.43 - 0.43 - - 0.53 - - - - - - 10 -32.63 94.06 4.45 0.01 
0.17 0.48 + - - + + 0.21 - 0.37 - - 0.56 - - - - - - 11 -30.55 94.09 4.49 0.01 



Table S7 following. Model without weighting (see Table S10 for output model with weighting). Model selection output for the analysis of 
Delay Index variation including Lifespan Effect Index (following on the next page). 

Model set with Δ AICc ≤ 5. N = 22 populations, 21 species. 
“+” and “-“ indicate the presence or absence of the parameter in the model, respectively. “df” is the degree of freedom. “log 
Likelihood” is the log likelihood of the model. “AICc” represents the Akaike’s information criterion corrected for sample size. “Δ AICc” 
is the difference in AICc between the focal model and the model with the lowest AICc. “weight” represents the relative probability of 
a model within the full set of models. 
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0.39 0.59 + - - - + - - 0.42 - - 0.53 - - - - - - 9 -34.70 94.33 4.72 0.01 
0.25 0.56 + - 0.13 + + - - 0.37 - - 0.60 - - - - - - 11 -30.73 94.46 4.85 0.01 
-0.15 0.37 + -0.37 - - - - - 0.42 0.14 - 0.48 - - - - - - 10 -32.85 94.50 4.90 0.01 
0.37 0.62 + - - + + - - 0.34 - -0.07 0.56 - - - - - - 11 -30.76 94.53 4.92 0.01 



Table S8. Justification for the interactions used in the analysis of the Delay Index. 

The variables included in the interactions are explained in the manuscript as well as in Table 1 for the indices.  

  

Interaction  Reason for inclusion in the model 

Before Variation Index x After Variation Index 
 To test if the relative timing of the Optimal AFR over reproductive lifespan (Delay Index) 
was influenced simultaneously by a LRS cost from initiating reproduction both before the 
optimal timing (Before Variation Index) and after the optimal timing (After Variation Index).   

Choice Index x Before Variation Index 

 To test if Delay Index was influenced simultaneously by the level of probability to adopt an 
AFR leading to the highest fitness return (i.e. the span of “beneficial AFR” within the 
observed range of AFR) and a LRS cost from initiating reproduction before Optimal AFR. 
We expect species with a large span of “beneficial AFR” and a low LRS cost of early 
reproduction to benefit from a late AFR. 

Choice Index x After Variation Index 

 To test if Delay Index was influenced simultaneously by the level of probability to adopt an 
AFR leading to the highest fitness return (i.e. the span of “beneficial AFR” within the 
observed range of AFR) and a LRS cost from initiating reproduction after Optimal AFR.  
We expect species with a small span of “beneficial AFR” and a high LRS cost of late 
reproduction to benefit from an early AFR. 

Mean lifespan x Family-living  For each of these interactions we tested whether sociality influenced the effect of the focal 
predictors on Delay Index based on the idea that living in a kin group (Family living) or 
breeding cooperatively (Helper presence) might buffer costs associated with the timing of 
the AFR within the reproductive lifespan.                                                             
For instance, species with a high risk of nest predation need to get experience to successfully 
defend their nest and have a greater reproductive output. Consequently, they might benefit 
from a later AFR. However, if the presence of helpers provides anti-predator protection, it 
might allow less experienced individuals to still achieve a good reproductive output. 
Therefore, we expect species with a high risk of nest predation breeding cooperatively to 
benefit more from an earlier AFR than species with a high risk of nest predation but 
breeding as a pair without helpers.  

Mean lifespan x Helper presence  

Nest predation risk x Family-living  

Nest predation risk x Helper presence  

Choice Index x Family-living  

Choice Index x Helper presence  



Table S9. Model selection output for the analysis of Delay Index variation excluding Lifespan Effect Index (following on the next page). 
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0.14 0.46 + - - + + - - 0.36 0.22 - - - - + + - - - - 12 -60.84 152.05 0.00 0.05 
0.06 0.30 + - -0.03 + + 0.19 - 0.36 0.28 - - - - - - + + + + 16 -54.44 152.97 0.92 0.03 
0.06 0.33 + - -0.03 + + 0.17 - 0.37 0.28 - - - - + - + + - + 16 -54.74 153.56 1.51 0.02 
0.22 0.47 + - - + + - - 0.47 0.29 - - - 0.22 + + - - - - 13 -60.14 153.86 1.81 0.02 
0.23 0.27 + - 0.28 - - - - 0.67 0.43 - - - 0.52 - - - - - - 10 -64.84 153.99 1.94 0.02 
0.10 0.22 + - -0.04 + + 0.25 - 0.35 0.30 -0.16 - - - - - + + + + 17 -53.12 154.16 2.11 0.02 
0.19 0.44 + - - + + - - 0.36 0.22 -0.11 - - - + + - - - - 13 -60.30 154.19 2.14 0.02 
0.33 0.43 + - - - - - - 0.62 0.39 - - - 0.42 - - - - - - 9 -66.41 154.29 2.24 0.02 
0.10 0.25 + - -0.04 + + 0.24 - 0.37 0.29 -0.17 - - - + - + + - + 17 -53.28 154.48 2.43 0.01 
0.07 0.36 + - -0.02 + + 0.12 - 0.34 0.27 - - - - - - + + - + 15 -57.10 154.64 2.59 0.01 
0.10 0.49 + - - + + - + 0.37 0.23 - - - - + + - - - - 13 -60.60 154.79 2.74 0.01 
-0.02 0.40 + -0.10 - + + - - 0.38 0.24 - - - - + + - - - - 13 -60.61 154.81 2.76 0.01 
0.09 0.50 + - - + + - - 0.35 - - - - - + + - - - - 11 -63.77 154.82 2.77 0.01 
0.08 0.39 + - - + + 0.09 - 0.37 0.23 - - - - + + - - - - 13 -60.73 155.03 2.98 0.01 
0.30 0.22 + - 0.32 - - - - 0.69 0.46 -0.15 - - 0.57 - - - - - - 11 -63.89 155.06 3.01 0.01 
0.06 0.32 + - -0.03 + + 0.17 - 0.37 0.29 - - - - - + + + - + 16 -55.49 155.06 3.01 0.01 
0.13 0.45 + - 0.02 + + - - 0.37 0.22 - - - - + + - - - - 13 -60.83 155.25 3.20 0.01 
0.15 0.29 + - 0.03 + + 0.14 - 0.46 0.35 - - - 0.23 - - + + + + 17 -53.73 155.38 3.33 0.01 
0.05 0.23 + - 0.03 + + 0.22 + 0.36 0.33 -0.22 - - - - - + + + + 18 -51.82 155.55 3.50 0.01 
0.05 0.28 + - -0.03 + + 0.21 - 0.38 0.29 - - - - - + + + + + 17 -53.84 155.60 3.55 0.01 
0.30 0.44 + - - + + - - 0.47 0.31 -0.13 - - 0.25 + + - - - - 14 -59.38 155.69 3.64 0.01 
0.10 0.23 + - -0.04 + + 0.25 - 0.37 0.30 -0.17 - - - - + + + - + 17 -54.01 155.92 3.87 0.01 
0.22 0.20 + - 0.04 + + 0.21 - 0.48 0.38 -0.18 - - 0.28 - - + + + + 18 -52.01 155.93 3.88 0.01 
0.06 0.30 + - -0.03 + + 0.19 - 0.37 0.28 - - - - + - + + + + 17 -54.04 155.99 3.94 0.01 
0.11 0.29 + - -0.03 + + 0.19 - 0.33 0.28 -0.15 - - - - - + + - + 16 -55.97 156.03 3.98 0.01 



 

Table S9 following. Model selection output for the analysis of Delay Index variation excluding Lifespan Effect Index. 
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0.02 0.32 + - 0.01 + + 0.16 + 0.36 0.30 - - - - - - + + + + 17 -54.06 156.03 3.98 0.01 
0.44 0.35 + - - - - - + 0.65 0.40 - - - 0.48 - - - - - - 10 -65.86 156.04 3.99 0.01 
0.15 0.32 + - 0.03 + + 0.12 - 0.47 0.35 - - - 0.22 + - + + - + 17 -54.07 156.05 4.00 0.01 
0.10 0.39 + - - + + 0.07 - 0.37 0.22 - - - - + + + - - - 14 -59.66 156.25 4.20 0.01 
0.39 0.42 + - - - - - - 0.63 0.40 -0.11 - - 0.44 - - - - - - 10 -65.98 156.27 4.22 0.01 
0.22 0.22 + - 0.03 + + 0.19 - 0.49 0.38 -0.19 - - 0.28 + - + + - + 18 -52.21 156.33 4.28 0.01 
0.06 0.26 + - 0.02 + + 0.21 + 0.37 0.33 -0.22 - - - + - + + - + 18 -52.22 156.34 4.29 0.01 
0.10 0.39 + -0.13 - - - - - 0.63 0.41 - - - 0.42 - - - - - - 10 -66.04 156.38 4.33 0.01 
0.18 0.35 + - 0.05 + + 0.07 - 0.46 0.35 - - - 0.27 - - + + - + 16 -56.16 156.41 4.36 0.01 
0.16 0.48 + - - + + - + 0.36 0.24 -0.14 - - - + + - - - - 14 -59.74 156.42 4.37 0.01 
0.25 0.20 + - 0.05 + + 0.20 - 0.53 0.42 -0.20 - - 0.35 - + + + - + 18 -52.32 156.54 4.49 0.01 
-0.02 0.34 + -0.15 - + + - - 0.38 0.25 -0.14 - - - + + - - - - 14 -59.81 156.57 4.52 0.01 
0.09 0.20 + - -0.04 + + 0.28 - 0.37 0.31 -0.17 - - - - + + + + + 18 -52.33 156.58 4.53 0.00 
0.05 0.40 + -0.11 - + + - - 0.48 0.31 - - - 0.22 + + - - - - 14 -59.86 156.66 4.61 0.00 
0.18 0.30 + - 0.05 + + 0.12 - 0.50 0.38 - - - 0.29 - + + + - + 17 -54.38 156.67 4.62 0.00 
0.30 0.24 + - 0.25 - - - + 0.68 0.43 - - - 0.55 - - - - - - 11 -64.70 156.67 4.62 0.00 
0.18 0.42 + - - - - - - 0.43 0.25 - - - - - - - - - - 8 -68.98 156.67 4.62 0.00 
0.20 0.41 + - 0.10 + + - - 0.49 0.32 - - - 0.27 + + - - - - 14 -59.91 156.76 4.71 0.00 
0.09 0.30 + 0.03 -0.03 + + 0.20 - 0.36 0.28 - - - - - - + + + + 17 -54.43 156.76 4.71 0.00 
0.30 0.31 + - 0.32 - - -0.09 - 0.66 0.44 - - - 0.53 - - - - - - 11 -64.74 156.77 4.72 0.00 
0.13 0.26 + -0.06 0.26 - - - - 0.67 0.44 - - - 0.52 - - - - - - 11 -64.75 156.77 4.72 0.00 
0.19 0.44 + - - + + - - 0.36 0.17 -0.14 0.06 - - + + - - - - 14 -59.94 156.82 4.77 0.00 



 
 

Table S9 following. Model selection output for the analysis of Delay Index variation excluding Lifespan Effect Index. 

Model set with Δ AICc ≤ 5. N = 36 populations, 34 species. 
“+” and “-“ indicate the presence or absence of the parameter in the model, respectively. “df” is the degree of freedom. “log Likelihood” is the log 
likelihood of the model. “AICc” represents the Akaike’s information criterion corrected for sample size. “Δ AICc” is the difference in AICc between 
the focal model and the model with the lowest AICc. “weight” represents the relative probability of a model within the full set of models. 
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0.04 0.35 + - 0.00 + + 0.15 + 0.37 0.29 - - - - + - + + - + 17 -54.49 156.89 4.84 0.00 
0.16 0.38 + - - + + 0.10 - 0.48 0.30 - - - 0.22 + + - - - - 14 -59.98 156.90 4.85 0.00 
0.25 0.37 + - - - - 0.09 - 0.63 0.39 - - - 0.42 - - - - - - 10 -66.30 156.91 4.86 0.00 
0.23 0.27 + - 0.28 - + - - 0.67 0.44 - - - 0.52 - - - - - - 11 -64.83 156.93 4.88 0.00 
0.24 0.27 + - 0.28 + - - - 0.67 0.44 - - - 0.52 - - - - - - 11 -64.83 156.95 4.90 0.00 
0.11 0.32 + - - + + 0.14 - 0.37 0.23 -0.13 - - - + + - - - - 14 -60.03 157.00 4.95 0.00 



Table S10. Model selection output for the analysis of Delay Index variation including Lifespan Effect Index. 
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0.36 0.05 + - - - - 0.53 - 0.36 - -0.33 0.53 - - - - - - 10 -24.97 78.73 0.00 0.10 
0.42 0.61 + - - + + - - 0.35 - - 0.53 - - - - - - 10 -25.55 79.90 1.17 0.06 
0.35 0.30 + - 0.39 - - - + 0.38 - -0.36 0.61 - - - - - - 11 -23.91 80.82 2.09 0.04 
0.51 0.58 + - - + + - - 0.33 - -0.19 0.52 - - - - - - 11 -23.91 80.82 2.09 0.04 
0.35 0.08 + - - - + 0.53 - 0.38 - -0.32 0.51 - - - - - - 11 -24.30 81.61 2.87 0.02 
0.68 0.78 + 0.21 - + + - - 0.31 - - 0.54 - - - - - - 11 -24.39 81.78 3.05 0.02 
0.41 0.16 + - - - - 0.43 + 0.35 - -0.36 0.52 - - - - - - 11 -24.42 81.85 3.11 0.02 
0.28 0.00 + - 0.18 - - 0.46 - 0.38 - -0.33 0.57 - - - - - - 11 -24.48 81.97 3.23 0.02 
0.60 0.55 + - - - - - + 0.32 - -0.33 0.54 - - - - - - 10 -26.64 82.09 3.36 0.02 
0.41 0.59 + - - + + - - 0.31 - - 0.51 - - + - - - 11 -24.69 82.38 3.65 0.02 
0.42 0.59 + - - + + - - 0.31 - - 0.52 - + - - - - 11 -24.70 82.41 3.68 0.02 
0.29 0.24 + - - - - 0.37 - 0.38 - - 0.56 - - - - - - 9 -28.90 82.72 3.98 0.01 
0.33 -0.01 + - - + - 0.60 - 0.37 - -0.35 0.52 - - - - - - 11 -24.88 82.76 4.03 0.01 
0.33 0.37 + -0.21 - - - - - 0.35 - -0.28 0.55 - - - - - - 10 -27.02 82.83 4.10 0.01 
0.35 0.04 + - - - - 0.54 - 0.36 0.02 -0.33 0.52 - - - - - - 11 -24.95 82.90 4.17 0.01 
0.37 0.04 + 0.02 - - - 0.56 - 0.36 - -0.33 0.53 - - - - - - 11 -24.96 82.91 4.18 0.01 
0.75 0.80 + 0.28 - + + - - 0.24 - - 0.51 - - + - - - 12 -22.69 82.94 4.20 0.01 
0.41 0.61 + - - + + - - 0.35 0.11 - 0.52 - - - - - - 11 -25.04 83.07 4.34 0.01 
0.48 0.55 + - - - - - - 0.35 - - 0.59 - - - - - - 8 -30.90 83.14 4.41 0.01 
0.33 0.33 + - 0.40 - + - + 0.41 - -0.36 0.58 - - - - - - 12 -22.80 83.17 4.44 0.01 



 
 
Table S10 following. Model selection output for the analysis of Delay Index variation including Lifespan Effect Index. 

 

Model set with Δ AICc ≤ 5. N = 22 populations, 21 species. 
“+” and “-“ indicate the presence or absence of the parameter in the model, respectively. “df” is the degree of freedom. “log 
Likelihood” is the log likelihood of the model. “AICc” represents the Akaike’s information criterion corrected for sample size. “Δ AICc” 
is the difference in AICc between the focal model and the model with the lowest AICc. “weight” represents the relative probability of 
a model within the full set of models.
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0.50 0.56 + - - + + - - 0.29 - -0.20 0.50 - - + - - - 12 -22.84 83.24 4.51 0.01 
0.29 0.26 + - 0.45 - - - + 0.39 0.17 -0.38 0.59 - - - - - - 12 -22.84 83.25 4.52 0.01 
0.75 0.78 + 0.27 - + + - - 0.25 - - 0.53 - + - - - - 12 -22.85 83.26 4.53 0.01 
0.51 0.55 + - - + + - - 0.29 - -0.19 0.52 - + - - - - 12 -22.89 83.35 4.62 0.01 
0.35 0.27 + - 0.37 - - - - 0.38 - -0.24 0.65 - - - - - - 10 -27.28 83.37 4.64 0.01 
0.52 0.80 + - - + + -0.21 - 0.33 - - 0.54 - - - - - - 11 -25.27 83.53 4.80 0.01 
0.34 0.53 + - 0.13 + + - - 0.37 - - 0.56 - - - - - - 11 -25.31 83.61 4.88 0.01 
0.58 0.52 + - - - - - - 0.33 - -0.21 0.58 - - - - - - 9 -29.39 83.69 4.96 0.01 



Table S11. Results from models testing the within- and among-species effect of AFR on LRS (N = 
36 populations, 34 species). Estimates and 95% confidence intervals (CI) are presented. Δ AICc 
corresponds to the change in AICc when the specific parameter was included vs. excluded from 
the full model.  

 

* factor centered and scaled; na – not applicable; † support for inclusion of the factor 

 

 

Table S12. Correlation between Optimal AFR vs. modal AFR and Optimal AFR vs. mean AFR. 
 

  

  
Standard 
deviation Estimate 95% CI Δ AICc 

Fixed effects:     
     intercept  -0.12 (-0.87, 0.62) - 
     ln(body mass)*  -0.11 (-0.29, 0.08) 0.91 
     sex: Both  0.00 na 

3.09 
 

     sex: Female  0.38 (-0.37, 1.14) 
     sex: Male  0.41 (-0.34, 1.16) 
     within-species AFR*  -0.54 (-0.70, -0.39) -43.83† 

     within-species AFR2*  -0.26 (-0.43, -0.10) -7.45† 
     between-species AFR  0.08 (-0.13, 0.29) 1.57 
Random effects:     
     species 0.00  (0.00, 0.16)  
     residuals 19.64  (18.14, 21.35)  

cases 
Mean AFR vs. Optimal AFR AFR mode vs. Optimal AFR 

Correlation 
coefficient P Slope Correlation 

coefficient P Slope 

all  
(N=62) 

0.84 
(Spearman) < 0.0001 0.95 0.80 

(Spearman) < 0.0001 0.98 

with  
AFR range > 4 

(N=29) 

0.85 
(Spearman) < 0.0001 0.99 0.87 

(Spearman) < 0.0001 0.82 

with 
AFR range > 6 

(N=12) 

0.96 
(Pearson) < 0.0001 1.13 0.92 

(Pearson) < 0.0001 1.06 



Table S13. Model with 90CI indices (see Table 3 for comparison). Relative importance of 
predictors included in the full model for the analysis of Delay Index variation excluding Lifespan 
Effect Index (N = 36 populations, 34 species) and model averaging estimates (based on 51 models 
with Δ AICc (AICc focal model – AICc best model) ≤ 5, see Table S15). 

Predictors 
Predict

or  
weight* 

Relative 
importance 

of 
predictors† 

Model                                                                         
averaging                                                                             

estimates‡,§ 
95% CI 

intercept   0.42 (-0.60, 1.44) 
ln(body mass) 0.51 1.00 0.21 (-0.17, 0.59) 

sex 0.51 1.00 
Both:   0.00 na 

Female:   -0.30 (-1.40, 0.79) 
Male:   -0.54 (-1.64, 0.56) 

Choice Index 90CI  ¶ 0.51 1.00 0.53 (0.29, 0.77) 
Before Variation Index 90CI ¶ 0.51 1.00 0.36 (-0.02, 0.74) 
Before Variation Index 90CI: Choice Index 90CI 0.51 1.00 0.86 (0.35, 1.37) 
nest predation risk 0.41 0.80 0.35 (0.03, 0.84) 
After Variation Index 90CI ¶ 0.35 0.69 -0.17 (-0.49, 0.01) 
Before Variation Index 90CI: After Variation Index 90CI 0.17 0.33 -0.05 (-0.32, 0.01) 

family-living 0.13 0.26 NO:  0.00 na 
YES:  0.15 (-0.95, 2.15) 

chick development mode 0.12 0.24 Altricial:  0.00 na 
Precocial: 0.17 (-0.28, 1.69) 

mean lifespan 0.10 0.20 -0.04 (-0.77, 0.35) 

helper presence 0.10 0.19 NO:  0.00 na 
YES:  -0.12 (-2.91, 1.63) 

nest predation risk: family-living 0.05 0.09 NO:  0.00 na 
YES:  0.09 (-0.34, 2.21) 

Choice Index: helper presence 0.04 0.08 NO:  0.00 na 
YES:  -0.12 (-2.55, -0.30) 

latitude 0.04 0.08 0.00 (-0.30, 0.42) 

Choice Index: family-living 0.04 0.07 NO:  0.00 na 
YES:  0.11 (0.62, 2.44) 

After Variation Index 90CI: Choice Index 90CI 0.02 0.04 -0.00 (-0.53, 0.48) 

mean lifespan: helper presence 0.02 0.03 NO:  0.00 na 
YES: 0.13  (2.18, 7.04) 

mean lifespan: family-living 0.02 0.03 NO:  0.00 na 
YES: -0.10 (-5.17, -1.96) 

nest predation risk: helper presence 0.01 0.01 NO:  0.00 na 
YES:  -0.01 (-3.41, 0.27) 

*: sum of model weights from Table S15 including the focal predictor. na – not applicable.  
†: predictor weight relative to the highest weighted predictor. 
‡: model averaging estimates according to full model averaging approach since the best AICc model is not strongly 
weighted (weight = 0.05) (Symonds and Moussalli 2011).  
§: reference levels of categorical variables have an estimate of 0; estimates reflect difference in slope between the 
reference level and focal level. 
Note: The relative importance of body mass and sex is due to their inclusion by default in each model to control 
for allometry and sex differences. All continuous variables are centered and scaled. 
¶: predictors reflecting the relationship between LRS and AFR, see Table 1 and the Indices and estimates section 
of Materials and methods.  



Table S14. Model with 90CI indices (see Table 4 for comparison). Relative importance of 
predictors included in the full model for the analysis of Delay Index variation including Lifespan 
Effect Index (N = 22 populations, 21 species) and model averaging estimates (based on 45 models 
with Δ AICc (AICc focal model – AICc best model) ≤ 5, see Table S16). 

Predictors Predictor  
weight* 

Relative 
importance 

of  
predictors† 

Model                                                                         
averaging                                                                             

estimates‡,§  
95% CI 

intercept     0.64 (-0.24, 1.52) 
ln(body mass) 0.61 1.00 0.47 (-0.02, 0.96) 

sex 0.61 1.00 
           Both:   0.00 na 
      Female:   -0.82 (-1.51, 0.34) 
          Male:   -0.59 (-1.52, 0.34) 

Lifespan Effect Index ¶ 0.61 1.00 0.47 (0.25, 0.69) 
Choice Index 90CI ¶ 0.58 0.96 0.34 (0.11, 0.61) 
Before Variation Index 90CI ¶ 0.32 0.52 0.12 (-0.09, 0.56) 
Before Variation Index 90CI: Choice Index 90CI 0.31 0.51 0.25 (0.18, 0.83) 
After Variation Index 90CI ¶ 0.29 0.47 -0.12 (-0.51, -0.01) 

family-living  0.16 0.27 
NO:  0.00 na 
YES:  -0.25 (-2.30, 0.45) 

nest predation risk 0.15 0.25 0.10 (-0.01, 0.82) 

helper presence 0.15 0.25 
NO:  0.00 na 
YES:  0.42 (-1.19, 4.58) 

chick development mode 0.09 0.15 
Altricial:  0.00 na 

Precocial:  -0.08 (-1.27, 0.18) 
mean lifespan 0.08 0.14 -0.02 (-0.94, 0.71) 
latitude 0.08 0.14 0.03 (-0.33, 0.70) 

Mean lifespan: helper presence 0.04 0.06 
NO:  0.00 na 
YES:  0.20 (-0.44, 7.34) 

Choice Index: helper presence 0.01 0.02 
NO:  0.00 na 
YES:  -0.03 (-2.45, -0.28) 

Choice Index: family-living 0.01 0.02 
NO:  0.00 na 
YES:  0.01 (-0.11, 0.80) 

*: sum of model weights from Table S16 including the focal predictor. na – not applicable.  
†: predictor weight relative to the highest weighted predictor. 
‡: model averaging estimates according to full model averaging approach since the best AICc model is not strongly 
weighted (weight = 0.06) (Symonds and Moussalli 2011).  
§: reference levels of categorical variables have an estimate of 0; estimates reflect difference in slope between the 
reference level and focal level. 
Note: The relative importance of body mass and sex is due to their inclusion by default in each model to control 
for allometry and sex differences. All continuous variables are centered and scaled. 
¶: predictors reflecting the relationship between LRS or survival and AFR, see Table 1 and the Indices and estimates 
section of Materials and methods. 

  



Table S15. Model with 90CI indices (see Table S9 for comparison). Model selection output for the analysis of Delay Index variation 
excluding Lifespan Effect Index (following on the next page). 
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Δ 
AI

Cc
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0.27 0.16 + - 0.44 - - - - 0.52 0.31 -0.25 - - 0.81 - - - - - - 11 -67.68 162.63 0.00 0.04 
0.32 0.13 + - 0.49 - - - - 0.59 0.56 -0.25 -0.14 - 1.03 - - - - - - 12 -66.22 162.80 0.17 0.04 
0.22 0.25 + - 0.35 - - - - 0.47 0.23 - - - 0.71 - - - - - - 10 -69.72 163.76 1.12 0.02 
0.57 0.29 + - 0.62 - - -0.33 - 0.61 0.60 -0.23 -0.17 - 1.11 - - - - - - 13 -65.15 163.89 1.26 0.02 
0.63 0.29 + - - - - - + 0.49 0.19 - - - 0.76 - - - - - - 10 -69.83 163.98 1.34 0.02 
0.47 0.18 + - 0.27 - - - + 0.51 0.21 - - - 0.80 - - - - - - 11 -68.66 164.61 1.97 0.02 
0.44 0.27 + - 0.53 - - -0.23 - 0.52 0.30 -0.24 - - 0.83 - - - - - - 12 -67.19 164.74 2.11 0.02 
0.50 0.09 + - 0.36 + - - - 0.55 0.29 -0.27 - - 0.88 - - - - - + 13 -65.61 164.81 2.17 0.01 
0.42 0.12 + - 0.37 - - - + 0.53 0.29 -0.22 - - 0.85 - - - - - - 12 -67.26 164.88 2.24 0.01 
0.48 0.09 + - 0.41 - - - + 0.61 0.54 -0.21 -0.15 - 1.09 - - - - - - 13 -65.68 164.94 2.30 0.01 
0.35 0.45 + - - - - - - 0.43 0.22 - - - 0.62 - - - - - - 9 -71.77 165.01 2.37 0.01 
0.46 0.17 + 0.11 0.48 - - - - 0.53 0.31 -0.25 - - 0.83 - - - - - - 12 -67.46 165.29 2.65 0.01 
0.43 0.38 + - 0.46 - - -0.28 - 0.48 0.23 - - - 0.75 - - - - - - 11 -69.01 165.29 2.66 0.01 
0.29 0.14 + - 0.45 + - - - 0.53 0.32 -0.26 - - 0.82 - - - - - - 12 -67.49 165.34 2.71 0.01 
0.53 0.07 + - 0.41 + - - - 0.61 0.53 -0.27 -0.14 - 1.09 - - - - - + 14 -64.27 165.47 2.84 0.01 
0.51 0.14 + 0.11 0.52 - - - - 0.60 0.56 -0.25 -0.15 - 1.05 - - - - - - 13 -65.97 165.52 2.89 0.01 
0.29 0.15 + - 0.44 - + - - 0.52 0.31 -0.25 - - 0.81 - - - - - - 12 -67.60 165.56 2.93 0.01 
0.34 0.11 + - 0.50 + - - - 0.60 0.57 -0.26 -0.14 - 1.05 - - - - - - 13 -66.02 165.63 3.00 0.01 
0.39 0.17 + - 0.34 + + - - 0.49 0.29 -0.26 - - 0.77 + + - - - - 15 -62.63 165.69 3.06 0.01 
0.27 0.15 + - 0.45 - - - - 0.53 0.32 -0.25 - -0.03 0.81 - - - - - - 12 -67.67 165.71 3.07 0.01 
0.33 0.12 + - 0.49 - + - - 0.59 0.56 -0.25 -0.14 - 1.04 - - - - - - 13 -66.13 165.84 3.20 0.01 
0.64 0.28 + - - - - - + 0.50 0.24 -0.13 - - 0.78 - - - - - - 11 -69.29 165.86 3.22 0.01 



Table S15 following. Model with 90CI indices (see Table S9 for comparison). Model selection output for the analysis of Delay Index 
variation excluding Lifespan Effect Index. 
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Life-history 
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change in LRS with 
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0.41 0.42 + - - - - - - 0.45 0.27 -0.17 - - 0.67 - - - - - - 10 -70.84 166.00 3.36 0.01 
0.32 0.13 + - 0.49 - - - - 0.59 0.56 -0.25 -0.14 -0.02 1.03 - - - - - - 13 -66.22 166.01 3.38 0.01 
0.37 0.45 + - - + + - - 0.39 0.19 - - - 0.57 + + - - - - 13 -66.27 166.13 3.49 0.01 
0.43 0.27 + 0.11 0.39 - - - - 0.48 0.23 - - - 0.73 - - - - - - 11 -69.48 166.24 3.61 0.01 
0.43 0.14 + - 0.38 + + - - 0.56 0.53 -0.26 -0.14 - 0.99 + + - - - - 16 -61.11 166.31 3.67 0.01 
0.28 0.14 + - 0.17 + + 0.12 - 0.38 0.31 -0.28 - - 0.55 - - + + - + 17 -59.22 166.34 3.71 0.01 
0.44 0.20 + - 0.27 + - - - 0.50 0.21 - - - 0.77 - - - - - + 12 -68.02 166.41 3.78 0.01 
0.45 0.24 + -0.11 - - - - + 0.49 0.20 - - - 0.77 - - - - - - 11 -69.59 166.47 3.83 0.01 
0.24 0.25 + - 0.35 - + - - 0.47 0.23 - - - 0.71 - - - - - - 11 -69.66 166.60 3.97 0.01 
0.23 0.24 + - 0.36 + - - - 0.48 0.23 - - - 0.72 - - - - - - 11 -69.67 166.62 3.98 0.01 
0.66 0.24 + - 0.55 - - -0.29 + 0.62 0.58 -0.20 -0.17 - 1.15 - - - - - - 14 -64.87 166.68 4.04 0.01 
0.42 0.04 + - 0.47 + + - - 0.56 0.32 -0.29 - - 0.87 - - - - - - 13 -66.60 166.78 4.15 0.01 
0.71 0.27 + - - - - - + 0.56 0.45 -0.12 -0.12 - 0.98 - - - - - - 12 -68.25 166.88 4.24 0.01 
0.45 0.40 + - - + + - - 0.41 0.24 -0.19 - - 0.62 + + - - - - 14 -64.97 166.88 4.25 0.01 
0.64 0.29 + - - - + - + 0.49 0.19 - - - 0.76 - - - - - - 11 -69.80 166.89 4.25 0.01 
0.62 0.28 + - - - - 0.02 + 0.49 0.19 - - - 0.76 - - - - - - 11 -69.83 166.94 4.30 0.01 
0.63 0.29 + - - + - - + 0.49 0.19 - - - 0.76 - - - - - - 11 -69.83 166.94 4.31 0.01 
0.58 0.28 + - 0.36 - - -0.20 + 0.51 0.21 - - - 0.81 - - - - - - 12 -68.29 166.96 4.32 0.01 
0.30 0.29 + - 0.24 + + - - 0.43 0.21 - - - 0.65 + + - - - - 14 -65.01 166.96 4.33 0.01 
0.46 0.01 + - 0.51 + + - - 0.63 0.57 -0.29 -0.15 - 1.10 - - - - - - 14 -65.08 167.09 4.45 0.00 
0.58 0.28 + - 0.62 - + -0.33 - 0.61 0.60 -0.23 -0.17 - 1.11 - - - - - - 14 -65.10 167.14 4.50 0.00 
0.56 0.27 + - 0.62 + - -0.32 - 0.61 0.60 -0.23 -0.17 - 1.11 - - - - - - 14 -65.13 167.19 4.55 0.00 



Table S15 following. Model with 90CI indices (see Table S9 for comparison). Model selection output for the analysis of Delay Index 
variation excluding Lifespan Effect Index. 

 
 

Covariate   Ecological                                
factors 

Social 
lifestyle 
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Life-history 
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Indices reflecting 
change in LRS with 
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0.55 0.29 + -0.01 0.62 - - -0.34 - 0.61 0.60 -0.23 -0.18 - 1.11 - - - - - - 14 -65.15 167.24 4.60 0.00 
0.57 0.29 + - 0.62 - - -0.33 - 0.61 0.60 -0.23 -0.17 -0.01 1.11 - - - - - - 14 -65.15 167.24 4.61 0.00 
0.54 0.37 + - - + + - + 0.43 0.17 - - - 0.68 + + - - - - 14 -65.21 167.35 4.72 0.00 
0.53 0.22 + - 0.46 - - -0.19 + 0.53 0.29 -0.21 - - 0.86 - - - - - - 13 -66.93 167.44 4.81 0.00 
0.26 0.09 + - 0.16 + + 0.17 - 0.38 0.31 -0.29 - - 0.53 - - + + + + 18 -57.77 167.45 4.82 0.00 
0.45 0.41 + - - - - - - 0.50 0.45 -0.16 -0.11 - 0.83 - - - - - - 11 -70.11 167.49 4.86 0.00 
0.27 0.14 + - 0.16 + + 0.14 - 0.39 0.30 -0.26 - - 0.52 + - + + - + 18 -57.81 167.53 4.89 0.00 

Model set with Δ AICc ≤ 5. N = 36 populations, 34 species. 
“+” and “-“ indicate the presence or absence of the parameter in the model, respectively. “df” is the degree of freedom. “log Likelihood” is the log 
likelihood of the model. “AICc” represents the Akaike’s information criterion corrected for sample size. “Δ AICc” is the difference in AICc between 
the focal model and the model with the lowest AICc. “weight” represents the relative probability of a model within the full set of models. 



Table S16. Model with 90CI indices (see Table S10 for comparison). Model selection output for the analysis of Delay Index variation 
including Lifespan Effect Index (following on the next page). 

  Covariate   Ecological                                
factors 

Social 
lifestyle 
factors 

Life-history 
factors  

Indices reflecting  change in LRS 
or survival with AFR Interactions Model information 
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0.59 0.22 + - 0.42 - - - - 0.47 0.32 -0.26 0.44 0.58 - - - - - 12 -24.05 85.66 0.00 0.06 
0.82 0.53 + - - - - - - 0.42 0.17 - 0.40 0.47 - - - - - 10 -28.54 85.89 0.23 0.05 
0.88 0.51 + - - - - - - 0.42 0.17 -0.21 0.41 0.48 - - - - - 11 -26.67 86.34 0.69 0.04 
0.57 0.30 + - 0.34 - - - - 0.46 0.28 - 0.42 0.54 - - - - - 11 -27.01 87.02 1.37 0.03 
0.51 0.48 + - - - - - - 0.30 - - 0.55 - - - - - - 8 -32.89 87.10 1.45 0.03 
0.55 0.50 + - - - - - + 0.30 - -0.31 0.53 - - - - - - 10 -29.21 87.22 1.56 0.03 
0.32 0.14 + - 0.56 - - - + 0.43 0.39 -0.37 0.46 0.47 - - - - - 13 -22.53 87.60 1.95 0.02 
0.45 0.52 + - - + + - - 0.26 - - 0.50 - - - - - - 10 -29.40 87.61 1.95 0.02 
0.80 0.76 + 0.29 - + + - - 0.23 - - 0.51 - - - - - - 11 -27.58 88.15 2.50 0.02 
0.57 0.46 + - - - - - - 0.30 - -0.20 0.56 - - - - - - 9 -31.62 88.17 2.52 0.02 
0.49 0.48 + - - + - - - 0.26 - - 0.56 - - - - - - 9 -31.64 88.21 2.55 0.02 
1.00 0.95 + 0.42 - + + -0.18 - - - - 0.49 - - - + - - 12 -25.36 88.29 2.63 0.02 
0.50 0.50 + - - + + - - 0.26 - -0.21 0.51 - - - - - - 11 -27.75 88.50 2.84 0.01 
0.39 0.13 + - - - - 0.36 - 0.28 - -0.28 0.52 - - - - - - 10 -29.97 88.74 3.08 0.01 
0.68 0.99 + - - + + -0.49 - 0.24 - - 0.52 - - - - - - 11 -27.95 88.90 3.25 0.01 
0.49 0.51 + - - - - - + 0.30 - - 0.53 - - - - - - 9 -32.08 89.09 3.43 0.01 
0.82 0.55 + - - - + - - 0.44 0.16 - 0.38 0.47 - - - - - 11 -28.06 89.12 3.46 0.01 
0.55 0.46 + - - + - - - 0.26 - -0.21 0.57 - - - - - - 10 -30.17 89.14 3.49 0.01 
0.40 0.34 + - 0.24 - - - + 0.32 - -0.34 0.57 - - - - - - 11 -28.28 89.56 3.90 0.01 
0.40 0.30 + - - - - 0.20 - 0.29 - - 0.53 - - - - - - 9 -32.34 89.60 3.95 0.01 
0.77 0.52 + - - + - - - 0.39 0.18 - 0.41 0.43 - - - - - 11 -28.33 89.65 4.00 0.01 
0.79 0.52 + - - - - - + 0.40 0.19 -0.27 0.41 0.40 - - - - - 12 -26.07 89.70 4.04 0.01 
0.59 0.24 + - 0.41 - + - - 0.48 0.31 -0.25 0.41 0.58 - - - - - 13 -23.60 89.74 4.08 0.01 
1.01 1.07 + 0.37 - + + -0.29 - 0.14 - - 0.50 - + - + - - 14 -20.90 89.80 4.14 0.01 
0.46 0.46 + - - + - - - 0.20 - - 0.52 - - + - - - 10 -30.51 89.82 4.16 0.01 



Table S16 following. Model with 90CI indices (see Table S10 for comparison). Model selection output for the analysis of Delay Index 
variation including Lifespan Effect Index. 

Model set with Δ AICc ≤ 5. N = 22 populations, 21 species. 
“+” and “-“ indicate the presence or absence of the parameter in the model, respectively. “df” is the degree of freedom. “log Likelihood” is the log 
likelihood of the model. “AICc” represents the Akaike’s information criterion corrected for sample size. “Δ AICc” is the difference in AICc between 
the focal model and the model with the lowest AICc. “weight” represents the relative probability of a model within the full set of models. 
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0.38 0.41 + -0.10 - - - - - 0.30 - - 0.53 - - - - - - 9 -32.46 89.84 4.19 0.01 
0.71 0.43 + -0.10 - - - - - 0.41 0.20 -0.24 0.39 0.46 - - - - - 12 -26.15 89.86 4.20 0.01 
0.72 0.31 + - - - - 0.20 - 0.40 0.19 -0.26 0.40 0.43 - - - - - 12 -26.15 89.86 4.20 0.01 
0.74 0.49 + -0.05 - - - - - 0.42 0.18 - 0.40 0.46 - - - - - 11 -28.44 89.87 4.22 0.01 
0.88 0.53 + - - - + - - 0.43 0.17 -0.21 0.39 0.48 - - - - - 12 -26.19 89.94 4.28 0.01 
0.40 0.37 + - 0.17 - - - - 0.31 - - 0.58 - - - - - - 9 -32.52 89.96 4.31 0.01 
0.80 0.50 + - - - - 0.03 - 0.42 0.17 - 0.40 0.46 - - - - - 11 -28.53 90.06 4.41 0.01 
0.82 0.53 + - - - - - + 0.42 0.17 - 0.40 0.46 - - - - - 11 -28.54 90.08 4.43 0.01 
0.38 0.36 + -0.14 - - - - - 0.29 - -0.24 0.54 - - - - - - 10 -30.66 90.12 4.46 0.01 
0.51 0.50 + - - - + - - 0.31 - - 0.53 - - - - - - 9 -32.62 90.16 4.51 0.01 
0.71 1.09 + - - + + -0.61 - 0.20 - - 0.50 - + - + - - 13 -23.81 90.17 4.51 0.01 
0.64 0.97 + - - + + -0.58 - - - - 0.48 - - - + - - 11 -28.64 90.28 4.62 0.01 
0.86 0.79 + 0.35 - + + - - 0.16 - - 0.50 - - + - - - 12 -26.36 90.28 4.63 0.01 
0.83 0.50 + - - + - - - 0.39 0.18 -0.22 0.42 0.44 - - - - - 12 -26.38 90.33 4.67 0.01 
0.52 0.19 + -0.05 0.40 - - - - 0.46 0.32 -0.27 0.43 0.56 - - - - - 13 -23.91 90.37 4.72 0.01 
0.57 0.49 + - - - - - - 0.30 -0.06 - 0.56 - - - - - - 9 -32.75 90.42 4.76 0.01 
0.84 0.74 + 0.37 - + + - - - - - 0.48 - - - - - - 10 -30.87 90.53 4.88 0.01 
0.60 0.23 + - 0.43 - - -0.02 - 0.47 0.32 -0.25 0.44 0.58 - - - - - 13 -24.04 90.62 4.97 0.01 
0.59 0.22 + - 0.42 + - - - 0.47 0.32 -0.26 0.44 0.57 - - - - - 13 -24.04 90.64 4.98 0.00 
0.54 0.52 + - - - + - + 0.31 - -0.31 0.51 - - - - - - 11 -28.83 90.65 5.00 0.00 



Figure S1. Phylogenetic tree for the 34 species studied in this paper (based on the full tree from 
Jetz et al. 2012; Ericson backbone phylogeny). 

 

 

  



Figure S2. Variation in AFR and consequences for mean reproductive lifespan. Relationship between mean reproductive lifespan (mean 
lifespan (per AFR classes) minus AFR) and AFR for 22 populations (21 species) used to estimate the Lifespan Effect Index (Table 1); 
each point represents the mean value for individuals that start to reproduce at a specific AFR. B = both sexes, F = female, M = male. 



Figure S3. Variation in AFR. (A) Number of times the specific AFR corresponded to a species modal 
AFR (over 28 out of 34 species as we excluded 4 species with only 1 AFR age class and 2 species 
for which the sample size per AFR age class was missing). (B) Frequency of observation of a 
specific AFR age class across all 34 species (an AFR age-class was counted as being observed 
within a population when at least one individual initiated reproduction at the focal AFR – e.g. a 
values of about 20% for an AFR of 9 means that about 7 species (20% of 34) had individuals that 
initiated their reproduction at age 9). 
A 

 

 B 

 



Figure S4. Sex differences in the Delay Index for the 26 populations (24 species) for which we had 
separate data for males (M, square symbols) and females (F, cross symbols). A number after the 
species indicates separate studies. 
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