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Abstract

Currently, in machine learning, there is a growing interest in finding new and
better predictive models that can deal with heterogeneous data and missing values.
In this thesis, two learning algorithms are proposed that can deal with both issues.

The first learning algorithm that is studied consists of a neural network based on
similarity measures, the Similarity Neural Network (SNN). It is a two-layer network,
where the hidden layer computes the similarity between the input data and a set of
prototypes, and the output layer gathers these results and predicts the output. In
this thesis, several variants of this algorithm are proposed and it is analyzed which
one performs better. Some of these variants are the way to choose the prototypes or
how to set the parameters of the activation function. A full analysis is performed in
the experiments section.

Secondly, an Ensemble of SNNs is also proposed. The purpose of using an ensemble
is to increase predictive performance, reduce variability and reduce learning time
complexity. This second learning algorithm combines the predictions of a set of SNNs
and gives the response of the ensemble based on these predictions. For this algorithm,
several ensemble learners are proposed (in other words, different ways to combined
these predictions). These variants are analyzed with a set of experiments.

The main goal of this thesis is to understand these two methods, derive training
algorithms and compare them with traditional learning algorithms, such as the clas-
sical Random Forest. The results of the experiments show a competitive performance
of both methods, obtaining similar results than the Random Forest and improving
it in some problems. 16 datasets with heterogeneous data and missing values are
tested, some of them large and difficult problems. About the SNN, with these ex-
periments, it is found that adding regularization to the network has a high influence
on the model. About the ensemble, the experiment results suggest that the simplest
ensemble learner (mean or majority vote of the SNNs) is the one that performs better.
Among the two proposals, both get similar and quite good performance metrics but
the ensemble obtains slightly better predictions.





Acknowledgements

First of all, I would like to express my sincere thanks of gratitude to Lluís Belanche
for being my master thesis advisor. I am very grateful for his guidance, advice,
suggestions, warnings and support that he has given me during the last six months
when I have been developing this thesis.

Secondly, I would also like to thanks to all my family for their support during this
time. Especially to my parents and sister for their help and for being patients with
me. And finally, to Júlia for her love, understanding and continuous support.

Many thanks to all of you!





Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work and State-of-the-Art 4

3 Preliminaries 6
3.1 Similarity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Gower’s similarity measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2 Data type similarity measures . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Artificial Neural network (ANN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Ensemble methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Generalized linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Gradient descent method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.7 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 The proposals 11
4.1 Similarity Neural Network (SNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1.1.1 Hidden layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.1.2 Output layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.2 Learning stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.2.1 Prototype selection . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.2.2 Value of p (fp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2.3 GLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Ensemble of SNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.1 General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Learning stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.2.1 Train each SNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2.2 Train the ensemble learner . . . . . . . . . . . . . . . . . . . . . . 21

5 Implementation and Use 23

6 Experiments 25
6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Results 32
7.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.1.1 Regression problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.1.2 Binomial classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1.3 Multinomial classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



7.1.4 Summary of Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.2.1 Regression problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2.2 Binomial classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2.3 Multinomial classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2.4 Summary of Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.3 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.4 Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.5 Experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.6 Experiment 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.7 Experiment 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.8 Experiment 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.9 Experiment 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.10 Final discussion of the experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8 Conclusions 56

9 Future work 58

Acronyms 60

Lists of Symbols 61

Bibliography 63

A Optimization functions 64
A.1 Optimization of p: Error function and its derivatives . . . . . . . . . . . . . . . . . 64

A.1.1 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.1.2 Binomial classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.1.3 Multinomial classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.2 MoE: Error function and its derivatives . . . . . . . . . . . . . . . . . . . . . . . . 67
A.2.1 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.2.2 Binomial classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.2.3 Multinomial classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B Experiment results 69
B.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
B.3 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
B.4 Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.5 Experiment 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
B.6 Experiment 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.7 Experiment 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B.8 Experiment 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.9 Experiment 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



List of Figures

3.1 Example of a feed-forward neural network. . . . . . . . . . . . . . . . . . . . . . . 8

4.1 SNN network example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 (Left) Hidden neuron framework (Right) Activation function fp for different values

of p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Ensemble of SNNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Ensemble of SNNs with method B (regression case). . . . . . . . . . . . . . . . . . 18
4.5 Ensemble of SNNs with method C. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7.1 Results of experiment 1 for the Automobile dataset. . . . . . . . . . . . . . . . . . 33
7.2 Results of experiment 1 for the AutoMPG dataset. . . . . . . . . . . . . . . . . . 33
7.3 Results of experiment 1 for the Communities dataset. . . . . . . . . . . . . . . . . 34
7.4 Results of experiment 1 for the MV dataset. . . . . . . . . . . . . . . . . . . . . . . 34
7.5 Results of experiment 1 for the Heart dataset. . . . . . . . . . . . . . . . . . . . . 35
7.6 Results of experiment 1 for the Horse Colic dataset (binomial case). . . . . . . . . 35
7.7 Results of experiment 1 for the Pima dataset. . . . . . . . . . . . . . . . . . . . . 35
7.8 Results of experiment 1 for the Mammographic dataset. . . . . . . . . . . . . . . 36
7.9 Results of experiment 1 for the Mushroom dataset. . . . . . . . . . . . . . . . . . 36
7.10 Results of experiment 1 for the Census dataset. . . . . . . . . . . . . . . . . . . . 37
7.11 Results of experiment 1 for the Audiology dataset. . . . . . . . . . . . . . . . . . . 37
7.12 Results of experiment 1 for the Glass dataset. . . . . . . . . . . . . . . . . . . . . 37
7.13 Results of experiment 1 for the Horse colic dataset (multinomial case). . . . . . . 38
7.14 Results of experiment 1 for the Annealing dataset. . . . . . . . . . . . . . . . . . . 38
7.15 Results of experiment 1 for the Contraceptive dataset. . . . . . . . . . . . . . . . 38
7.16 Results of experiment 1 for the Diabetes dataset. . . . . . . . . . . . . . . . . . . 39
7.17 Results of experiment 2 for the Automobile dataset. . . . . . . . . . . . . . . . . . 40
7.18 Results of experiment 2 for the AutoMPG dataset. . . . . . . . . . . . . . . . . . 40
7.19 Results of experiment 2 for the Communities dataset. . . . . . . . . . . . . . . . . 41
7.20 Results of experiment 2 for the MV dataset. . . . . . . . . . . . . . . . . . . . . . 41
7.21 Results of experiment 2 for the Heart dataset. . . . . . . . . . . . . . . . . . . . . 42
7.22 Results of experiment 2 for the Horse Colic dataset (binomial case). . . . . . . . . 42
7.23 Results of experiment 2 for the Pima dataset. . . . . . . . . . . . . . . . . . . . . 42
7.24 Results of experiment 2 for the Mammographic dataset. . . . . . . . . . . . . . . 43
7.25 Results of experiment 2 for the Mushroom dataset. . . . . . . . . . . . . . . . . . 43
7.26 Results of experiment 2 for the Census dataset. . . . . . . . . . . . . . . . . . . . 43
7.27 Results of experiment 2 for the Audiology dataset. . . . . . . . . . . . . . . . . . . 44
7.28 Results of experiment 2 for the Glass dataset. . . . . . . . . . . . . . . . . . . . . 44
7.29 Results of experiment 2 for the Horse colic dataset (multinomial case). . . . . . . 45
7.30 Results of experiment 2 for the Annealing dataset. . . . . . . . . . . . . . . . . . . 45
7.31 Results of experiment 2 for the Contraceptive dataset. . . . . . . . . . . . . . . . 45
7.32 Results of experiment 2 for the Diabetes dataset. . . . . . . . . . . . . . . . . . . 46
7.33 Results of experiment 3. From left to right: performance metric plot and execution

time plot. From top to bottom: Regression, binomial and multinomial classification
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



7.34 Results of Experiment 4. From left to right: performance metric plot and execution
time plot. From top to bottom: Regression, binomial and multinomial classification
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.35 Results of experiment 5. From left to right: performance metric plot and execution
time plot. From top to bottom: Regression, binomial and multinomial classification
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.36 Results of experiment 6. From left to right: From left to right: performance met-
ric plot and execution time plot. From top to bottom: Regression, binomial and
multinomial classification problems. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.37 Results of experiment 7. From left to right: performance metric plot and execution
time plot. From top to bottom: Regression, binomial and multinomial classification
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.38 Results of experiment 8. From left to right: performance metric plot and execution
time plot. From top to bottom: Regression, binomial and multinomial classification
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.39 Results of experiment 9. From left to right: performance metric plot and execution
time plot. From top to bottom: Regression, binomial and multinomial classification
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



List of Tables

6.1 Characteristics of the datasets used in the experiments. . . . . . . . . . . . . . . . 27

7.1 Comparison of the results of SNN and Ensemble of SNNs. Also, the results of the
Random Forest are shown as a benchmark. . . . . . . . . . . . . . . . . . . . . . . 54

B.1 Results of experiment 1 for regression problems. . . . . . . . . . . . . . . . . . . . . 70
B.2 Results of experiment 1 for binomial classification problems. . . . . . . . . . . . . . 71
B.3 Results of experiment 1 for multinomial classification problems. . . . . . . . . . . . 72
B.4 Results of experiment 2 for regression problems. . . . . . . . . . . . . . . . . . . . . 73
B.5 Results of experiment 2 for binomial classification problems. . . . . . . . . . . . . . 74
B.6 Results of experiment 2 for multinomial classification problems. . . . . . . . . . . . 75
B.7 Results of experiment 3 for regression problems. . . . . . . . . . . . . . . . . . . . . 76
B.8 Results of experiment 3 for binomial classification problems. . . . . . . . . . . . . . 77
B.9 Results of experiment 3 for multinomial classification problems. . . . . . . . . . . . 78
B.10 Results of experiment 4 for regression problems. . . . . . . . . . . . . . . . . . . . . 79
B.11 Results of experiment 4 for classification problems. . . . . . . . . . . . . . . . . . . 79
B.12 Results of experiment 5 for regression problems. . . . . . . . . . . . . . . . . . . . . 80
B.13 Results of experiment 5 for classification problems. . . . . . . . . . . . . . . . . . . 80
B.14 Results of experiment 6 for regression problems. . . . . . . . . . . . . . . . . . . . . 81
B.15 Results of experiment 6 for classification problems. . . . . . . . . . . . . . . . . . . 81
B.16 Results of experiment 7 for regression problems. . . . . . . . . . . . . . . . . . . . . 82
B.17 Results of experiment 7 for classification problems. . . . . . . . . . . . . . . . . . . 82
B.18 Results of experiment 8 for regression problems. . . . . . . . . . . . . . . . . . . . . 83
B.19 Results of experiment 8 for binomial classification problems. . . . . . . . . . . . . . 84
B.20 Results of experiment 8 for multinomial classification problems. . . . . . . . . . . . 85
B.21 Results of experiment 9 for regression problems. . . . . . . . . . . . . . . . . . . . . 86
B.22 Results of experiment 9 for binomial classification problems. . . . . . . . . . . . . . 87
B.23 Results of experiment 9 for multinomial classification problems. . . . . . . . . . . . 88





Chapter 1

Introduction

In this chapter, it is explained what this thesis is about, the main objective and motivations of
developing it and the general structure of this document.

1.1 Context
Nowadays, machine learning has become very popular and it is a trending topic of research in
the scientific community. Many researchers are working on this field, but not only in the research
sector also in the industry, where the companies have a focus on this area because they found that
these techniques can be used in real-world problems.

Supervised learning is one of the most popular machine learning tasks. It consists on given a
dataset (a set of observations with P features and its responses), it trains a model that predicts
the response in a generalized way to unseen situations.

In this group, it exists a method that is not very popular and has a ground for research:
similarity-based learning techniques applied to heterogeneous data. As the name itself suggests,
this method uses the similarity between observations instead of features/attributes to train the
model (as most of the methods do). So, this technique learns and discovers knowledge based on
similarities between observations.

In this thesis, it is studied a particular case of similarity-based learning method : Similarity
Neural Network (SNN). It is a new learning algorithm that consists of a neural network where
its neurons are based on similarity measures. As an overview, it is a two-layer network, where
the hidden layer computes the similarity between the input data and a set of prototypes, and the
output layer gathers these results and predicts the output variable.

Some of the strong points and advantages of the SNNs are:

• Heterogeneous data.

An SNN network can deal with problems with heterogeneous data (different types of vari-
ables). Each variable of the dataset has its own similarity measure, the one that betters fits
it. Of course, whenever available, an expert should choose the best similarity functions for
each variable.

• Missing data.

As it is explained in future sections, the similarity between observations allows features to
be missing, so these learners can deal with missing values.

• Interpretability

There is an increase of interpretability compared to classical neural networks: the hidden
neurons compute the similarity between the input and a set of prototypes (a known set of
observations), and the response of the network is the result of a linear combination of these
similarities. So, the predictions of the network can be better interpreted.
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These are some of the main features of the SNNs, and they are some of the reasons why it
makes sense to research in this area. So, this thesis is focused on the SNNs, trying to understand
how they work, how they learn patterns in the data and it continues the current research on this
learning method.

1.2 Objectives
This thesis has the main goal of understanding the Similarity Neural Network (SNN), derive train-
ing algorithms, analyse the impact of adding the similarity layer and compare it with traditional
learning algorithms, such as Random Forest. Also, an Ensemble of SNNs is proposed, so for this
second learning algorithm, it should be done the same tasks (derive training algorithms, compare
with other methods, . . . ).

This goal is very general and in order to accomplish it, it has been divided into several concrete
tasks/objectives:

1. Understand and design the Similarity Neural Network (SNN).

2. It does not exist a complete implementation of an SNN. Only a few researchers have imple-
mented some prototypes. In this thesis, it is desired to give an implementation that could
be used for any problem/dataset (and any data scientist can easily use it).

3. Add regularization to the Similarity Neural Network.

4. Research and propose a method to optimize the p hyper-parameter of the activation function
of the hidden neurons (more details in future sections).

5. Design an Ensemble of Similarity Neural Networks.

6. Implement the Ensemble of Similarity Neural Networks.

7. Test the performance of the SNN and Ensemble of SNNs by designing experiments.

8. Make a comparison between the Similarity Neural Network and the methods in the literature.

9. Test the performance of the learning methods with large problems (more than 50 000 obser-
vations).

1.3 Document structure
My master thesis is organized in the following way:

• Chapter 1: Introduction. In the first chapter, the problem that we are going to study
and the main objectives of this thesis are explained.

• Chapter 2 Related Work and State-of-the-Art. It is explained the current literature
of the similarity-based learners for heterogeneous data, in particular, the SNN.

• Chapter 3: Preliminaries. In the third chapter, some of the preliminaries concepts used
in this thesis are explained. They should be understood in order to fully understand this
document.

• Chapter 4: The proposals. It is presented the design of the SNN and the Ensemble of
SNNs.

• Chapter 5: Implementation and Use. It is given an overview of how it was implemented
and how to use the SNNs and Ensemble of SNNs.

• Chapter 6: Experiments. In this chapter, the experiments designed to test the SNNs
and Ensemble of SNNs are explained. For each experiment, it is described the reasons for
designing it and the main factors that are analyzed.

2



• Chapter 7: Results. In the results chapter, the numerical and graphical results obtained
with the experiments are presented and explained.

• Chapter 8: Conclusions. It is explained the main conclusions of this thesis.

• Chapter 9: Future work. Finally, there are some of the future works that could be done
after this thesis.

3



Chapter 2

Related Work and State-of-the-Art

In this chapter, it is briefly explained the current research on similarity-based methods for hetero-
geneous data and the need for their existence in supervised learning.

The similarity measure is not a new research field in machine learning, quite the opposite. For
example, it has been used for years for unsupervised learning tasks like clustering, and the use of
similarity measures is quite popular and gives good results in this field.

In the supervised learning world, the use of these similarity measures is much less explored (less
researched and used). Some of the advantages of using similarities are that it allows the learner
to deal with heterogeneous data and missing values. Quite the opposite than most of the classical
supervised learning techniques that are feature-based algorithms (e.g. MLP-NN) or kernel-based
algorithms (e.g. SVM), and they cannot deal with heterogeneous data and missing values (a pre-
processing step must be done). Very few researches tried to introduce heterogeneous data and
similarities in these supervised learning algorithms (later, some of these researches are explained).

In this thesis, we are going to focus on the similarity-based techniques applied to hetero-
geneous data, in particular, the Similarity Neural Network (SNN). As said before, this network
natively deals with heterogeneous data and missing values. These are some of the weak points
of most of the traditional learners, so here is where the similarity-based techniques start to take
importance.

Let us review how traditional learners deal with these issues:

• How do learners deal with missing values?

Most of the learning algorithms cannot deal with missing values and they fail. One, as a
data scientist, must have to manage to remove or impute these missing values. Some of the
most common solutions are:

– Ignore all observations with missing values.

– Replace all missing values with column mean.

– Replace all missing values with some constant (e.g. -999,-1).

– Impute missing values with other methods.

– ...

These methods have to be executed before the learning algorithm, so if the dataset of the
problem has missing values, one must have to spend more time in the pre-processing stage.
Also, the imputation method choice can be a key fact for the model, choosing one or another
can add bias and variance to the data or it can loss relevant information.

In the other hand, a few learners can deal with missing values (e.g. decision trees), and
thus, there is no need for imputation. In this second group is where the similarity-based
learners belong. As the similarity measures are between observations instead of features,
when the dataset has missing values, it does not take into account the missing features of
the observations when the similarity is computed.
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• How do learners deal with heterogeneous data?

Some learners can deal with only numerical variables, then for these methods, it is usually
mapped the non-numerical variables to numerical values. For example, a categorical variable
could be mapped into m new binary variables (one for each category) or it could be mapped
to a value between 1 and m. Also, some other learners can only deal with categorical vari-
ables, then the numerical variables are discretized into intervals and new categorical variables
are created. Despite this, changing the type of a variable (e.g. transforming numerical vari-
ables to categorical and vice-versa) is not the most adequate transformation to do and the
treatment of these variables could be improved using different types of similarity measures.

So, the similarity-based methods treat better the different types of variables because one can
define a more specific measure to be used for each variable (the one that fits better): numeric,
nominal, ordinal, cyclic,... . Doing that, we can compare the features in a better way and
get more relevant information about these variables.

Summarizing, some of the weak points of the most used learning algorithms are that they
cannot deal with missing values and the treatment that they do to heterogeneous data. These are
some of the strong points of the similarity-based techniques.

Finally, the current state of the art of similarity-based learners for heterogeneous data is re-
viewed:

Similarity-based learners for heterogeneous data

As said before, the similarity-based techniques applied to heterogeneous data is a field that needs
more research, the research on other techniques is much more extended than in similarity-based
learners. But the few research on this area show some interesting results and that the similarity-
based methods improve some of the classical learning methods. I am going to explain briefly some
of these researches.

In [1], [2] and [3], it is proposed a two-layer neural network where the first layer computes a
user-defined similarity function between observations and a reduced set of them (called centres
or prototypes). The results in [1] show a competitive or better generalization performance than
that found in the literature and in [2] it is made a comparison between the network and an RBF
network for the Horse Colic problem. [4] compares dissimilarity-based classifiers with traditional
feature-based classifiers (e.g. linear and nonlinear SVMs) and as averaged over more than 300
datasets it performs similar or better than the feature-based classifiers.

In general, all research follows the design of [1], where the neural network is a two-layer network
where the first layer computes a user-defined similarity function between observations and a set of
prototypes, and the second layer gathers all these similarities and gives the response of the network.
This learning algorithm is called Similarity Neural Network (SNN) and it is the case of study
for this project (in section 4.1 SNNs are explained in full details). There is much remaining work
to be done until SNNs can be a viable off-the-shelf modelling method.
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Chapter 3

Preliminaries

In this section, some of the theoretical concepts related to this thesis are briefly explained. These
concepts are very important and should be understood in order to understand the full description
of this document. Firstly, the concept of similarity measures is explained, a key concept on which
this thesis is based on. Secondly, it is briefly introduced the Artificial Neural Networks (ANN),
the ensemble methods and the Generalized Linear Model (GLM). And finally, the gradient descent
algorithm used in this thesis to optimize the parameters of the models and some other machine
learning concepts are explained.

3.1 Similarity measures
A similarity measure [6] is a function that compares two objects and expresses how similar or likely
these two objects are. Let s be the similarity function, and X a non-empty space where the objects
belong, then s is defined as:

s : X ×X → Is ⊂ R

and s is assumed to be upper bounded, exhaustive and total function. Therefore, Is is upper
bounded and sup

R

Is exists.

In a general sense, the measure gives a numerical value that indicates the degree of coincidence
between two objects. So, as more similar or equal two objects are, higher this value should be, and
the other way around, as more different they are, this value should be lower.

First, we are going to start defining similarities between two objects (objects with more than
one feature), and then it is explained how to compute the similarity between basic data types. In
this thesis, we are going to use similarity measures defined in the common codomain Is = [0, 1].

3.1.1 Gower’s similarity measure
The Gower’s general similarity measure [7] is a coefficient that computes how similar two observa-
tions are. In this case, each observation is a heterogeneous set of variables. The Gower’s similarity
coefficient can be computed with the following formula:

sg(xi, xj) =

P∑
k=1

sk(xik, xjk) · wk · δijk

P∑
k=1

wk · δijk

where P is the total number of variables, sk(xik, xjk) is the similarity between observation i
and j for the feature k, wk is the weight of the feature k and δijk is the possibility of making the
comparison between the two observations for the feature k (it will be 1 if they can be compared,
0 otherwise).
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In other words, this coefficient is a weighted mean of the similarities of the variables (of course,
without taking into account the variables that cannot be compared).

Two features cannot be compared, and thus δijk is 0, when one of the two values (xik or xjk)
is missing, and usually they can be compared when both are not missing (δijk = 1) .

3.1.2 Data type similarity measures
The type of a variable determines the similarity function to be used for this variable. Here, the
most common data type similarity measures are presented (most of them were proposed by Gower
[7]):

• Continuous variable. The similarity between two numerical values of a variable x is defined
by its absolute difference and the range where this variable belongs:

s(xi, xj) = 1− |xi − xj |
R

where xi and xj are the two values to compare and R is the range of the variable (for this
thesis, I take R as the range in the sample).

• Nominal variable. The nominal variables do not have an order between the different
modalities of the variable, so the similarity can only check for equality. This similarity
measure is:

s(xi, xj) =

{
1 if xi = xj
0 if xi 6= xj

• Ordinal variable. An ordinal variable is similar to a nominal variable, but it exists a clear
order in the modalities of the variable. Supposing that the modalities are codified from 1 to
k (following the right order of the variable), the similarity is computed as:

s(xi, xj) = 1− |xi − xj |
k − 1

• Symmetric binary variable. A binary variable is symmetric when both of its states
(absent and present) have the same weights. So, in this case, two absent are similar. The
similarity for symmetric binary variables is:

s(xi, xj) =

{
1 if xi and xj are present or xi and xj are absent
0 otherwise

• Asymmetric binary variable. A binary variable is asymmetric when its states have
different weights, and thus two absent are not similar. The similarity for asymmetric binary
variables is:

s(xi, xj) =

{
1 if xi is present and xj is present
0 otherwise

For asymmetric binary variables, δijk = 0 when both values are in the absent case (and also
when one of the two is missing).

These are the most common similarity measures for basic data types. There exist other types
that were not explained (e.g. fuzzy and cyclic variables) because they are not used in this thesis
and the R function that implements the Gower’s similarity coefficient does not support them.
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3.2 Artificial Neural network (ANN)
An Artificial Neural Network is a statistical model that takes its inspiration from the human brain
and in recent years its popularity has increased a lot. The main idea behind ANNs is that if we
can understand how the brain works and solves a given problem, we can define solutions to these
tasks as formal algorithms and implement them on computers.

An ANN consists of a collection of neurons and the connections between them. Each neuron
receives information from other neurons and propagates new information to the forward ones. So,
an ANN can be seen as a directed and weighted graph.

One of the most used ANNs is the Multilayer Perceptron Neural Network (MLP-NN) [8], it
is a feed-forward ANN (unidirectional) with one input layer, one or more hidden layers and the
output layer. The input layer contains the input variables, each variable is connected with the first
hidden layer neurons, the first hidden layer neurons are connected with all second hidden layer
neurons, until the last hidden layer that its neurons are connected with the output layer neurons
(response of the MLP-NN). A hidden neuron receives a set of inputs and generates an output. In
this case, its output is the result of applying an activation function to the weighted sum of its
inner connections (the output of a neuron is computed as follows: o(x) = f(wtx) where f is the
activation function, w the neuron weights and x the values of the inner connections). Training the
network consists of setting the weight of each connection (it is usually used the back-propagation
algorithm). Figure 3.1 shows an example of this type of network.

The Radial Basis Function Neural Network (RBF-NN) [9] is another type of ANN with one
hidden layer that uses the radial basis functions as activation functions. Typically, the Euclidean
distance and the Gaussian distribution are used, and thus, the output of the hidden neurons is:
o(x) = exp(−β||x − w||2) where w is the neuron weights and x the input values. This network is
very similar to the MLP-NN, the main differences are the activation function and that MLP-NN
computes the output of the neurons by the dot product between inputs and weights, and RBF-
NN computes the euclidean distance between them (so now these weights can be interpreted as
prototypes).

Finally, the Similarity Neural Network (SNN), that it is proposed and studied in this thesis,
is similar to the previous networks, but for computing the output of the neurons, it is used the
similarity between a selected prototype and the inputs. We are going to explain deeply this network
in future sections.

Figure 3.1: Example of a feed-forward neural network.
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3.3 Ensemble methods
In machine learning, ensemble methods are a type of supervised learning algorithms that combine
multiple learners into one predictive model. The main idea behind these methods is that the
combination of these learners obtains better predictive performance than each one of the learners
alone. Some of the most used ensemble methods are Bagging, Boosting and Stacking.

For example, the Bagging method [10] creates a set of learners of the same type on which
each one is trained with a different subset of instances that were sampled with replacement from
the training dataset. Then the prediction of the bagging is the average over the learners when
a numerical variable is predicted, and when predicting a class it does a plurality vote over the
learners. It is usually used with decision trees, but of course, any other type of learner can be used.

3.4 Generalized linear models
A Generalized Linear Model (GLM) [11] is a statistical model that generalizes the classical linear
regression in the way that it does not assume that the response variable has the errors normally
distributed. Therefore, GLMs are models in which the response variable density is in the exponen-
tial family (e.g. Poisson, Gaussian, Bernoulli, Gamma, . . . ) and where the mean parameters are
a linear combination of the explanatory variables, passed through a possibly nonlinear function,
such as the logistic function. We can define the conditional distribution of the response variable Y
given the explanatory variables X as:

E(Y |X) = h−1(βTX + β0)

where h is the link function (and h−1 its inverse) and β the unknown coefficients used to do
the linear combination with the explanatory variables.

In this case, one should decide the suitable distribution for the response variable, and thus
its convenient link function. For example, the Gaussian distribution uses the identity as the
link function (then, the problem becomes the classical linear regression), or for the Bernoulli
distribution, the logit function is used (logistic regression).

When training the model, this generality of the GLM comes at a cost because, in general, we
need an iterative procedure for the optimization of βs. A popular procedure is to set it up as a
maximum likelihood problem and use a numerical optimization method (e.g. Newton-Raphson).
For the Gaussian distribution case (classical linear regression), the solution can be found analyti-
cally and there is no need for an iterative procedure. And for the logistic regression, it is typically
used the Iterated Reweighted Least Squares (IRLS) to optimize βs.

3.5 Gradient descent method
In this section, the unconstrained optimization algorithms [12] of a given function (called f) are
briefly explained. In a general sense, these algorithms start with an initial solution and it is
iteratively updated/improved until a certain stopping criterion is satisfied.

The algorithm updates the current solution as follows:

xk+1 = xk + αkdk

where x is the solution, k the current iteration, dk is the descent direction and αk the step length
in the current iteration. In each iteration, we have to find a direction and a step length to update
the solution.

For the descent direction, there are several methods, the simplest one is the gradient descent, a
first-order method that sets the descent direction as the negative of the gradient (dk = −∇f(xk)).
Other methods to find the descent direction are the Conjugate Gradient, Quasi-Newton and Newton
method (second-order method).

For the step length α there are two main methods: exact line search (finds the optimum value
of α for a given direction) or backtracking line search (an iterative procedure to find an α that
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guarantees the given acceptability criterion). Usually, the second method is used because the exact
line search is more costly.

So, in each iteration, it is chosen a descent direction and a step length, and the solution is
iteratively updated until a certain criterion is satisfied. In order to use this optimization algorithm
we must provide the function to optimize and its first derivative (and also the second derivative
for second-order methods). In machine learning and also in this thesis, this technique is used to
optimize the parameters of the models.

3.6 Cross-validation
The Cross-validation methods are a family of model validation techniques that give an estimation
of how a statistical analysis will generalize to unseen data.

The hold-out method is the simplest case and it consists of splitting the data into two parts:
one for training the model and the other for testing it. A common split is to use 2/3 of the data
for training and the remaining 1/3 for testing.

Secondly, the k-fold cross-validation consists of dividing randomly the data into k parts of equal
size. For each of these parts, we keep it out from the training set and it is used all others k − 1
parts to fit the model, once the model is fitted we use the remaining part to check the goodness
of fit of the model. It is repeated k times, one for each part. This method is an improvement over
the holdout method, but it needs to fit k models.

A specific case of k-fold cross-validation is the Leave-One-Out Cross-Validation (LOO-CV),
where k is the total number of observations. So we remove one observation from the data, we fit
the model and it is predicted and tested this observation.

3.7 Performance metrics
The performance metrics are used to test the models and compare them. It is a measure of
goodness of fit of a model. In this document, it is used the Normalized Root Mean Square
Error (NRMSE) for regression problems and Accuracy for classification.

Given a dataset with N observations, the accuracy is defined as:

Accuracy =

N∑
i=1

1{yi = ŷi}

N

where yi is the real response value of the ith observation, ŷi is the prediction for the ith
observation and 1 is a function that gives 1 when both values are equal and 0 otherwise.

And the NRMSE error measure is:

NRMSE =

N∑
i=1

(yi − ŷi)2

N∑
i=1

(yi − ȳ)2

Usually, these performance metrics are used to test the goodness of fit of the model, so it is
computed with the test set.

10



Chapter 4

The proposals

In this chapter, the two main proposals studied in this thesis are explained:

• SNN

• Ensemble of SNNs

Both are machine learning algorithms that solve supervised problems for heterogeneous data
(datasets with N observations where each observation has P features and a response value to
predict). The first proposal consists of a neural network based on similarities and the second is an
ensemble of the first proposal. Let us explain them in details.

4.1 Similarity Neural Network (SNN)
As an overview, the Similarity Neural Network (SNN) is a two-layer neural network where the
hidden layer computes the similarity between the input data and a set of prototypes and the
output layer gathers these results and predicts the response.

Firstly, it is explained the design and the main framework of an SNN, and secondly, it is
explained the way to train it.

4.1.1 General framework
As said before, the SNN is a neural network where firstly it is computed the similarity between
the input space and a set of prototypes and, secondly, given these similarities it is predicted the
response value.

The SNN receives an input x with p features (xi is the feature i of input x) and the goal is to
predict the response variable y of this input. The network is structured in two layers: the hidden
layer and the output layer.

Figure 4.1: SNN network example.
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In the hidden layer, it is computed the Gower’s similarity between the input and a set of H
prototypes chosen in the learning stage (we will explain how to chose them in future sections),
each prototype corresponds to a neuron in the hidden layer, so this layer has H neurons. And the
outputs of the hidden neurons are the results of applying an activation function to these similarities.
As the Gower’s similarities go from [0, 1], we apply a sigmoid-like function that given a value in
the interval [0, 1] it returns a value in [0, 1]. This activation function is called fp and it is deeply
explained below.

Finally, the output layer gathers all outputs of the hidden neurons and builds a Generalized
Linear Model (GLM) that predicts the response variable.

At this point, it was given an overview of the SNN framework, Figure 4.1 shows a graphical
representation of the network. Now, the two layers of the network are explained in more details:

4.1.1.1 Hidden layer

The hidden layer is a set of H hidden neurons where each one of them has assigned one prototype
(called ci). Then, the output of the hidden neuron i is the result of applying the activation function
to the similarity of Gower between the input and the prototype of the hidden neuron (ci). So, the
output of the hidden neurons is computed as follows:

hi(x) = fp(sg (x, ci)) for i in 1..H

where fp is the activation function, sg the Gower’s similarity and ci is the prototype corre-
sponding to the ith neuron.

• Gower’s similarity.
The Gower’s similarity between two observations can be computed with the following formula:

sg(xi, xj) =

P∑
k=1

sk(xik, xjk) · wk · δijk

P∑
k=1

wk · δijk

where P is the number of variables, sk(xik, xjk) is the similarity between observation i and
j for the feature k, wk is the weight of the feature 1 and δijk is the possibility of making the
comparison between the two observations for the feature k. More details in Section 3.1.1.

• Activation function
The activation function fp used in the hidden neurons is defined by [13] and it is a sigmoid-like
automorphism (a monotonic bijection) in [0, 1]. This function adds a nonlinear component
to the network and it is a function that maps values from the interval [0, 1] into [0, 1].
The activation function fp is defined as:

fp(·) = f(·, p)

And:

f(x, p) =

{
−p

(x−0.5)−a(p) − a(p) if x ≤ 0.5
−p

(x−0.5)+a(p) + a(p) + 1 if x ≥ 0.5

where p > 0 ∈ R is a parameter controlling the shape. fp is a family of functions that are all
continuous bijections in [0, 1], fulfilling ∀p ∈ R+, f(0, p) = 0, f(1, p) = 1, lim

p→∞
f(x, p) = x

and f(x, 0) = H(x − 0.5), being H the Heaviside function. And a(p) is the solution of the
equation a(p)2 + a(p)

2 − p = 0, obtained by imposing the first two equalities. Figure 4.2
(Right) shows a graphical representation of the behavior of the function for several values of
p. More details about the activation function in [13].

1For the experiments in this thesis, I have assumed that the features are equally weighted, so wk is 1 for all k.
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Figure 4.2: (Left) Hidden neuron framework (Right) Activation function fp for different values of
p

4.1.1.2 Output layer

The output layer is a Generalized Linear Model (GLM), so it creates a linear model that receives
the similarities computed in the hidden layer and predicts the response. The type of response
variable determines the activation function of the neurons in this layer. The SNN can deal with
these three types of response variables:

• Numerical. In this case, we have a regression framework and the activation function used
is the identity. This layer has only one output neuron and the prediction of the SNN is :

ŷ(x) =

H∑
j=1

αj · hj(x)

where αj are the weights of the linear model (these weights were computed at the learning
stage).

• Binary/Binomial. When the variable is binary we have the logistic regression framework,
so the activation function is the logistic. Again, there is only one output neuron that has the
meaning of the probability of being of response true. For this case, the output of the network
is:

ŷ(x) =
1

1 + exp

(
−

H∑
j=1

αj · hj(x)

)
• Multinomial. When the response variable is multinomial, it is used softmax as the activa-

tion function. It has an output neuron for each response modality, and the output of each
neuron has the meaning of the probability of being of the neuron modality. The prediction
of the network is:

ŷk(x) =
exp(ξ(x, k))

K∑
k2=1

exp(ξ(x, k2))

where ξ(x, k) =

H∑
j=1

αjk · hjk(x)

where K is the number of modalities of the response variable and αjk is the weight for the
output neuron k and hidden neuron j.
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4.1.2 Learning stage
At this point, we have seen the framework of the SNN and how it works. Now, it is explained
how to train the network. The three main learning parts are: how to select the prototypes to be
used as hidden neurons, how to set the p parameter of the activation function fp and finally how
to train the weights of the output layer (GLM).

4.1.2.1 Prototype selection

The prototype selection is the first thing to be trained in an SNN. It consists on, first, choosing
the number of prototypes to be used (in other words, the number of hidden neurons), and secondly
select the observations that will be used as prototypes.

Number of prototypes

The number of prototypes can be generated by four different methods, each one uses a different
distribution to choose this number. We should be able to define these distributions, so, for this
reason, we introduce an hyper-parameter, called hp, that in most of the methods mean the expected
proportion of observation that will be selected as prototypes. These are the four methods:

• Constant(C). This is the simplest method. The number of prototypes depends only on the
size of the problem, and for the same problem, it will always generate the same value. For
this case, the hp hyper-parameter means the proportion of observations that will be selected
as prototypes. The number of prototypes (H) is:

H = bhp ·Nc

where N is the total number of observations.

• Uniform (U). This method uses the uniform distribution to set the number of prototypes.
It generates a value between 1 and hp ·N using the uniform distribution, so consecutive runs
of the method will generate different values. In this case, the hp hyper-parameter means the
maximum proportion of observations that could be selected as prototypes. The number of
prototypes is:

H = Unif (1, hp ·N)

• Poisson (P). This method uses the Poisson distribution to set the number of prototypes. We
set λ = hp ·N , so the expected value of the distribution is hp ·N . The number of prototypes
is:

H = Poisson (λ = N · hp)

• Binomial (B). This method uses the binomial distribution to set the number of prototypes.
For this distribution, the hp is used as the probability of success on each trial. So, as we
have set the number of trials to be the number of observations, this distribution will have an
expected value of hp ·N . The number of prototypes is:

H = Binomial (N,hp)

These are the four methods to generates the number of prototypes, and the user should decide
which one should be used. For creating just one SNN, these methods only decide the number
of prototypes of the network, but in future sections, it is introduced the Ensemble of SNNs, and
what we want for an ensemble is variability among the different learners, so adding this random
behaviour on the number of prototypes could be useful for the model.
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Selection of prototypes

Once we know the number of prototypes of the network, we have to select which observations are
prototypes. Two different methods to do this task are proposed:

• PAM. The first method applies the clustering method PAM (Partitioning Around Medoids)
[14] to select the prototypes. This clustering technique finds groups of observations that are
similar between them and each group has a representative observation (medoid). So, this first
method consists of selecting the prototypes as the medoids found with the PAM algorithm.
The benefit of this method is that it can select representative observations that are different
from each other, but this clustering has a high computational cost.

• Random. The second method consists of selecting the prototypes randomly from all observa-
tions. It is the opposite of the previous method: it is very fast when selecting the prototypes,
but as they are selected randomly, the observations may not be very representative and may
be very similar to each other.

In the experiments section, it is analyzed if the use of PAM is useful for predictive tasks, or if
it gets similar results than using just random, and thus, we could save computational time using
the random method.

4.1.2.2 Value of p (fp)

Once the prototypes are selected, the next learning phase is to decide the value of p of the activation
function fp. We define four methods to set this value:

Constant

The first and simplest method is to set the p as an hyper-parameter that the user can set. It is
predefined as p = 0.1 (blue line in Figure 4.2 - Right).

Optimization of p

The second method consists of using optimization techniques to find the best value of p. At this
point, the missing parameters to be fitted in the SNN are p and the coefficients/weights of the
GLM (αs), but the value of p and α are very related, we cannot optimize one and then the other,
we should optimize p and αs at the same time. Optimizing p and then αs could make that the
optimization of p is no longer valid (there exists another optimal value for the new αs), and thus,
the optimization of p should be repeated, and then αs could have another optimal value that should
be optimized, and so on so for. For this reason, p and αs are optimized in the same optimization
procedure.

The optimization technique will find a local minimum of the error function using an iterative
procedure. In our case, the gradient descent method (GD) is used, a first-order optimization
algorithm. In order to solve the optimization, we must provide the objective function (in our case
the error function) and the first-order derivatives respects to p and αs. The objective function to
minimize depends on the type of response variable:

• Regression. For regression problems, we use the Sum of Squares Error (SSE):

E(p, α) =

N∑
n=1

(yn − ŷ(p, α, xn))2

where yn is the real response value of observation n and ŷ(p, α, xn) is the prediction of the
SNN with parameters p and α.

• Binary/Binomial. The error function is the cross-entropy for two classes:

E(p, α) = −
N∑
n=1

(
ynln(ŷ(p, α, xn)) + (1− yn) · ln(1− ŷ(p, α, xn))

)
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where yn is 1 when the observation n is positive and 0 if negative and ŷ(p, α, xn) is the
prediction (probability of being positive) of the SNN with parameters p and α.

• Multinomial. For multinomial problems it is used the cross-entropy error function for K
classes:

E(p, α) = −
N∑
n=1

(
K∑
k=1

ynk · ln(ŷk(p, α, xn))

)
where ynk is 1 when the observation n is of the k modality, 0 otherwise. And ŷk(p, α, xn) is
the predicted probability of being of k modality for an SNN with parameters p and α.

Appendix A.1 contains all mathematical equations related to these functions and all its deriva-
tives.

When the optimization ends, we have a local minimum for a given p and αs, so we have
optimized the value of p at the same time than the αs. I want to stress the fact that when using
this method, the regularization of the GLM should not be used because the objective function
would not be the one optimized with this procedure.

k-fold Cross-Validation

Another method to choose the value of p is using k-fold cross-validation on the training set. This
method tests several values of p, and it selects the p as the one with the best validation error
(MSE for regression and accuracy for classification). By default, it does 10-fold cross-validation. I
want to stress the fact that for each fold and p, it is fitted the GLM model, so this means that the
method has a high computational cost.

Generalized Cross-Validation

Finally, only for regression problems, there exists a way to compute the LOO-CV error fitting the
model just once, it is called Generalized Cross-Validation (GCV). This method tests several values
of p, and the one with the best GCV error is selected as the best p. It is much faster than the
k-fold cross-validation because it fits one model instead of k.

4.1.2.3 GLM

At this point, we know the selected prototypes and the p value to be used in the activation function,
so we can compute the outputs of the hidden neurons. The remaining part to be trained is the
weights of the GLM (αs). Depending on the response variable it is fitted a different model (types
of GLM):

• Regression case: It fits a classical linear model (minimizes the MSE).

• Binomial case: It fits a logistic regression model (minimizes the cross-entropy error function).

• Multinomial case: It fits a multinomial log-linear model (minimizes the cross-entropy error
function).

Also, if needed a regularization term could be added to the GLM in order to prevent over-
fitting. It is used the L2 regularization, so λ · ‖α‖2 is added to the error function (MSE or
cross-entropy). The value of the λ is trained by CV on the training set (or GCV for the regression
case).

Once these αs are found, the training on the SNN is done and the network is ready to be used
for predicting new observations. Summarizing, we have seen what is an SNN, how it works, how
it is built and how to train it.
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4.2 Ensemble of SNNs
The SNNs explained previously are good learners that can deal with mixed data and missing data,
but they have some weak points that could be improved. Some of them are:

• An SNN model is very dependent on the number of prototypes and the prototypes selected.
For example, selecting a good or bad set of prototypes could create two completely different
models, one that works very well and another one that works poorly. Therefore the goodness
of fit of the SNNs may have high variance.

• For large problems, the SNN starts to take a lot of time to train the model. Especially if the
PAMmethod is used, where it would have to compute the similarities between all observations
in the dataset and do the clustering. Thus the computational cost grows exponentially with
the dimension of the problem.

With the main purpose of improving these weak points, it is proposed the use of an ensemble
method. In our case, I decided that a Bagging-like method could improve the SNN in the previous
points because the fact that it has a set of SNNs will reduce the variance, and each SNN will be
trained with a subset of the full dataset, and thus the complexity cost will be reduced for large
problems.

4.2.1 General framework
Let us explain how it works and the general framework of the second proposal: Ensemble of SNNs.

As the main idea, the ensemble method uses a set of SNNs instead of just one and combine
the predictions of them to give the output of the model. In other words, for each input that the
model receives, it gets the prediction of each SNN in the ensemble, and with all these predictions,
it is used an ensemble learner to generate the response of the model. Figure 4.3 shows a graphical
representation of how it works.

Figure 4.3: Ensemble of SNNs.

The remaining piece of the ensemble to be explained is the ensemble learner. I propose different
methods that gather the predictions of the SNNs and compute the output of the model:

• Method A. Majority vote (classification) or mean (regression).
This method is the one used by the Random Forest algorithm and consists on, for classification
problems, predict the class that was most voted by the SNNs, and for regression problems,
it predicts the mean of all SNNs responses. So, the response of the ensemble is:

Regression:

ŷ(x) =

M∑
i=1

νi(x)

M

Classification:
ŷ(x) = majority vote among the νi(x)

where νi(x) is the output of the ith SNN in the ensemble and M is the number of SNNs in
the ensemble.
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• Method A2. Mean of probabilities.

This method works only for classification problems and it is very similar to the previous
method, but instead of using the majority voting, it does the mean of the probabilities.

• Method B. Generalized Linear Model.

The third method consists of using a Generalized Linear Model (GLM) as the ensemble
learner. So, the GLM will have as inputs the responses of the SNNs and as outputs the prob-
lem response. In the case of regression, these inputs are the prediction of each network, and
in the case of classification, the probabilities are used (and thus for multinomial classification,
it will have as many outputs as classes to predict).

The coefficients of the model (called βi) are found at the learning stage, and these βi will be
fixed values for all the network (they do not depend on the inputs, they will always be the
same coefficients).

The type of problem to be solved will determine the link function to be used: for regression
problems, it is used the identity link function, for binomial cases the logistic function, and
for multinomial, the softmax. So, this ensemble method will predict the response as follows
(being βi the weights of the linear model and νj the output of the jth SNN in the ensemble):

– Regression:

ŷ(x) = ψ(x)

– Binomial:

ŷ(x) =
1

1 + e−ψ(x)

– Multinomial:

ŷk(x) =
eψ(x,k)

K∑
k2=1

eψ(x,k2)

where (regression and binomial):

ψ(x) =

M∑
j=1

βj · νj(x) + β0

where (multinomial):

ψ(x, k) =

K∑
k=1

M∑
j=1

βjk · νjk(x) + β0

The way to train the model and its weights are explained at the learning stage section (Section
4.2.2). As a summary, Figure 4.4 shows a graphical representation of the Ensemble of SNNs
with the method B (only the regression case is shown, for the classification cases the logit or
softmax function are missing at the end of the network).

Figure 4.4: Ensemble of SNNs with method B (regression case).
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• Method C. Mixture of Experts (MoE)

The Mixture of Experts (MoE) [15] is a technique where the weights (β) of each SNN are
determined by the input of the network. In other words, there exists a gating network that
given the ensemble input, it decides the weights that will have each SNN. Figure 4.5 shows a
graphical representation of this method. Unlike the previous method (where all β were fixed
and were computed at the learning stage), the weights are a function of the input (βi(x)).
So, the ensemble method will predict the response as follows:

ŷ(x) =

M∑
j=1

βj(x) · νj(x)

The coefficients βi(x) are determined by the outputs γi of the gating network through a
softmax activation function:

βi(x) =
exp(γi(x))∑M
j=1 exp(γj(x))

Thus, the gating network has one output for each SNN and, as a result of applying the
softmax function, the conditions

∑M
i=1 βi(x) = 1 and 0 ≤ βi(x) ≤ 1 are guaranteed. These

coefficients βi(x) take the meaning of being the weights for a weighted mean of the outputs
of the SNNs. So, the gating network decides the importance of each SNN by looking at the
inputs.

About the gating network, I decided to use a linear model in order to compute each one of
the γ coefficients. So, the γi function is:

γi(x) =

P∑
j=0

Φijxj

where Φ is a matrix of dimensions number of SNNs times the length of x, and thus, Φi· are
the coefficients of the linear model used to compute the γi coefficient.

As the input of the ensemble could have missing values and mixed data, and the linear model
cannot deal with these issues, I decided that the gating network will receive as input the
Gower’s similarity between x and each one of the prototypes of each SNN. For example, if
we have an ensemble with two SNNs, the first one with 3 prototypes (observation 1, 3 and 4)

Figure 4.5: Ensemble of SNNs with method C.
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and the second with 2 prototypes (observation 5 and 7), then the input of the gating network
will have length 3 + 2 = 5 and the content will be the similarity between x and observations
1, 3, 4, 5 and 7. By making this change and using similarities instead, the gating network can
deal with datasets with missing values, and also, the gating network will know the similarities
between the input space and the prototypes of each SNN, so this fact could help the network
to compute better β coefficients.
In the learning section, how to set these Φ coefficients is explained.

• Method C2. Mixture of Experts by clustering
Finally, the last method uses the same ensemble learner than the Mixture of Experts, but the
main difference is in the way each SNN is trained. The main idea is to create an ensemble,
where each SNN solves a region of the input space and then the gating network decides for
each input the weights to give to each SNN (if the input belongs to the region of an SNN,
the network should give higher weight to this SNN than to the others).
First of all, it is performed a clustering (PAM) on a subset of the observations of at most 5000
observations. It is set a limit of observations because if not, for large datasets this clustering
will take a lot of time (the computational cost is exponential). For this reason, we set a limit
on the observations to be used for clustering. These observations are sampled randomly from
the full dataset. With these observations, it is performed a clustering that finds as many
clusters as SNNs in our ensemble (each cluster will be used in one SNN). Then, the clusters
are computed for the full dataset (an observation belongs to the nearest cluster medoid).
Finally, each cluster is used to train an SNN of the ensemble. All other procedure is the same
than method C (Mixture of Experts), thus, the main contribution of the method is to try to
divide the input space into regions and train an SNN in just one region.

At this point, it is explained how the ensemble of SNNs works, how it is built and the several
variants that it has.

4.2.2 Learning stage
Once the general framework is clearly explained, we have to train our model. We are going to
explain the steps from left to right (Figure 4.3), so first, it is explained how to train each SNN and
then how to train the ensemble learner.

4.2.2.1 Train each SNN

One of the key facts of the ensembles to be a good model is that the set of learners (SNN in
our case) should be different between them. For this reason, each SNN should be trained with a
different set of observations and also with a different number of observations. As said before, by
doing that, we can reduce the complexity of training a single SNN.

The number of observations to train an SNN will be obtained from one of the following methods:

• Poisson (P). This method uses the Poisson distribution to get the number of observations.

• Uniform (U). This method uses the Uniform distribution to get the number of observations.

• Constant (C). All SNN will be trained with the same number of observation.

• Binomial (B). This method uses the Binomial distribution to get the number of observations.

The user should set the hyper-parameters of each distribution. And then, the observations to
be chosen will be sampled without replacement from the full dataset 2. Finally, each SNN will be
trained with its own subset of observations and the training will be done as explained in section
4.1.2.

Notice that another fact that could add variability among SNNs is when the number of pro-
totypes and the selected prototypes are generated randomly, then each SNN will have different
prototypes as neurons.

2Except the for ensemble method C2, that each SNN samples the observations from the cluster assigned to this
SNN.
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4.2.2.2 Train the ensemble learner

Once the SNNs are trained, we have to fit the ensemble learner. Let us see how the different
variants are trained:

• Method A and A2

These first methods do not need any training part (there are no parameters to fit), so for
these cases, the training consists only on fitting each SNN.

• Method B

This second method is a Generalized Linear Model (GLM), so all βi are fitted with the
training set. For this case, all training data is used, so, first of all, it is needed to compute
the response of each SNN for the full dataset and then fit the GLM. This method has a
higher computation cost than the previous ones.

Also, it is interesting to add a regularization term when fitting the βs. In this case, the
L2 regularization is used to prevent overfitting (when using regularization, it is called B2
method). A comparison of the effect of this regularization is performed in the experiments
section.

• Method C

The Mixture of Experts (MoE) model is trained using optimization techniques. But again,
all the training data is used to fit Φ, so it is computed the response of each SNN for the train
set.

Using optimization techniques it is fitted Φ (matrix of dimensions: number of SNNs times
the length of x) by minimizing the error function. This error function depends on the type
of problem to be solved, these are the three cases:

– Regression: It minimizes the Sum of Squares Error (SSE).

E(Φ) =

N∑
n=1

(yn − ŷ(Φ, xn))2

where yn is the real response value of observation n and ŷ(Φ, xn) is the prediction of
the ensemble for this observation.

– Binomial classification: It minimizes the cross-entropy error function for two classes.

E(Φ) = −
N∑
n=1

(
ynln(ŷ(Φ, xn)) + (1− yn) · ln(1− ŷ(Φ, xn))

)
where yn is 1 when the nth observation is positive and 0 if negative.

– Multinomial classification: It minimizes the cross-entropy error function for K classes.

E(Φ) = −
N∑
n=1

(
K∑
k=1

ynk · ln(ŷk(Φ, xn))

)
where ynk is 1 when the nth observation is of the k modality, 0 otherwise.

The optimization technique will find a local minimum of the error function using an iterative
procedure. Again, the gradient descent method (GD) is used. To solve the optimization,
we must provide the objective function (in our case the error function) and the first-order
derivatives of it. Appendix A.2 contains all information related to these error functions and
all its derivatives for the MoE method.

The learning of this method ends when the optimization procedure finds a local minimum of
the error, and thus we set the Φ matrix with the values found in the optimization. At this
point, all parameters of the model are set and the training is completed.
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• Method C2

The way to train this method is the same than method C (Mixture of Experts). As said before,
the only difference is in the way to sample the observations to train each SNN (clustering).

Summarizing, it was explained the general framework of the Ensemble of SNNs, how the model
is built, its main variants and how to train it. Now, we should test the performance of the ensemble
by developing experiments and comparing the different methods designed in this section.
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Chapter 5

Implementation and Use

In this section, it is briefly explained how I have implemented the SNN and the Ensemble of SNNs.
First of all, I decided to use the R language because it is widely used for developing statistical
software and data analysis, and it fits on the thesis purpose.

I made an implementation that tries to encapsulate all functionalities of the learners inside a
function, and a data scientist only has to use these functions without knowing its implementation.
So, the objective of it was to create like an R package that has all SNN functionalities.

Let us see how to use these functions and how to create and fit the learners. There are two
main functions: one that creates the SNN model and another for creating the Ensemble of SNNs.
The following function fits an SNN model given a dataset:

snn ( Target ∼ . , dataset , . . . )

And this second function creates an Ensemble of SNNs:

snn . bagging ( Target ∼ . , dataset , . . . )

These functions return the fitted object corresponding to the model. The three dots in these
functions are optional parameters that can be added to the call in order to use one variant of the
model and configure it as desired (e.g. setting the ensemble learner method).

And finally, the following function uses the fitted model and predict the response for new
observations:

predict ( f i t t edOb j e c t , newdata )

As said before, it is tried to do a user-friendly implementation and to encapsulate all the learners
in one function to create the model and another one to predict new data.

Also, I want to stress the fact that I have optimized the code as much as I could because if
not, for large problems, it could take a lot of time to be trained (days) or it could simply fail due
to memory limitation issues.

One of these optimizations is that I have dug in some R packages and I have modified its source
code in order to make some changes on them and improve its performance. Specifically, I modified
the source code of the cluster package and I changed its R and fortran files. In this package, there
is a function, called daisy, that computes the Gower’s similarity for a set of observations. This
function was designed for clustering purposes and it computes the similarity between all pairs of
observations in the dataset (if the purpose is to find clusters in the data, this function is okay).
But for the SNNs, what we want is the similarity between a set of prototypes and the input data
of the network (e.g. train set or test set). So, the daisy function will compute a lot of unnecessary
similarities that consumes a lot of CPU time (e.g. similarities between prototypes or between
observations in the input set). Moreover, for large problems this issue is even worse. For example,
for a dataset with 105 observations daisy computes 105 · (105− 1)/2 similarities, and most of them
are not used in the SNN. In my local computer, for large problems, the daisy gets an error because
it cannot allocate that amount of memory. The only solution for this problem was to modify the
source code of the daisy function. So, the code has been modified to allow the computation of
similarities between two different sets of observations.
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Moreover, as seen in Section 3.1.2, the similarity measures set some of their parameters from
the sample data. For example, the similarities of numerical variables divide by the range of the
variables, and this range is computed from the sample set. So, I have also modified the daisy
function to return all these similarity parameters (e.g. range, modalities, . . . ) and then, these
values are used to compute similarities for new data.

With these modifications, I have adapted the daisy function for SNN purposes, and without
them, large problems could not have tried.

In the following section, this implementation is used to run the experiments and see the be-
haviour of the SNNs.
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Chapter 6

Experiments

Until now, it is explained, designed and implemented the learning algorithms proposed in this
thesis, and now we should test how they perform. So, in this section, the experiments that were
designed to test the behaviour of the SNN and the Ensemble of SNNs are explained.

6.1 Datasets
First of all, I introduce the chosen problems (or datasets) that are used to do the experiments. For
our case, as the SNN can deal with regression, binomial and multinomial classification problems,
it is selected a few of each type. Also, we have chosen datasets of different sizes (at least a large
dataset for each type of problem, with more than 40 000 observations), datasets with different
types of variables (numerical, categorical, binary,..) and some with missing values. Most of these
datasets are classical problems and were found in the UCI Machine Learning Repository.
The chosen datasets are:

Regression problems:

• Automobile Dataset . This first dataset contains information related to cars and the goal
is to predict the price that was paid for it. It has 205 observations, 25 attributes (14 numeric,
8 nominal and 3 ordinal) and it has missing values.

https://archive.ics.uci.edu/ml/datasets/Automobile

• Auto MPG Dataset. This dataset contains information about automobiles and the main
goal is to predict the mpg attribute (fuel consumption in miles per gallon). It has 398
observations, 7 numeric attributes and it contains a few missing values.

https://archive.ics.uci.edu/ml/datasets/Auto+MPG

• Communities and Crime Dataset. This dataset combines socio-economic data from the
1990 US Census, law enforcement data from the 1990 US LEMAS survey, and crime data
from the 1995 FBI UCR. The goal is to predict the total number of violent crimes per 100K
population. It has 1994 observations, 122 attributes (121 numerical and one ordinal), and it
has more than 15% of missing values.

https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime

• MV Dataset. This dataset contains artificial data that was generated with dependencies
between the attribute values (for more information go to the dataset source). This dataset
has 40 768 observations and 10 attributes (7 numerical, 2 categorical and 1 binary variable).

https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
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Binomial classification problems:

• Statlog (Heart) Dataset. The first classification dataset contains information related to a
set of patients and the goal is to predict the presence or absence of heart disease. It has 270
observations and 13 attributes (6 numerical, 3 nominal, 1 ordinal and 3 binary variables).

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29

• Horse Colic Dataset V1 (binomial case). This dataset contains information about horses
with a colic disease. There are several possible goals for this dataset, but for the binomial
classification, the objective is to predict if the lesion was surgical. It has 368 observations, 21
attributes (7 numerical, 3 categorical, 8 ordinal and 3 binary) and more than 25% of missing
values.

https://archive.ics.uci.edu/ml/datasets/Horse+Colic

• Pima Dataset. The goal of the Pima dataset is to diagnostically predict whether or not a
patient has diabetes, based on certain diagnostic measurements. It has 768 observations, 8
numerical attributes and missing values.

https://www.kaggle.com/uciml/pima-indians-diabetes-database

• Mammographic Mass Dataset. It is a dataset for the classification of benign and malig-
nant mammographic masses based on BI-RADS attributes and the patient’s age. It has 961
observations, 4 attributes (1 numeric, 2 nominal and 1 ordinal) and it has missing values.

https://archive.ics.uci.edu/ml/datasets/Mammographic+Mass

• Mushroom Dataset. This dataset includes descriptions of hypothetical samples corre-
sponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family. The goal is
to classify into an edible or poisonous mushroom. It has 8124 observations, 21 attributes (1
numeric, 17 nominal and 3 logical) and it has missing values.

https://archive.ics.uci.edu/ml/datasets/Mushroom

• Census-Income (KDD) Dataset. This dataset contains weighted census data extracted
from the 1994 and 1995 current population surveys conducted by the U.S. Census Bureau and
the goal is to predict if the income of a person is higher or lower than 50 000$. The dataset
has 299 285 observations, 41 demographic and employment-related variables (8 numerical, 28
categorical and 5 binary) and it has 24% of missing values.

https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29

Multinomial classification problems:

• Audiology Dataset. This dataset contains data related to hearing diseases. The original
dataset has more than 20 classes, but they have been grouped into 4 main groups. It has
226 observations, 31 attributes (1 categorical, 7 ordered and 23 logical variables) and it has
missing values.

https://archive.ics.uci.edu/ml/datasets/Audiology+%28Standardized%29

• Glass Dataset. The goal of this dataset consists of making a classification into one of the six
types of glasses based on chemical information about them. The dataset has 214 observations
and 9 numerical attributes.

https://archive.ics.uci.edu/ml/datasets/Glass+Identification

• Horse Colic Dataset V2 (multinomial case). This dataset is the same than the binomial
classification case, but in this case, the goal is to predict what eventually happened to the
horse (lived, died or was euthanized).

https://archive.ics.uci.edu/ml/datasets/Horse+Colic

26

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29
https://archive.ics.uci.edu/ml/datasets/Horse+Colic
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://archive.ics.uci.edu/ml/datasets/Mammographic+Mass
https://archive.ics.uci.edu/ml/datasets/Mushroom
https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29
https://archive.ics.uci.edu/ml/datasets/Audiology+%28Standardized%29
https://archive.ics.uci.edu/ml/datasets/Glass+Identification
https://archive.ics.uci.edu/ml/datasets/Horse+Colic


• Annealing Dataset. This dataset contains information related to steel annealing and the
goal is to classify each observation into one of the five classes. It has 798 observations, 31
attributes (9 numerical, 5 categorical, 1 ordinal and 16 binary) and more than 60% of the
data is missing.

https://archive.ics.uci.edu/ml/datasets/Annealing

• Contraceptive Dataset. The objective of this dataset is to predict the current contra-
ceptive method choice (no use, short term or long term methods) of a woman based on her
demographic and socio-economic characteristics. It has 1473 observations and 9 attributes
(2 numerical, 1 categorical, 3 ordinals and 3 binary).

https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice

• Diabetes 130-US hospitals for years 1999-2008 Dataset. This dataset contains infor-
mation about patients with diabetes and the goal is to predict if a patient will be readmitted
more than 30 days in the hospital, less than 30 days or will not be readmitted. It has 101 766
observations, 45 attributes (8 numeric, 9 categorical, 25 ordered and 3 binary) and it has 8%
of missing values.
https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008

Table 6.1 shows a summary of the datasets selected for the experiments of this thesis.

Dataset #Obs. #Attr. Data types Missing #Classes

Regression
Automobile 205 25 14R, 8N, 3O 1% -
AutoMPG 398 7 7R 0.2% -

Communities 1994 122 121R, 1O 15.1% -
MV 40 768 10 7R, 2N, 1B 0% -

Binomial classification
Heart 270 13 6R, 3N, 1O, 2B, 1A 0% 2

HorseColicV1 368 21 7R, 3N, 8O, 3B 27.1% 2
Pima 768 8 8R 10.6% 2

Mammographic 961 4 1R, 2N, 1O 4.1% 2
Mushroom 8124 21 1R, 17N, 2B, 1A 1.5% 2
Census 299 285 41 8R, 28N, 5B 24.1% 2

Multinomial classification
Audiology 226 31 1N, 7O, 23A 2.1% 4

Glass 214 9 9R 0% 6
HorseColicV2 368 21 7R, 3N, 8O, 3B 27.1% 3
Annealing 798 31 9R, 5N, 1O, 4B, 12A 60.2% 5

Contraceptive 1473 9 2R, 1N, 3O, 3B 0% 3
Diabetes 101 766 45 8R, 9N, 25O, 1B, 2A 8.1% 3

where data types are codified as: (R)eal, (N)ominal, (O)rdinal,
(B)inary and (A)symmetric binary

Table 6.1: Characteristics of the datasets used in the experiments.
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6.2 Methodology
At this point, I have chosen the set of problems that will be used to perform the experiments. But
before explaining them, a generic methodology is defined that all experiments should follow and it
should be clearly explained.

First of all, in order to test a model, the holdout method is used: the dataset is divided into
two sets (train and test), the train set is used to create and train the model and the test set will
be used to test this model with data that was not seen in the training stage. I decided to use the
classical split ratio, so 2/3 of observations are used to select and create the best model and the
remaining 1/3 to test it.

Also, just as a remember (it was explained in Section 4), in some cases, a 10-fold cross-
validation on the train set is performed to set the parameters of the model (e.g. regularization
term or p for the CV method).

The train and test split of the data could be very determinant when testing a model, two
different splits can give very different performance metrics. For this reason, this procedure is
repeated 50 times, so it is done 50 splits into train and test and each split is used to train the
model and test it. By doing this repetition we have a better view of how the method performs on
the current problem, and graphically, we can show boxplots with the metrics. For large problems,
it is reduced the number of repetitions because the execution time of running these experiments
was very high.

Most of the experiments on this thesis consist of comparing different methods (e.g. SNN vs
decision tree) or different variants of a method in order to see its behaviour. For these type of
experiments, the holdout method is executed 50 times, as explained before, but each method does
the same splits of the data (i.e. the ith split is the same for all methods in the experiment). By
doing this way, all methods are tested with the same data.

Also, as said before, the selected datasets are very different among them and many have missing
data and mixed data. This fact makes that most of the classical learners fail when trying to solve
the problem. Two of the learners that can deal with these issues are: decision tree and Random
Forest. By similarity on the way to build the models, I decided to compare the Ensemble of SNNs
with the Random Forest and the SNN with a decision tree. The Random Forest [16] is a learning
algorithm consisting of an ensemble of decisions trees, and it uses bagging and feature selection to
create different and uncorrelated trees. The main idea behind this method is that the prediction by
committee of the decision trees is more accurate than any of these trees alone. So, these methods
will be used as benchmarks for the experiments.

And the last thing to mention is that the experiments explained below try and test several
configuration/variants of the SNN and the Ensemble of SNNs in order to analyze the influence of
them. But all experiments do not try all possible configurations, usually, they test a set of variants
(the ones that are the case of study) and all other parameters are fixed for all the experiment. For
this reason, there is the need to define a default model for the SNN and the Ensemble. Then the
experiment will use these default values for the parameters that are not the case of study. Let us
define these default values:

• SNN

By default, the number of prototypes of the network is obtained from a Poisson distribution
that has an expected value equal to the 10% of the length of the training set. The prototypes
are chosen by the PAM clustering method. The value of p of the activation function is set
by the optimization procedure. And the GLM does not use regularization when training the
model.

• Ensemble of SNNs

By default, it is used the A ensemble learner and an ensemble with 100 SNNs. The number
of observations used to train each SNN is sampled from a Poisson distribution that has an
expected value of the 50% of the training set. The SNNs are trained with the default values
explained above except for the prototypes selection that they are selected randomly instead
of PAM. And also, for large problems, the expected values of the Poisson distributions are
reduced in order to reduce the computational cost.
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As said before, this is just the default configuration of the models and each experiment will
play with the parameters that are analyzed.

6.3 Experiments
To test the behaviour of the proposals of this thesis, it is designed a set of experiments. The first
two experiments are the most important and exhaustive ones, I call them main experiments. With
them, I analyze how the SNN and the Ensemble of SNNs perform on all studied datasets (small and
large), and a comparison is made among the main variants of each model. With these experiments,
I get the main conclusions of this thesis and also they are the ones that take longer to be executed.
Secondly, there are the complementary experiments. This second group are the experiments that
test a specific feature and they are run only for small problems (large are excluded because of
execution time cost).
Let us explain the experiments:

Main experiments:

As said before, these are the most important experiments of this thesis because they analyze the
behaviour of the SNN and the Ensemble of SNNs for small and large datasets, and it is tested
most of the configurations of each method.

• Experiment 1: Comparison of several variants of the SNN and the decision tree.

The goal of the first experiment is to compare the results obtained with different variants of
the SNN and the results obtained with the decision tree, that will be used as the benchmark
learner. This experiment is focused on analyzing the SNN learning method.

The main variants of the SNN that are analyzed in this experiment are:

– The clustering method used to select the number of prototypes of the SNN. This method
can be:
∗ PAM
∗ Random

– The method used to set the p value of the activation function (fp). There are four
methods:
∗ Constant value (p = 0.1)
∗ Optimization procedure
∗ Cross-validation
∗ Generalized cross-validation (only for regression problems)

– Whether the regularization is used on the linear model.

For each problem, I run all possible combination of the previous variants (some are not
possible, e.g. setting the p with the optimization procedure and using regularization). Also,
because of execution time issues, the PAM and the cross-validation methods are excluded for
problems with more than 5000 observations (these methods are very expensive and for large
problems, it could take days to create the model). For the other parameters of the SNN that
are not mentioned above, it is used the default values of them.

So, with this experiment we are going to get an overview of the behaviour of the different
configuration of the SNN for different datasets, we will see the methods that perform better
and we will compare these results with a popular learner (decision tree).

• Experiment 2: Comparison of several variants of the Ensemble of SNNs and
Random Forest.

For the second experiment, a comparison among the main variants of the Ensemble of SNNs
is made, taking as a benchmark the results of the Random Forest. This experiment is focused
on analyzing how the Ensemble of SNNs performs.
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The main variants that are analyzed in this experiment are:

– The ensemble learner: A, A2 (only for classification), B, C and C2.

– Whether the regularization is used on the linear model (ensemble learner).

Again, all problems are tested for this experiment, and it is run all possible combination of
the previous methods. But only the ensemble method B allows regularization, let us call B2
to the B method with regularization (and simply B the one without regularization). The
default configuration is used for the way to build the SNNs of the ensemble and the other
parameters that were not mentioned above.

The results of this experiment will give us an overview of the behaviour of the different
variants of the Ensemble of SNNs, the methods that perform better and we will compare
these results with the Random Forest.

Complementary experiments:

The complementary experiments are experiments that only test a specific feature or configuration
of a learner (SNN or ensemble), an example could be the number of prototypes of the network.
For these experiments, it is set the default configuration for the SNNs and the ensembles, and it is
played/modified the analysed feature in order to see its influence on the model. Also, as they are
complementary to the main experiments and because of execution time issues, the large problems
are not tested and, for each experiment, 20 repetitions are executed.

• Experiment 3 (SNN): Analysis of the number of prototypes of a single SNN.

This experiment analyzes the influence that the number of prototypes has on the perfor-
mance of a single SNN. To do that, it is tested several percentages (from 0% to 100%) of
observations that will be used as prototypes. With this experiment, I want to understand
the behaviour of the network for several numbers of prototypes and answer questions like
the following ones: which is the most suitable percentage of data to be used as prototypes?
Which is the minimum percentage that does not loss goodness of fit? Do high percentages
fail by overfitting?

• Experiment 4 (Ensemble): Comparison of PAM and Random prototype selection
for the Ensemble of SNNs.
The fourth experiment analyzes if the clustering methods used to select the prototypes of
the SNNs has some influence on the performance of the Ensemble. The two clustering
methods that are analyzed are PAM and Random.

• Experiment 5 (Ensemble): Analysis of adding regularization to each SNN of the
Ensemble.
With this experiment, it is tested if adding regularization to each one of the SNNs of an
Ensemble of SNNs performs better or worse. So, for each problem, it is done a comparison
between the performance of the Ensemble when regularizing the SNNs and when they are
not regularized.

• Experiment 6 (Ensemble): Analysis of the distribution used to select the number
of prototypes of each SNN of an Ensemble of SNNs.

This experiment consists of testing the influence of the distribution that decides the number
of prototypes to be used in each SNN of an Ensemble of SNNs. As explained before, the
number of prototypes to choose can be sampled from one of the following distributions:
Uniform, Poisson, Binomial and Constant. So, we are going to analyze the distribution that
performs better.
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• Experiment 7 (Ensemble): Analysis of the method used to select the number of
observations to train each SNN of an Ensemble.
Each SNN of an Ensemble of SNNs is trained with a different set of observations, and the
length of these sets (number of observations) is generated by one of the following distribu-
tions: Uniform, Poisson, Binomial and Constant. This experiment consists on analyzing if
the choice of the distribution that decides the number of observations has an impact on the
performance of the model and find if some of these distributions do the task better or worse
than the others. For this experiment, it is set that all these distributions have the same
expected value. For this case, it is set that the expected number of observations is 50% of
the training set.

• Experiment 8 (Ensemble): Analysis of the proportion of data used to train each
SNN of an Ensemble.
This experiment is very related to the previous one, but instead of analyzing the influence
of the distribution, in this experiment, it is studied the number of observations used to train
each SNN. To do that, several percentages (between 0% and 100 %) of the training set are
tested. So, we analyze, for example, if training each SNN with 10% performs better or worse
than using 50%. For this case, the constant distribution is used because we want all SNNs
to be trained with the same number of observations.

• Experiment 9 (Ensemble): Missing values analysis.

Finally, the last experiment consists of analyzing the impact of missing values in our dataset.
To do that, it is randomly set to NA a certain percentage of the total training data. The
goal of this experiment is to understand how robust is the Ensemble of SNNs against the
missing values.
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Chapter 7

Results

In this chapter, the results of the experiments explained in Section 6 are presented. Also, there is
a brief discussion of these results. To test the models and compare them, the performance metrics
used are the Normalized Root Mean Square Error (NRMSE) for regression problems and accuracy
for classification (Section 3.7). Of course, the performance metrics are computed with the test set.

For the main experiments, the results obtained for each dataset are briefly commented (showing
boxplots) and at the end, there is a global comment of the experiment. For the complementary
experiments, the analysis is more globally and every dataset is not commented on so many details.

7.1 Experiment 1
Comparison of several variants of the SNN and the decision tree

The first experiment does a comparison among several variants of SNNs and the decision tree.
The parameters that are tested are most of the SNN’s and they are fully explained in Section 6.3.
For each problem, the results are shown through boxplots 1 of the performance metric and the
execution time. Appendix B.1 contains all numerical results of this experiment. First, it is shown
the regression problems, then the binomial classification and finally the multinomial classification
problems.

7.1.1 Regression problems
Automobile dataset

Figure 7.1 shows the results obtained with the Automobile dataset. In this case, all executions of
the SNN scores lower NRMSE than the decision trees, so the SNN seems to perform better for this
problem. Also, there is not a lot of differences among the different methods of SNN, but it seems
that the random prototype selection performs better than the PAM and that the cross-validation
methods to choose p slightly improve the other methods. About the execution time, as expected,
the cross-validation method needs much more time to create the model than the others.

AutoMPG dataset

Figure 7.2 shows the results for the AutoMPG dataset. Again, the SNN improves the results of the
decision trees. The boxplot is very similar to the previous dataset, but in this case, PAM seems
to work slightly better than the Random. Also, notice that the worst cases are obtained when
the p is constant, and all other methods to choose the p obtain similar results. In this case, the
regularization does not have a high impact on the performance metric, but it seems that it gets a
bit better results than without regularization. About the execution time, again the cross-validation

1In these boxplots, Rand means Random, Const means constant, Opt means optimization procedure, CV means
cross-validation, GCV means Generalized cross-validation, Reg means regularization and Tree means decision tree.
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Figure 7.1: Results of experiment 1 for the Automobile dataset.

Figure 7.2: Results of experiment 1 for the AutoMPG dataset.

takes much more time than the other methods, and the constant seems to be the faster method
(as expected).

Communities dataset

Figure 7.3 shows the results obtained with the Communities dataset. The SNN models improve
a lot the NRMSE obtained with the decision tree. This dataset has a different behaviour than
the previous ones, the regularization has a high impact in the performance of the model, and the
prototype selection and p method do not seem to have a high influence. About the execution time,
as this problem has more observations than the previous (more than 1000), the use of PAM starts
to penalize the learning time (this clustering method works poorly in terms of execution time for
large datasets). In the other hand, the random seems to be much faster and obtain similar NRMSE.
About the value of p, again, the cross-validation needs more time than the other methods.
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Figure 7.3: Results of experiment 1 for the Communities dataset.

MV dataset

Finally, a large dataset is tested. Because of executing time issues, the number of repetitions is
reduced to 20 and the cross-validation and PAM methods are excluded for this dataset. Figure 7.4
shows the results obtained. All models obtain a very low NRMSE, but the SNNs are the ones that
obtain better results. The mean NRMSE of the SNNs are very similar among them, but it seems
that the optimization procedure has a few executions that are far from the mean. Despite that,
all three methods obtain good results. About the execution time, the decision tree is much faster
than the SNNs, and the p constant without regularization is faster than the other two methods.

Figure 7.4: Results of experiment 1 for the MV dataset.

7.1.2 Binomial classification
Heart dataset

Figure 7.5 shows the results of the Heart dataset. For the first binary classification problem, the
results obtained are quite good. All the variants of the SNNs improve the accuracy obtained with
the decision trees. For this case, adding regularization to the network increases the accuracy of the
model a little bit. The clustering and p methods do not have a high impact. About the execution
time, again the cross-validation cases are slower than the others.

Horse Colic dataset (binomial case)

Figure 7.6 shows the results of the Horse Colic dataset. This dataset has a behaviour very similar
to the Heart dataset. Again, the SNNs get better performance metrics than the decision tree. It
seems that the factor that increases more the accuracy is the regularization. Also, the execution
time of the experiments is very similar to the previous dataset.
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Figure 7.5: Results of experiment 1 for the Heart dataset.

Figure 7.6: Results of experiment 1 for the Horse Colic dataset (binomial case).

Pima dataset

Figure 7.7 shows the results of the Pima dataset. Again, the decision tree obtains lower accuracy
than the SNNs and adding regularization to the linear model seems to increase the accuracy of the
model.

Figure 7.7: Results of experiment 1 for the Pima dataset.

Mammographic dataset

Figure 7.8 shows the results of the Mammographic dataset. Again, we can extract the same
conclusions than with the previous datasets, so, it seems that the regularization has a high influence
on the model accuracy.
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Figure 7.8: Results of experiment 1 for the Mammographic dataset.

Mushroom dataset

Figure 7.9 shows the results of the Mushroom dataset. This dataset has more observations than the
previous problems (more than 5000) and the cross-validation and PAM are not executed because
of training time issues. In this case, unlike before, the regularization gets lower accuracy than the
other methods (p chosen by the optimization procedure and the constant without regularisation
get nearly 100% of accuracy). In this case, it seems that the optimization procedure is the method
that better performs. About the execution time, the variance is high because depending on the
number of prototypes used in the network, it could make the problem to be very slow.

Figure 7.9: Results of experiment 1 for the Mushroom dataset.

Census dataset

Finally, a large binomial classification problem is tested: the Census dataset. For this case, I run
only 5 repetitions of each experiment because each one takes a lot of time (some executions take
more than 1 hour). Figure 7.10 shows the results of this experiment. With this dataset, it is seen
a similar behaviour than the Mushroom dataset. The regularization decreases the accuracy, so
the highest accuracies are obtained without regularization and with p constant or optimized. And
about the execution time, it is obtained the expected results: the regularization method spends
more time to train the model, then the optimization of p, followed by the constant value of p and
the decision tree is the fastest method.

7.1.3 Multinomial classification
Audiology dataset

Figure 7.11 shows the results of the Audiology dataset. The SNNs obtain higher accuracies than
the decision tree. Also, again, adding regularization increases the accuracy of the model. And for
the execution time happens the same than with the previous datasets, the cross-validation is the
method that needs more training time.
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Figure 7.10: Results of experiment 1 for the Census dataset.

Figure 7.11: Results of experiment 1 for the Audiology dataset.

Glass dataset

Figure 7.12 shows the results of the Glass dataset. This case is the opposite than before, adding
regularization decreases the accuracy of the model. Also, mention that in this case, the decision
tree performs similar than the SNN without regularization.

Figure 7.12: Results of experiment 1 for the Glass dataset.

Horse colic dataset (multinomial case)

Figure 7.13 shows the results of the Horse colic dataset. For this problem, the regularization
increases the accuracy of the model. These results are very similar to the ones obtained with the
Audiology dataset.

37



Figure 7.13: Results of experiment 1 for the Horse colic dataset (multinomial case).

Annealing dataset

Figure 7.14 shows the results of the Annealing dataset. The boxplot shows that the optimization
procedure performs better than all other methods, included the decision tree. About the execution
time, when it is used the optimization of p or it is set the p constant the execution time is quite
faster compared to the other SNNs variants (especially the cross-validation ones).

Figure 7.14: Results of experiment 1 for the Annealing dataset.

Contraceptive dataset

Figure 7.15 shows the results of the Contraceptive dataset. Again, adding regularization to the
network increases the accuracy of the model. For this problem, the results are very similar to
the decision tree, but when using regularization these accuracies are improved a little bit. The
execution time boxplots are very similar to the previous datasets.

Figure 7.15: Results of experiment 1 for the Contraceptive dataset.
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Diabetes dataset

Finally, the network is tested with a large problem. For this case, I run just 5 repetitions of each
experiment because each repetition takes much time. Figure 7.16 shows the results of this dataset.
All SNN methods get similar results, having the one with regularization a slightly better accuracy
than the others. About the execution time, adding regularization to the SNN increases the training
time of the network. Moreover, notice that for this large problem the decision tree spends a lot
more time to train the model than the SNNs.

Figure 7.16: Results of experiment 1 for the Diabetes dataset.

7.1.4 Summary of Experiment 1
Summarizing, with Experiment 1 we have seen that our implementation of the SNN improves the
accuracy/NRMSE of the decision tree in most of the cases. Among the several variants of the SNN,
adding regularization to the linear model seems to be the variant that has the highest influence on
the performance metric, it usually improves it notably (but in very few cases, this regularization
makes the model worse). About the prototype selection method, there is not a clear winner, in
some cases, the PAM gets better results, and in others the random. Finally, the way to choose
the p of the activation function does not have a huge impact on the performance metric, but it
improves the model a little bit, it seems that the cross-validation method gets the best results, and
the constant value the worst. I also want to mention that as the optimization procedure of p does
not allow regularization, this method obtains lower results than the ones with regularization.

About the execution time, in almost all problems, the decision tree is much faster than the
SNN. About the SNNs, the cross-validation way to choose p needs much more time than the other
methods, and the constant is the fastest one. About the clustering method, the Random is faster
than the PAM. And adding regularization to the network increases the training time too.

7.2 Experiment 2
Comparison of several variants of the Ensemble of SNNs and Random Forest

The parameters that are tested in this experiment are the ensemble learner and whether it uses
regularization (more details in Section 6.3). For notation purposes, I will call B2 to the ensemble
learner with the B method and with regularization. As done in the previous experiment, it is
shown the boxplots of the performance metric and the execution time. Appendix B.2 contains all
numerical results of this experiment.

7.2.1 Regression problems
Automobile dataset

Figure 7.17 shows the results of the Automobile dataset. For the first problem, we can see that the
Ensemble of SNNs (or EnsSNN) performs better when it uses the A method. In the other hand,
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the B and C2 methods perform very bad for this dataset, but it is interesting to mention that,
adding regularization to the B method (B2), these results are highly improved, so, that suggests
that the B method has failed by overfitting. The Random Forest is clearly the winner for this
dataset, but it is not very far from the A method. Finally, about the execution time, among the
EnsSNN methods, the C and C2 need more time to train the model than the others, and the A is
the fastest one. Also, the Random Forest is faster than all EnsSNN methods.

Figure 7.17: Results of experiment 2 for the Automobile dataset.

AutoMPG dataset

The second regression dataset has a similar behaviour than the previous one, the Random Forest is
the method that performs better, and among the variants of EnsSNNs, A and B2 methods obtain
the best results and the B and C2 are the worst cases. About the execution time, it happens the
same than before too, C and C2 spend more time for training than the other methods.

Figure 7.18: Results of experiment 2 for the AutoMPG dataset.

Communities dataset

Figure 7.19 shows the results of the Communities dataset. The performance metrics obtained for
the tested methods are very similar, but again, the A and B2 seem to be the ensemble learners
that better perform. In this case, the EnsSNN obtains similar results than the Random Forest.
About the execution time, again the C and C2 are the worst cases, but now, with a dataset with
more than 1000 observations, the execution time of method A is lower than the Random Forest.

MV dataset

Finally, a large regression dataset is tested. As done in experiment 1, the number of repetitions is
reduced to 5 because the time for training a model is quite high. Also, the C and C2 methods are
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Figure 7.19: Results of experiment 2 for the Communities dataset.

Figure 7.20: Results of experiment 2 for the MV dataset.

not executed for large datasets for the same reasons (execution time issues). Figure 7.20 shows the
results of the MV dataset. These results show that the Random Forest is the learner that obtains
better NRMSE, but the EnsSNN methods are very near (the differences of NRMSE is lower than
0.01). In this case, the B and B2 methods get better predictions than A. About the execution
time, the A method is much faster than all others.

7.2.2 Binomial classification
Heart dataset

Let us see the behaviour for binomial classification problems. Figure 7.21 shows the results of the
Heart dataset. For this dataset, A and A2 obtain the best accuracies among all methods (included
the Random Forest). The B2 is a step below, but it is very near, and, interestingly, the B method
is the worst one, it seems that this method fails by overfitting issues. About the execution time, it
happens the same than with the regression problems, the C methods are the ones that need more
time to train the model.

Horse Colic dataset (binomial case)

Figure 7.22 shows the results of the Horse Colic dataset. These results are similar to the Heart
dataset, but in this case, the Random Forest performs a little better than the A and A2 methods.
Also, the B2 obtains similar results than A and A2. All other methods (B, C and C2) predicts
worse the response variable.
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Figure 7.21: Results of experiment 2 for the Heart dataset.

Figure 7.22: Results of experiment 2 for the Horse Colic dataset (binomial case).

Pima dataset

Figure 7.23 shows the results of the Pima dataset. Again, we see similar results than with the
previous datasets. Method A, A2, B2 and Random Forest are the ones that best perform, with
similar performance metrics, and the other methods are worse.

Figure 7.23: Results of experiment 2 for the Pima dataset.

Mammographic dataset

Figure 7.24 shows the results of the Mammographic dataset. A, A2 and B2 obtain similar accura-
cies, improving the results obtained by the Random Forest. It is also important to mention that
the B2 needs more time for training the model than the A methods.
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Figure 7.24: Results of experiment 2 for the Mammographic dataset.

Mushroom dataset

Figure 7.25 shows the results of the Mushroom dataset (C2 method is not shown in the figure
because the accuracy was a lot worse than the other methods). For this case, all methods get high
accuracy, but A, A2, B2 and Random Forest seem to be a step above and reach a nearly 100% of
accuracy.

Figure 7.25: Results of experiment 2 for the Mushroom dataset.

Census dataset

Finally, it is tested with a large dataset (only 5 repetitions of the experiment are executed). For
this dataset, the Random Forest gets the best performance metric, followed by B, A and A2. In

Figure 7.26: Results of experiment 2 for the Census dataset.
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this case, adding regularization to B does not improve the accuracy.

7.2.3 Multinomial classification
Audiology dataset

Figure 7.27 shows the results of the Audiology dataset. Methods A, A2, B and Random Forest
are the methods that best perform on the Audiology dataset, C and C2 are the worst cases, and
regularizing the B method does not improve the accuracy of the model. About the execution time,
it has a similar behaviour than the regression and binomial classification problems.

Figure 7.27: Results of experiment 2 for the Audiology dataset.

Glass dataset

For the Glass dataset, the Random Forest gets the highest accuracies, followed by the A, A2 and
B2 methods that are very near. Again the Cs methods are the worse cases.

Figure 7.28: Results of experiment 2 for the Glass dataset.

Horse colic dataset (multinomial case)

The results of the Horse colic dataset are very similar than the ones obtained with the previous
datasets: A, A2, B2 and Random Forest are the methods that better perform, having the Random
Forest a slightly higher accuracy than the others.

Annealing dataset

The results of the Annealing dataset are quite different from the previous ones. First, the Random
Forest is the worst method, even improved by C and C2. A and A2 are the best models and A2
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Figure 7.29: Results of experiment 2 for the Horse colic dataset (multinomial case).

Figure 7.30: Results of experiment 2 for the Annealing dataset.

seems to be a step above. Also, for this dataset, the regularization of B does not improve the
performance metrics.

Contraceptive dataset

Figure 7.31 shows the results of the Contraceptive dataset. A, A2 and B2 are the methods that
obtain better accuracies for this dataset. These methods improve the predictions of the Random
Forest. The behaviour among the other methods is the same than the previous datasets.

Figure 7.31: Results of experiment 2 for the Contraceptive dataset.
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Diabetes dataset

Finally, the diabetes dataset is tested, a large problem. Only 5 repetitions are executed because
each one could take hours. In Figure 7.32 we can see that Random Forest and B2 are the methods
that get better predictions, followed by B, A2 and A (but these methods are very near, less than
0.5% of difference). About the execution time, the fastest methods are A and A2, that are quicker
than the Random Forest. As expected, B2 takes more time to train the model than the others.

Figure 7.32: Results of experiment 2 for the Diabetes dataset.

7.2.4 Summary of Experiment 2
With the second experiment, I have analyzed the behaviour of the ensemble learners of the EnsSNN.
The results of this experiment show that the EnsSNN gets performance metrics similar to the
Random Forest (in some cases it is better and in some other cases it is worse), so the EnsSNN
creates good models. Among the different ensemble learners, A and B2 are the best methods. But
in some datasets, the regularization of B (B2) decreases the accuracy or NRMSE of the model.
The C and C2 methods are a step below these methods and they perform worse in all datasets
(performance metric and execution time).

About the execution time, C and C2 need too much time to train the model, they are followed
by B2 and then by B, and finally, A and A2, that are the fastest ones. Also, I have noticed that
the training time of the Random Forest is lower than the EnsSNN for small problems, but for large
datasets, A and A2 are quicker than the Random Forest.

As a conclusion of this experiment, we have seen how the EnsSNN performs in a set of datasets
and it equalizes the results of the Random Forest and, in some cases, it is improved. Moreover,
the A ensemble methods are a step above to the other EnsSNN methods in terms of performance
metric and especially in execution time.

7.3 Experiment 3
Analysis of the number of prototypes of a single SNN

For the first complementary experiment, all parameters of the model are fixed with the default
values and it is played with the number of prototypes of a single SNN in order to see its behaviour.
For this experiment and all following ones (complementary experiments), to reduce the number of
figures it is shown a graphic with the mean Accuracy/NRMSE and mean execution time of the
repetitions (for complementary experiments, 20 repetitions are executed).

In Appendix B.3 there are the numerical results of this experiment and Figure 7.33 shows them
graphically. With these graphics, we can see that using a low percentage or a high percentage of
prototypes makes the model worse, so the best results are found in the intermediate percentages.
With very few prototypes the network cannot learn all the information needed to predict the
response variable. In the other hand, when the network has a high percentage of observations
that are prototypes, then the network fails by overfitting issues. I want to stress the fact that the
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network does not use regularization, and maybe, if it is used regularization when the percentage
of prototypes is high, the decrease in the performance metric could be lower.

In most datasets, there is an improvement on the performance metric when increasing the
number of prototypes from 0 to 10%, then from 10% until 100% this performance metric remains
stable or it decreases. Looking at these results a good choice for the percentage of prototypes
would be to use 10% of the data as prototypes.

About the execution time, as expected, most of the datasets need more time to be trained
when the number of prototypes is higher, so for this reason, the graphics show a positive slope
(Contraceptive is an exception).

Figure 7.33: Results of experiment 3. From left to right: performance metric plot and execution
time plot. From top to bottom: Regression, binomial and multinomial classification problems.

7.4 Experiment 4
Comparison of PAM and Random prototype selection for the Ensemble of SNNs

For this experiment, it is set all parameters of the Ensemble of SNNs to its default values and
it is analyzed the prototype selection methods used in each SNN (PAM or random). In Appendix
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Figure 7.34: Results of Experiment 4. From left to right: performance metric plot and execution
time plot. From top to bottom: Regression, binomial and multinomial classification problems.

B.4 there are the numerical results of this experiment and in Figure 7.34 the graphical results are
shown.

The first thing that we see in these plots is that the PAM method spends more time in training
the model than the Random prototype selection. This fact was expected because the random
method is very simple and its computational cost is very low, oppositely to PAM, that needs to
compute the similarities between all observations and create the clusters.

Secondly, with the performance metric plots, we see that there is not a huge difference among
the two methods, but it seems that in most of the cases, the random method obtains slightly better
results than the PAM. This may be caused because the ensembles usually have better performance
when the learners are different among them, and training each SNN with the Random method
instead of PAM will add more variability among learners.

7.5 Experiment 5
Analysis of adding regularization to each SNN of the Ensemble
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It is analyzed the influence of adding regularization to each SNN of the Ensemble. To do
that, all other parameters of the Ensemble are set to its default values and it is played with these
regularizations. Appendix B.5 contains all numerical results of the experiment and in Figure 7.35
we can see them graphically.

When the SNNs do not use regularization, in most of the problems, there is an improvement of
the NRMSE/Accuracy (except for two binomial classification problems), this improvement is not
very high but it is significative. Ensembles (as a general method) usually perform better when some
of its learners overfit the data. So, the behaviour of the regularization of the SNNs may be caused
by that, the overfitting of each SNN will be higher when there is no regularization in the SNNs.
About the execution time, these regularizations increase the time to train the model because it
needs to find the regularization hyper-parameter λ (for the regression problems the difference is
lower because it does a GCV instead of a 10-fold-CV).

Summarizing, adding regularization to each SNN of the ensemble does not improve the predic-
tions and it spends more time training the model.

Figure 7.35: Results of experiment 5. From left to right: performance metric plot and execution
time plot. From top to bottom: Regression, binomial and multinomial classification problems.
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7.6 Experiment 6
Analysis of the distribution used to select the number of prototypes of each SNN of
an Ensemble of SNNs

It is analyzed the influence of the way to choose the number of prototypes of each SNN of the
Ensemble. All other parameters of the Ensemble are set to the default values and it is set that
all distributions have the same expected value. Appendix B.6 contains all numerical results of the
experiment and Figure 7.36 shows them graphically.

In these numerical and graphical results, there is not a significant difference among the methods.
All distributions seem to obtain similar Accuracy/NRMSE and they spend the same time training
the models. So, this feature seems to do not have an important influence on the performance
metrics.

Figure 7.36: Results of experiment 6. From left to right: From left to right: performance
metric plot and execution time plot. From top to bottom: Regression, binomial and multinomial
classification problems.
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7.7 Experiment 7
Analysis of the method used to select the number of observations to train each SNN
of an Ensemble

With this experiment, it is analyzed the influence on the performance metric that has the
distribution that chooses the number of observations used to train each SNN of the Ensemble. It
is set the expected value of these distributions to be the 50% of the number of observations (all
other parameters are set to the default values). Appendix B.7 contains all numerical results of the
experiment and Figure 7.37 shows them graphically.

As with the previous experiment, there is not a significant difference between using one distri-
bution or another. So, it seems that the way to select the number of observations does not have
an important influence on the performance metrics.

Figure 7.37: Results of experiment 7. From left to right: performance metric plot and execution
time plot. From top to bottom: Regression, binomial and multinomial classification problems.
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7.8 Experiment 8
Analysis of the proportion of data used to train each SNN of an Ensemble

With the eighth experiment, it is analyzed the number of observations used to train each SNN
of an Ensemble. The constant distribution is used and all other parameters are set to the default
values. Appendix B.8 contains all numerical results of the experiment and Figure 7.38 shows them
graphically.

With these figures, we see that when the percentage of observations is very low the ensemble
predicts very bad, and when the SNNs are trained with more observations, then the performance
metric increases. But of course, using more observations will increase the learning time of each
SNN, so, we should find a threshold between the two criteria. For these problems, I think that
with 50% of the data the Accuracy/NRMSE is almost the maximum value and the training time
is not too high. Also, it is important to mention that for large problems, it may be convenient to
reduce this percentage in order to speed up the training time of the model.

Figure 7.38: Results of experiment 8. From left to right: performance metric plot and execution
time plot. From top to bottom: Regression, binomial and multinomial classification problems.

52



7.9 Experiment 9
Missing values analysis (Ensemble of SNNs)

Finally, the last experiment analyzes how robust is the Ensemble of SNNs against the miss-
ing values. To do that, it is randomly set to NA a certain percentage of the total training data.
Appendix B.9 contains all numerical results of this experiment and Figure 7.39 shows them graph-
ically.

As expected, as more missing values are in our dataset, worse is the performance of our model
(Accuracy/NRMSE) because more information is removed from the data. Each dataset has a
different behaviour, but with 50% of missing data, most of the models still give a proper prediction.
Moreover, the percentage of missing values seems to do not influence on the execution time.

Figure 7.39: Results of experiment 9. From left to right: performance metric plot and execution
time plot. From top to bottom: Regression, binomial and multinomial classification problems.
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7.10 Final discussion of the experiments
With these nine experiments, we have tested and we have seen the behaviour of the SNN and
the Ensemble of SNNs for a set of problems (small and large). With the main experiments, the
main variants of these learning methods are tested, and with the complementary ones, it is tested
specific features of them.

With the first experiment, we have seen that the SNN improves the accuracy/NRMSE of
the classical decision tree in almost all cases. Also, the regularization of the linear model has a
high impact on the performance of the model (in most of the cases, it improves it). Then, the
optimization of p has some influence but much lower than the regularization. And finally, the way
to choose the prototypes has low influence.

With the second experiment, we have seen that the Ensemble of SNNs gets a performance
metric similar to the Random Forest and, in some cases, it improves it. About the ensemble
learner, the A and A2 are the two methods that best perform, in almost all cases they are the
methods with the best accuracy/NRMSE and, moreover, they are the fastest in training the model.

In these two experiments, the methods are tested with small and large datasets, and with both
sizes, the results obtained are quite good (similar to Random Forest). It is true that for large
problems it takes time (hours) to train the model, but the created models get good performance
metrics.

The missing part is to compare the results of the SNN and the Ensemble of SNNs. In Appendix
B.1 and B.2 are the numerical results of these experiments (where we can find the mean and
variance of Accuracy/NRMSE). The results of the two learners are very similar, but the Ensemble
of SNNs seems to obtain slightly better results than the SNN. Table 7.1 shows a summary with
the configurations that better perform of each method: for the Ensemble, the A learner method is
shown, and for the SNN it is shown the random prototype selection, p found by cross-validation and
regularization (it is also shown p constant because the CV was not executed for large problems).
With this table, we can see that, among the thesis proposals, the Ensemble of SNNs is the best in
many of these problems (best means having the highest accuracy or lowest NRMSE), and when
it is not the best, it obtains performance metrics very near to the SNNs. Despite this, the SNNs
obtain quite good results too. Moreover, it is important to mention that the Ensemble is faster
when the problem is large because it trains n small SNNs instead of one with all the data (that
would take more training time). So, for large problems, even larger than the ones tested in this

Ensemble of SNNs
Method A

(Accuracy/NRMSE)

SNN
Rand , p=Const, Reg
(Accuracy/NRMSE)

SNN
Rand , p=CV, Reg
(Accuracy/NRMSE)

Random
Forest

Automobile 0.1349 0.1902 0.1608 0.0843
AutoMPG 0.1488 0.1647 0.1409 0.1344

Communities 0.3530 0.3545 0.3539 0.3540
MV 0.0309 0.0039 - 0.0011

Heart 83.11 82.88 82.68 81.62
Pima 76.42 76.20 76.34 76.13

HorseColic2 81.86 81.72 82.03 84.45
Mammographic 80.41 80.39 80.62 78.74

Mushroom 99.98 96.53 - 100
Census 94.67 94.70 - 95.51

Audiology 85.68 81.23 81.86 85.23
Glass 70.97 46.72 48.97 75.41

HorseColic1 67.50 66.66 66.79 69.75
Annealing 95.72 90.86 91.11 87.50

Contraceptive 54.49 53.22 54.25 53.29
Diabetes 58.51 58.87 - 58.96

Table 7.1: Comparison of the results of SNN and Ensemble of SNNs. Also, the results of the
Random Forest are shown as a benchmark.
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thesis, the Ensemble with method A will be quicker than a simple SNN. Another thing to comment
among the two learners is that the Ensemble of SNNs, in most of the problems, gets lower variance
of Accuracy/NRMSE than the SNN. So, the variability between two different executions of the
learning method is higher in the SNN case (one of the reasons to use an ensemble was to reduce
this issue). Also with the Table 7.1, we can see that our proposals get similar results than the
Random Forest (in some cases they are better than Random Forest and in some other cases they
are worse).

Finally, with the complementary experiments, we have understood the behaviour of some of the
features related to these methods. For example, it was seen how robust the Ensembles of SNNs
are against missing values or the influence of the number of prototypes of a network.
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Chapter 8

Conclusions

In this chapter, the main conclusions of the thesis are presented and it is reviewed if the initial
objectives were fulfilled. In this document, I have designed and implemented two learning methods:
SNN and Ensemble of SNNs.

The SNN is a two-layer neural network that is based on similarity measures. In the design
section, several variants of this network are explained, and with the experiments, I have seen the
influence of each one of them. The results suggest that adding regularization to the SNN is the
feature with more influence among the tested ones. In most of the problems, this regularization
of the network makes an increase in the performance metric of the model (accuracy or NRMSE).
Another feature that was tested but it has less impact than the regularization is the value of p of
the activation function. Several methods were designed and the one that performs better was the
cross-validation and the one that performs worst was the constant value. Also, an optimization
procedure was designed to set the value of p, but as it does not allow regularization, the results
are worse than any other p method with regularization (this could be a future work to be done).
Finally, it is also analyzed if selecting the prototypes of the network by a clustering procedure
is better than do it randomly, and the results of the experiments suggest that there is not a
high impact on choosing one method or another. Moreover, the results of the SNN improves the
Accuracy/NRMSE obtained with the decision tree in almost all experiments.

Secondly, I have designed the Ensemble of SNNs. Several ensemble learners were proposed,
and, in most of the cases, the best results were obtained when it was used the A and A2 methods.
These methods are the simplest ones, they do the mean and the majority vote of the learners,
so they are the methods that get the best accuracy/NRMSE and also the fastest ones. More
complex methods were also tried but none of them beat the A methods. Method B proposes to
apply a GLM with the responses of the learners. In some cases, the results of B were near to the
As methods but in others, they fail by overfitting issues. Also adding regularization to the GLM
(Method B2) gets better results than B, but these results seem to be a step below than method A
in terms of Accuracy/NRMSE and execution time. And finally, a Mixture of Expert approach is
also proposed (Methods C and C2), but the results of the experiments show that it is the worst
method: it gets very bad performance metrics compared to the other methods, and also it is the
one that spends more time in training the model (this approach does not seem to work well for
the SNNs). The Ensemble of SNNs and all its variants were compared with the Random Forest.
Method A got similar accuracy/NRMSE than the Random Forest, and for some of the problems,
it obtained better results.

Finally, there is a comparison between the two learning methods proposed in this thesis. In
most of the cases, the Ensemble gets slightly higher performance metric than a simple SNN (but
the SNN is very near). Moreover, the Ensemble usually gets a lower variance of Accuracy/NRMSE
too. So, designing and using the Ensemble was a good idea to improve the SNN. About the
execution time, the ensemble takes more time when the problem is small, but when the problem is
large, the complexity of the Ensemble is lower than the SNN because it has to fit M small SNNs
instead of one large SNN. So the results of the experiments suggest that for large problems the
Ensemble should be preferable.

Also, one of the goals of this thesis was to understand and know if the use of similarity measures
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in the learning algorithm would create good models compared to classical methods. Against the
decision tree, the experiments show that the SNNs (and Ensemble) get better performance metrics
than the decision tree in almost all problems. When they are compared to the Random Forest,
the results are closer: in some cases, the Random Forest gets better performance metrics, and in
some others, the Ensemble of SNNs gets better results. I want to stress the fact that the Random
Forest is a learning algorithm that is difficult to beat because its degree of randomness among the
learners is very well chosen. So, the results obtained with the Ensemble of SNNs are quite good
and competitive. But there is further scope for improvement, one way to improve could be to
analyze and refine the randomness of the SNNs of the ensemble.

Summarizing, in this thesis, I have researched and designed two new learning methods, and
the results of the experiments show a competitive performance of both methods, obtaining similar
results than the Random Forest and improving it in some problems.

Review of the thesis objectives

At the beginning of this document, there is a list of the main objectives of this thesis. Let us
review if they have been accomplished:

1. Design a Similarity Neural Network (SNN).

X In Section 4.1, the design of the SNN with all its configurations is explained.

2. Implementation of the SNN.

X I have implemented an R function that creates an SNN and another one that predicts new
data (Section 5). I have tried to encapsulate all the functionality in these functions and make
them be user-friendly functions that could be used for everyone.

3. Add regularization to the SNN.

X It is added regularization to the GLM of the network, and the results of the experiments
show an improvement on the Accuracy/NRMSE.

4. Optimize the p hyper-parameter of the activation function of the hidden neurons.

X As said before, it is designed a set of methods to choose the p values of the activation
function. The cross-validation method seems to perform better than when using a constant
value. Also, there is the optimization procedure, but it fails in the way that it does not allow
regularization, and regularization has a high impact on the performance metrics.

5. Design an Ensemble of SNNs

X In Section 4.2, the design of the Ensemble with all its configurations is explained.

6. Implement the Ensemble of SNNs

X As done with the SNN, I have implemented an R function that creates an Ensemble and
another one that predicts new data (Section 5).

7. Test the performance of the SNN and Ensemble of SNNs by designing experiments.

X Nine different experiments are designed to test how these learning methods perform, and
they were tested with 16 different problems (Section 6).

8. Comparison between the Similarity Neural Network and the methods in the literature

X The main experiments compare the learning methods with the decision tree and Random
Forest. For most of the problems, the performance metrics are very similar to the Random
Forest, and in some cases, they improve it.

9. Test the performance of the learners with large problems.

X Three of the datasets tested in the experiments are large problems, so they have been tested
and the results are quite good.
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Chapter 9

Future work

Finally, a list of tasks is proposed that would continue with the work done in this document. As
said in previous chapters, the Similarity Neural Network (SNN) is an area that is less researched
than other methods, it would need more research.

Some of these future works that would continue and extend this thesis are:

• First of all, it could be designed and executed more experiments with more datasets. These
experiments could test the SNN and the Ensemble in more different conditions than the ones
tested in this document.

• Also, the SNNs and the Ensembles could be tested with datasets that are much larger than
the ones tested in this thesis, and we could see how these methods perform on very large
problems.

• The SNN could be extended to allow more similarity measures / data types (e.g fuzzy or
cyclic).

• The Gower’s similarity has a set of parameters that can tune the weight of each feature of
the dataset (wk). These weights could be optimized for the predictive task of the problem.

• The last layer of the SNN is a linear model (GLM) of the similarities given by the hidden
neurons. It could be tried to use another learning method, for example, an SVM or a MLP-
NN instead of the GLM.

• The optimization procedure that sets the value of p (activation function) does not allow
regularization. So, an interesting future work would be to add this regularization to the
method and see how the model performs.

• Also, the regularization could be added to method C of the Ensemble of SNNs. It could be
interesting to see if, with this regularization, the performance metric of the model improves.

• For the Ensemble of SNNs, it could be analyzed how decorated and distinct are the SNNs
of the Ensemble. As said before, the ensemble works better when the learners are different
among them and they disagree and do different predictions. So, one future work could be to
analyze how correlated are the SNNs of the Ensemble. Then, if the degree of correlation is
high, it could be tried some of the techniques to decorate and add randomness among SNNs.
For example, it could be done a feature selection approach to the ensemble.

• In this thesis, it was designed a Bagging-like ensemble method. Another future work would
be to design another type of ensemble, for example, a Boosting-like ensemble.

• The learning methods proposed in this thesis were implemented in the R language. This
code could be refined and added to a package in order to be available for the community.

• Also related to the implementation, it could be optimized the code to make it faster. More-
over, it can be implemented in another language (e.g. C) in order to speed up the training
time.
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• Theoretically, the SNN can deal with semi-supervised datasets (observations without a label
can be prototypes). The implementation can be modified to allow this type of datasets and
it can be tested its behaviour with real problems.

These are some of the possible future works of this thesis, but as said before, there is a lot of
work that can be done in the research area of similarity-based learning methods for heterogeneous
data.
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Acronyms

ANN Artificial Neural Network.

EnsSNN Ensemble of SNNs.

GCV Generalized Cross-Validation.

GD Gradient Descent.

GLM Generalized Linear Model.

LOO-CV Leave-One-Out Cross-Validation.

MLP-NN Multilayer Perceptron Neural Network.

MoE Mixture of Experts.

MSE Mean Squared Error.

NA Not Available.

NRMSE Normalized Root Mean Square Error.

PAM Partitioning Around Medoids.

RBF-NN Radial Basis Function Neural Network.

SD Standard Deviation.

SNN Similarity Neural Network.

SSE Sum of Squares Error.

SVM Support Vector Machine.
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Lists of Symbols

xi: Explanatory variables (input variables or features) of the ith observation of the dataset.

xij : Value of feature j for the ith observation.

yi: Response variable of the ith observation of the dataset.

ŷi: Prediction of the response variable for the ith observation of the dataset.

N : Number of observations of the problems.

P : Number of explanatory variables.

K: Number of modalities of the response variable (multinomial case).

p: Parameter of the activation function fp.

H: Number of prototypes or number of hidden neurons of an SNN.

hp: Expected number of prototypes for an SNN.

ci: Prototype of the ith hidden neuron.

α: Weights of the linear model (SNN).

M : Number of SNNs of an Ensemble.

β: Weights of the ensemble learner.

Φ: Matrix of weights used in the gating network (Ensemble of SNNs).
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Appendix A

Optimization functions

A.1 Optimization of p: Error function and its derivatives
In Section 4.1.2.2, it is explained the methods used to decide the value of p (fp) of an SNN. There is
one that does the optimization of p and αs at the same time using the gradient descent algorithm.
So, we should provide the objective function and its derivatives. In this section, it is explained and
formulated in details this error function (the one that should be minimized) and its derivatives.
Each type of problem (regression, binomial and multinomial classification) has a different error
function, so each one should be treated separately.

A.1.1 Regression
For regression problems, it is used the SSE as the error function. It is defined N as the number
of observations, H as the number of hidden neurons (prototypes), xn is the vector of features
for observation n, yn is the response variable for observation n, sg is a function that computes
the Gower’s similarity between two observations and ch is the prototype of the hidden neuron h.
Then, the error function (E) has two parameters: p and αs (vector of length H + 1). So, the error
function is defined as follows:

E(p, α) =

N∑
n=1

(yn − ŷ(p, α, xn))2

ŷ(p, α, x) =

H∑
h=1

αhfp (sg(x, ch)) + α0

fp(x) =


−p

(x−0.5)−a(p) − a(p) if x ≤ 0.5

−p
(x−0.5)+a(p) + a(p) + 1 if x ≥ 0.5

a(p) = −2−2 +
√

2−4 + p

Derivatives

The partial derivative of the previous error function with respect to p is:

∂E(p, α)

∂p
= −2

N∑
n=1

(
(yn − ŷ(p, α, xn))

∂ŷ(p, α, xn)

∂p

)
∂ŷ(p, α, x)

∂p
=

H∑
h=1

αh
∂fp(sg(x, ch))

∂p
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∂fp(x)

∂p
=


−(x−0.5)+a(p)−p ∂a(p)

∂p

(x−0.5−a(p))2 − ∂a(p)
∂p if x ≤ 0.5

−(x−0.5)−a(p)+p
∂a(p)
∂p

(x−0.5+a(p))2 + ∂a(p)
∂p if x ≥ 0.5

∂a(p)

∂p
=

1

2
√

2−4 + p

And the partial derivative of E with respect to αi:

∂E(p, α)

∂αi
= −2

N∑
n=1

(
(yn − ŷ(p, α, xn))

∂ŷ(p, α, xn)

∂αi

)
∂ŷ(p, α, x)

∂αi
=

{
1 if i = 0
fp(sg(x, pi)) if i ≥ 1

A.1.2 Binomial classification
For binomial classification problems, the error function used is the cross-entropy for two classes.
In this case, yn is 1 when the observation n is positive and 0 otherwise. Functions that are the
same than the regression case (e.g. fp, ∂fp/∂p,. . . ) are not included in this section in order to do
not repeat formulas and its derivatives. So, E is defined as follows:

E(p, α) = −
N∑
n=1

(yn · ln(ŷ(p, α, xn)) + (1− yn) · ln(1− ŷ(p, α, xn))

ŷk(p, α, x) = sigmoid (ξ(p, α, x)) sigmoid(x) =
1

1 + e−x

ξ(p, α, x) =

H∑
h=1

αhfp (sg(x, ch)) + α0

Derivatives

The partial derivative of E with respect to p is:

∂E(p, α)

∂p
= −

N∑
n=1

(
yn

1

ŷ(p, α, xn)

∂ŷ(p, α, xn)

∂p
− (1− yn)

1

1− ŷ(p, α, xn)

∂ŷ(p, α, xn)

∂p

)

∂ŷ(p, α, x)

∂p
= ∂sigmoid (ξ(p, α, x))

∂ξ(p, α, x)

∂p
∂sigmoid(x) =

−e−x

1 + e−x

∂ξ(p, α, x)

∂p
=

H∑
h=1

αh
∂fp(sg(x, ch))

∂p

And the partial derivative with respect to αi is:

∂E(p, α)

∂αi
= −

N∑
n=1

(
yn

1

ŷ(p, α, xn)

∂ŷ(p, α, xn)

∂αi
− (1− yn)

1

1− ŷ(p, α, xn)

∂ŷ(p, α, xn)

∂αi

)
∂ŷ(p, α, x)

∂αi
= ∂sigmoid (ξ(p, α, x))

∂ξ(p, α, x)

∂αi

∂ξ(p, α, x)

∂αi
=

{
1 if i = 0
fp(sg(x, ci)) if i ≥ 1
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A.1.3 Multinomial classification
For multinomial classification problems, it is used the cross-entropy for k classes. Here, K is the
number of modalities of the response variable, ynk is 1 when the observation n is of the k modality
and 0 otherwise and α is a matrix of dimensions H+1 times the number of modalities (K). Again,
functions that were defined in previous cases are not included. The error function is defined as
follows:

E(p, α) = −
N∑
n=1

(
K∑
k=1

ynk · ln(ŷk(p, α, xn))

)

ŷk(p, α, x) =
eξk(p,α,x)

K∑
l=1

eξl(p,α,x)

ξk(p, α, x) =


0 if k = 1
H∑
h=1

αhkfp (sg(x, ch)) + α0k if k > 1

Derivatives

The partial derivative of E with respect to p is:

∂E(p, α)

∂p
= −

N∑
n=1

K∑
k=1

(
ynk

1

ŷk(p, α, xn)

∂ŷk(p, α, xn)

∂p

)

∂ŷk(p, α, x)

∂p
=

eξk(p,α,x) ∂ξk(p,α,x)
∂p

K∑
l=1

eξl(p,α,x) − eξk(p,α,x)
K∑
l=1

(
eξl(p,α,x) ∂ξl(p,α,x)

∂p

)
(
K∑
l=1

eξl(p,α,x)

)2

∂ξk(p, α, x)

∂p
=


0 if k = 1
H∑
h=1

αhk
∂fp(sg(x,ch))

∂p if k > 1

And the partial derivative with respect to αij is:

∂E(p, α)

∂αij
= −

N∑
n=1

K∑
k=1

(
ynk

1

ŷk(p, α, xn)

∂ŷk(p, α, xn)

∂αij

)

∂ŷk(p, α, x)

∂αij
=

eξk(p,α,x) ∂ξk(p,α,x)
∂αij

K∑
l=1

eξl(p,α,x) − eξk(p,α,x)
K∑
l=1

(
eξl(p,α,x) ∂ξl(p,α,x)

∂αij

)
(
K∑
l=1

eξl(p,α,x)

)2

∂ξk(p, α, x)

∂αij
=

 0 if k = 1 or k 6= j
1 if k > 1 and k = j and i = 0
fp(sg(x, ci)) if k > 1 and k = j and i > 0

66



A.2 MoE: Error function and its derivatives
The Ensemble of SNNs has one variant that uses the MoE method as ensemble learner. As said
in section 4.2.2, this method is trained with the gradient descent algorithm, so the functions to be
minimized and its derivatives should be provided. In this appendix, it is explained and formulated
in details the error function (the one that should be minimized) and its derivatives. Each type
of problems (regression, binomial and multinomial classification) has a different error function, so
each one should be treated separately:

A.2.1 Regression
For regression problems, it is used the SSE as the error function. It is defined N as the number of
observations, M as the number of SNNs used in the ensemble, P as the number of features of each
observation, xn is the vector of features for observation n (for simplicity, it is set xn0 = 1, as the
intercept), yn is the response variable for observation n and νm(x) is the prediction of the m SNN
of the ensemble for observation x. Then, the error function (E) has one parameter Φ, a matrix of
dimensions P + 1 times M that defines how is the gating network (thus, how to compute the βm
of the ensemble). E is defined as follows:

E(Φ) =

N∑
n=1

(yn − ŷ(Φ, xn))2

ŷ(Φ, x) =

M∑
m=1

βm(Φ, x) · νm(x)

βm(Φ, x) =
eδm(Φm·,x)

M∑
l=1

eδl(Φl·,x)

δm(Φm·, x) =

P∑
p=0

Φmpxp

Derivative

The partial derivative of the previous error function with respect to Φij (a position in the Φ matrix)
is:

∂E(Φ)

∂Φij
= −2

N∑
n=1

(
(yn − ŷ(Φ, xn))

∂ŷ(Φ, xn)

∂Φij

)
∂ŷ(Φ, x)

∂Φij
=

M∑
j=1

∂βm(Φ, x)

∂Φij
· νm(x)

∂βm(Φ, x)

∂Φij
=



eδm(Φm·,x)·xj ·
M∑
l=1

eδl(Φl·,x)−eδi(Φi·,x)·eδi(Φi·,x)·xj(
M∑
l=1

eδl(Φl·,x)

)2 if m = i

−eδi(Φi·,x)·eδi(Φi·,x)·xj(
M∑
l=1

eδl(Φl·,x)

)2 if m 6= i

This error function and its derivative will be used by the gradient descent algorithm to train
the gating network coefficients (Φ).
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A.2.2 Binomial classification
For binomial classification problems, the error function used is the cross-entropy for two classes.
All constants are the same than the regression case, except yn that is 1 when the observation n is
positive and 0 otherwise and for this case, νm(x) is a probability. The error function is defined as
follows ( βm(·, ·) is the same function than the regression case):

E(Φ) = −
N∑
n=1

(ynln(ŷ(Φ, xn)) + (1− yn) · ln(1− ŷ(Φ, xn))

ŷ(Φ, x) =

M∑
m=1

βm(Φ, x) · νm(x)

Derivative

And the partial derivative of E with respect to Φij is:

∂E(Φ)

∂Φij
= −

N∑
n=1

(
yn

1

ŷ(Φ, xn)

∂ŷ(Φ, xn)

∂Φij
+ (1− yn)

1

1− ŷ(Φ, xn)

−∂ŷ(Φ, xn)

∂Φij

)
∂ŷ(Φ, x)

∂Φij
=

M∑
j=1

∂βm(Φ, x)

∂Φij
· νm(x)

A.2.3 Multinomial classification
Finally, for the multinomial case, it is used the cross-entropy for k classes. All constants are the
same than the regression case, except ynk that is 1 when the observation n is of the k modality and
νmk(x) that is the probability predicted by the m SNN of being modality k. The error function is
defined as follows ( βm(·, ·) is the same function than the regression case):

E(Φ) = −
N∑
n=1

(
K∑
k=1

ynk · ln(ŷk(Φ, xn))

)

ŷk(Φ, x) =

M∑
m=1

βm(Φ, x) · νmk(x)

Derivative

The partial derivative of E with respect to Φij is:

∂E(Φ)

∂Φij
= −

N∑
n=1

K∑
k=1

(
ynk

1

ŷk(Φ, xn)

∂ŷk(Φ, xn)

∂Φij

)
∂ŷk(Φ, x)

∂Φij
=

M∑
j=1

∂βm(Φ, x)

∂Φij
· νmk(x)
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Appendix B

Experiment results

In this appendix, it is shown the numerical results of all experiments used to test the behaviour of
the SNN and the Ensemble of SNNs. See Section 6 for more details about these experiments. For
each experiment, several repetitions are executed and it is shown the mean and Standard Deviation
(SD) of the performance metric and the execution time of these repetitions. The following tables
contain these results.
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B.1 Experiment 1
Regression problems

Dataset Learner P method Clustering Reg Mean
NRMSE

Sd
NRMSE

Mean
time (s)

Sd
time (s)

Automobile SNN PAM Const Yes 0.2197 0.0729 0.0526 0.0804
Automobile SNN PAM Const No 0.2240 0.0726 0.0381 0.0050
Automobile SNN Random Const Yes 0.1902 0.0581 0.0425 0.0415
Automobile SNN Random Const No 0.2032 0.0685 0.0280 0.0025
Automobile SNN PAM Opt No 0.1951 0.0654 0.0738 0.0256
Automobile SNN Random Opt No 0.2028 0.0869 0.0553 0.0183
Automobile SNN PAM GCV Yes 0.1937 0.0659 0.1144 0.0410
Automobile SNN PAM GCV No 0.1929 0.0669 0.0916 0.0074
Automobile SNN Random GCV Yes 0.1657 0.0559 0.0833 0.0038
Automobile SNN Random GCV No 0.1700 0.0587 0.0804 0.0029
Automobile SNN PAM CV Yes 0.1949 0.0653 0.5869 0.0371
Automobile SNN PAM CV No 0.1942 0.0658 0.5727 0.0171
Automobile SNN Random CV Yes 0.1608 0.0539 0.5696 0.0202
Automobile SNN Random CV No 0.1645 0.0524 0.5679 0.0224
Automobile Decision tree 0.3174 0.0923 0.0071 0.0097
AutoMPG SNN PAM Const Yes 0.1577 0.0243 0.1427 0.0356
AutoMPG SNN PAM Const No 0.1600 0.0234 0.1383 0.0324
AutoMPG SNN Random Const Yes 0.1647 0.0251 0.0190 0.0016
AutoMPG SNN Random Const No 0.1692 0.0257 0.0152 0.0013
AutoMPG SNN PAM Opt No 0.1461 0.0266 0.2006 0.0431
AutoMPG SNN Random Opt No 0.1492 0.0233 0.0757 0.0197
AutoMPG SNN PAM GCV Yes 0.1388 0.0214 0.2118 0.0398
AutoMPG SNN PAM GCV No 0.1427 0.0232 0.2089 0.0412
AutoMPG SNN Random GCV Yes 0.1411 0.0197 0.0918 0.0106
AutoMPG SNN Random GCV No 0.1440 0.0202 0.0874 0.0102
AutoMPG SNN PAM CV Yes 0.1386 0.0210 0.8658 0.1108
AutoMPG SNN PAM CV No 0.1423 0.0225 0.8585 0.1090
AutoMPG SNN Random CV Yes 0.1409 0.0195 0.7479 0.0881
AutoMPG SNN Random CV No 0.1437 0.0200 0.7396 0.0904
AutoMPG Decision tree 0.2364 0.0436 0.0030 0.0010
Communities SNN PAM Const Yes 0.3541 0.0255 45.1189 8.5145
Communities SNN PAM Const No 0.3700 0.0269 45.2132 8.6409
Communities SNN Random Const Yes 0.3545 0.0261 0.6632 0.0421
Communities SNN Random Const No 0.3713 0.0269 0.5423 0.0310
Communities SNN PAM Opt No 0.3652 0.0266 46.9140 8.7432
Communities SNN Random Opt No 0.3681 0.0266 2.4588 0.1897
Communities SNN PAM GCV Yes 0.3544 0.0258 47.5337 8.8617
Communities SNN PAM GCV No 0.3700 0.0270 47.3813 8.8057
Communities SNN Random GCV Yes 0.3543 0.0261 2.8630 0.3140
Communities SNN Random GCV No 0.3705 0.0257 2.7549 0.2847
Communities SNN PAM CV Yes 0.3542 0.0255 58.9447 9.3545
Communities SNN PAM CV No 0.3699 0.0271 58.5257 9.0593
Communities SNN Random CV Yes 0.3539 0.0263 14.4870 1.3575
Communities SNN Random CV No 0.3691 0.0260 14.3668 1.3338
Communities Decision tree 0.6202 0.0582 0.0290 0.0206
MV SNN Random Const Yes 0.0039 0.0002 1051.2386 33.2876
MV SNN Random Const No 0.0040 0.0002 218.0586 5.5858
MV SNN Random Opt No 0.0047 0.0046 1084.1595 37.7980
MV Decision tree 0.0755 0.0036 0.1615 0.0191

Table B.1: Results of experiment 1 for regression problems.

70



Binomial classification problems

Dataset Learner P method Clustering Reg Mean
accuracy

Sd
accuracy

Mean
time
(s)

Sd
time
(s)

Heart SNN PAM Const Yes 82.6667 2.9865 0.2701 0.1043
Heart SNN PAM Const No 81.2444 3.2347 0.0589 0.0132
Heart SNN Random Const Yes 82.8889 3.0697 0.2266 0.0338
Heart SNN Random Const No 81.2444 3.3720 0.0291 0.0090
Heart SNN PAM Opt No 80.1778 3.8119 0.1436 0.0400
Heart SNN Random Opt No 81.3111 3.6035 0.1128 0.0281
Heart SNN PAM CV Yes 82.7556 2.6678 2.0654 0.1744
Heart SNN PAM CV No 80.8667 3.1848 1.9028 0.1976
Heart SNN Random CV Yes 82.6889 2.8930 2.1156 0.2372
Heart SNN Random CV No 81.5778 3.1674 1.8127 0.1537
Heart Decision tree 75.2667 5.2875 0.0096 0.0083
Pima SNN PAM Const Yes 76.5625 2.4554 1.9433 0.3757
Pima SNN PAM Const No 75.1016 2.5177 1.2182 0.3294
Pima SNN Random Const Yes 76.2031 2.6267 0.8206 0.1153
Pima SNN Random Const No 74.6172 2.6487 0.0683 0.0131
Pima SNN PAM Opt No 74.9688 2.8111 1.5845 0.3673
Pima SNN Random Opt No 75.0781 2.3950 0.4435 0.0675
Pima SNN PAM CV Yes 76.8672 2.4797 8.5259 1.4588
Pima SNN PAM CV No 75.7812 2.6103 7.7789 1.4024
Pima SNN Random CV Yes 76.3438 2.3848 7.3880 1.2276
Pima SNN Random CV No 75.0938 2.4573 6.6227 1.1747
Pima Decision tree 71.8047 2.1112 0.0103 0.0074
HorseColic2 SNN PAM Const Yes 81.9180 2.8893 0.3284 0.0359
HorseColic2 SNN PAM Const No 80.5246 3.1792 0.0824 0.0257
HorseColic2 SNN Random Const Yes 81.7213 3.1124 0.3033 0.0338
HorseColic2 SNN Random Const No 79.4098 3.4325 0.0465 0.0087
HorseColic2 SNN PAM Opt No 80.6066 3.3351 0.1752 0.0447
HorseColic2 SNN Random Opt No 79.5410 3.6430 0.1465 0.0349
HorseColic2 SNN PAM CV Yes 82.0984 3.0819 2.5273 0.4254
HorseColic2 SNN PAM CV No 81.2131 3.5278 2.2620 0.3605
HorseColic2 SNN Random CV Yes 82.0328 3.3566 2.4625 0.3759
HorseColic2 SNN Random CV No 80.0820 3.8276 2.2324 0.3911
HorseColic2 Decision tree 63.2131 3.6229 0.0093 0.0081
Mammographic SNN PAM Const Yes 80.7040 1.6284 2.6667 0.6637
Mammographic SNN PAM Const No 78.1869 1.9838 1.6530 0.4916
Mammographic SNN Random Const Yes 80.3925 1.7627 1.1127 0.1286
Mammographic SNN Random Const No 78.6293 2.1082 0.1211 0.0372
Mammographic SNN PAM Opt No 77.8816 2.1666 2.2101 0.5524
Mammographic SNN Random Opt No 78.3427 1.8926 0.6769 0.1002
Mammographic SNN PAM CV Yes 80.7601 1.7093 13.5135 2.6256
Mammographic SNN PAM CV No 78.1059 1.9562 12.5269 2.5388
Mammographic SNN Random CV Yes 80.6231 1.6472 11.9535 2.6059
Mammographic SNN Random CV No 78.1869 2.0688 10.9847 2.5194
Mammographic Decision tree 78.5234 2.0925 0.0112 0.0076
Mushroom SNN Random Const Yes 96.5399 2.4007 39.0778 23.1092
Mushroom SNN Random Const No 99.4025 2.7142 18.7568 16.1348
Mushroom SNN Random Opt No 99.5074 2.6820 38.6725 29.5699
Mushroom Decision tree 82.7518 0.5398 0.0524 0.0093
Census SNN Random Const Yes 94.7008 0.0895 7629.1551 155.5341
Census SNN Random Const No 95.1260 0.1135 2764.8296 144.8005
Census SNN Random Opt No 95.1260 0.1135 3495.6018 275.3437
Census Decision tree 93.8663 0.0841 18.3648 2.4548

Table B.2: Results of experiment 1 for binomial classification problems.
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Multinomial classification problems

Dataset Learner P method Clustering Reg Mean
accuracy

Sd
accuracy

Mean
time (s)

Sd
time (s)

Audiology SNN PAM Const Yes 82.2368 3.9272 0.8802 0.1307
Audiology SNN PAM Const No 78.0000 5.1891 0.0630 0.0184
Audiology SNN Random Const Yes 81.2368 3.7764 0.8479 0.0583
Audiology SNN Random Const No 77.9474 4.7817 0.0503 0.0192
Audiology SNN PAM Opt No 78.7632 4.5426 0.1616 0.0471
Audiology SNN Random Opt No 78.7632 4.1097 0.1603 0.0403
Audiology SNN PAM CV Yes 82.0789 3.8604 6.0116 2.5279
Audiology SNN PAM CV No 78.8947 4.3839 5.2201 2.5328
Audiology SNN Random CV Yes 81.8684 3.8549 6.5767 3.0590
Audiology SNN Random CV No 77.4211 4.8608 5.7795 3.0758
Audiology Decision tree 66.6316 8.9271 0.0094 0.0076
Glass SNN PAM Const Yes 52.4167 7.3964 1.0834 0.1746
Glass SNN PAM Const No 63.0833 5.6545 0.1290 0.0336
Glass SNN Random Const Yes 46.7222 9.4064 1.1142 0.1013
Glass SNN Random Const No 61.9444 7.0430 0.1406 0.0175
Glass SNN PAM Opt No 65.2500 6.0670 0.2571 0.0488
Glass SNN Random Opt No 62.5556 7.1040 0.2586 0.0357
Glass SNN PAM CV Yes 53.7500 7.8379 24.5722 1.3746
Glass SNN PAM CV No 63.0278 7.4286 23.4915 1.4401
Glass SNN Random CV Yes 48.9722 8.5746 24.7046 0.7706
Glass SNN Random CV No 61.6944 7.0602 23.7568 0.7481
Glass Decision tree 64.5278 4.7305 0.0074 0.0015
HorseColic1 SNN PAM Const Yes 66.0165 4.2425 0.9590 0.1058
HorseColic1 SNN PAM Const No 63.5207 4.1340 0.0727 0.0187
HorseColic1 SNN Random Const Yes 66.6612 4.3238 0.9396 0.0923
HorseColic1 SNN Random Const No 64.2314 4.1374 0.0587 0.0080
HorseColic1 SNN PAM Opt No 64.1488 3.8580 0.2320 0.0469
HorseColic1 SNN Random Opt No 64.3802 4.2050 0.1927 0.0328
HorseColic1 SNN PAM CV Yes 66.0661 4.0742 6.9060 1.5885
HorseColic1 SNN PAM CV No 64.6446 4.4436 6.0123 1.4630
HorseColic1 SNN Random CV Yes 66.7934 4.2787 7.2541 2.2014
HorseColic1 SNN Random CV No 64.6446 3.7717 6.3374 2.1201
HorseColic1 Decision tree 47.1570 14.2230 0.0097 0.0029
Annealing SNN PAM Const Yes 92.2216 1.8833 6.9006 1.1292
Annealing SNN PAM Const No 93.2891 1.8012 1.7261 0.4763
Annealing SNN Random Const Yes 90.8618 1.9075 5.4127 0.6933
Annealing SNN Random Const No 92.7132 2.4282 0.2256 0.0461
Annealing SNN PAM Opt No 96.8697 1.5182 2.0741 0.5095
Annealing SNN Random Opt No 96.4784 1.4268 0.5796 0.0888
Annealing SNN PAM CV Yes 92.2843 1.9441 31.4569 3.8603
Annealing SNN PAM CV No 93.3819 1.8298 26.3559 3.4946
Annealing SNN Random CV Yes 91.1124 1.9620 31.6393 5.6533
Annealing SNN Random CV No 93.1611 1.8873 26.5291 5.2667
Annealing Decision tree 76.4887 1.8685 0.0106 0.0052
Contraceptive SNN PAM Const Yes 52.1100 2.0354 40.7249 8.7936
Contraceptive SNN PAM Const No 50.5662 2.0040 30.6197 7.5759
Contraceptive SNN Random Const Yes 53.2261 1.8596 8.0556 0.8083
Contraceptive SNN Random Const No 51.2912 1.8064 0.9070 0.2442
Contraceptive SNN PAM Opt No 51.7271 2.2399 32.0491 8.2886
Contraceptive SNN Random Opt No 51.9430 2.0312 2.4014 0.4170
Contraceptive SNN PAM CV Yes 52.5784 2.2255 229.6423 44.0599
Contraceptive SNN PAM CV No 50.9043 1.9897 221.7207 44.1901
Contraceptive SNN Random CV Yes 54.2525 2.1889 202.8838 38.5094
Contraceptive SNN Random CV No 51.6334 2.0917 196.9093 37.9923
Contraceptive Decision tree 52.1263 2.4867 0.0171 0.0036
Diabetis SNN Random Const Yes 58.8792 0.1476 5216.2397 198.5430
Diabetis SNN Random Const No 58.7518 0.2443 3371.3839 522.3402
Diabetis SNN Random Opt No 58.7518 0.2443 3574.4267 323.4258
Diabetis Decision tree 55.9796 0.1556 13442.1101 477.1944

Table B.3: Results of experiment 1 for multinomial classification problems.
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B.2 Experiment 2
Regression problems

Dataset Learner Ensemble
method

Mean
NRMSE

Sd
NRMSE

Mean
time (s)

Sd
time (s)

Automobile Ens SNN A 0.1349 0.0372 1.7625 0.1806
Automobile Ens SNN B 0.9056 0.6789 2.2777 0.0838
Automobile Ens SNN B2 0.1556 0.0948 2.2899 0.0716
Automobile Ens SNN C 0.2189 0.1077 26.6964 5.6131
Automobile Ens SNN C2 0.9494 1.3950 5.0988 2.4856
Automobile Random Forest 0.0843 0.0455 0.1613 0.0125
AutoMPG Ens SNN A 0.1488 0.0232 0.9330 0.0763
AutoMPG Ens SNN B 0.2292 0.0704 1.2813 0.0790
AutoMPG Ens SNN B2 0.1470 0.0256 1.2893 0.0681
AutoMPG Ens SNN C 0.1626 0.0290 15.7269 3.1808
AutoMPG Ens SNN C2 0.6552 1.6560 4.3804 1.5239
AutoMPG Random Forest 0.1344 0.0229 0.1377 0.0331
Communities Ens SNN A 0.3530 0.0252 8.5382 0.3597
Communities Ens SNN B 0.3691 0.0301 14.1528 0.4414
Communities Ens SNN B2 0.3510 0.0262 14.3569 0.4400
Communities Ens SNN C 0.3691 0.0281 139.7070 30.6660
Communities Ens SNN C2 0.4340 0.1974 86.4497 16.3308
Communities Random Forest 0.3540 0.0262 13.7014 0.1083
MV Ens SNN A 0.0309 0.0017 285.1223 7.3354
MV Ens SNN B 0.0097 0.0002 691.6962 17.1160
MV Ens SNN B2 0.0097 0.0002 672.2314 17.6960
MV Random Forest 0.0011 0.0001 686.1082 11.9656

Table B.4: Results of experiment 2 for regression problems.
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Binomial classification problems

Dataset Learner Ensemble
method

Mean
accuracy

Sd
accuracy

Mean
time (s)

Sd
time (s)

Heart Ens SNN A 83.1111 2.7309 2.2540 0.3972
Heart Ens SNN A2 83.1111 2.7031 2.1069 0.1474
Heart Ens SNN B 72.4667 5.5772 2.7992 0.2496
Heart Ens SNN B2 82.1333 3.0519 3.2319 0.2567
Heart Ens SNN C 76.6889 4.2562 9.1640 2.4805
Heart Ens SNN C2 80.7556 3.5524 3.0980 0.2528
Heart Random Forest 81.6222 3.2078 0.0926 0.0098
Pima Ens SNN A 76.4266 2.3872 2.2878 0.1444
Pima Ens SNN A2 76.1094 2.2891 2.2740 0.1894
Pima Ens SNN B 72.3516 2.6556 3.3634 0.2842
Pima Ens SNN B2 76.3281 2.3649 4.4769 0.2498
Pima Ens SNN C 74.7578 2.4905 27.7608 11.0826
Pima Ens SNN C2 72.7031 2.4127 14.4129 0.9594
Pima Random Forest 76.1328 2.4289 0.2550 0.0164
HorseColic2 Ens SNN A 81.8689 2.8665 2.7700 0.1798
HorseColic2 Ens SNN A2 81.9344 3.1766 2.7815 0.2043
HorseColic2 Ens SNN B 70.8361 3.9885 3.8689 0.2397
HorseColic2 Ens SNN B2 81.4590 3.4968 4.4130 0.3093
HorseColic2 Ens SNN C 77.0328 3.9761 12.2150 2.9719
HorseColic2 Ens SNN C2 70.6230 6.6577 3.6905 0.5558
HorseColic2 Random Forest 84.4590 3.3774 0.1855 0.0151
Mammographic Ens SNN A 80.4174 1.6923 2.8633 0.1893
Mammographic Ens SNN A2 80.3614 1.7543 2.9024 0.2628
Mammographic Ens SNN B 75.9003 2.2890 4.3730 0.2681
Mammographic Ens SNN B2 80.2243 1.7648 5.6558 0.2961
Mammographic Ens SNN C 78.2741 1.8152 32.1568 7.9243
Mammographic Ens SNN C2 76.3676 2.6102 17.4076 1.7076
Mammographic Random Forest 78.7477 1.6833 0.2205 0.0167
Mushroom Ens SNN A 99.9834 0.0305 196.9214 15.4798
Mushroom Ens SNN A2 99.9852 0.0326 196.9838 15.1680
Mushroom Ens SNN B 99.9760 0.0345 253.0309 18.3923
Mushroom Ens SNN B2 99.9889 0.0296 258.9538 18.3639
Mushroom Ens SNN C 99.9317 0.0712 1622.5809 644.7956
Mushroom Ens SNN C2 70.1440 9.5435 1073.4488 149.9142
Mushroom Random Forest 100.0000 0.0000 1.0169 0.1116
Census Ens SNN A 94.6773 0.0518 1814.0934 132.9791
Census Ens SNN A2 94.7675 0.0521 1865.4913 125.4543
Census Ens SNN B 94.9639 0.0802 4835.5152 168.3627
Census Ens SNN B2 93.7433 0.0331 5043.4455 222.4711
Census Random Forest 95.5190 0.0503 296.0602 2.7437

Table B.5: Results of experiment 2 for binomial classification problems.
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Multinomial classification problems

Dataset Learner Ensemble
method

Mean
accuracy

Sd
accuracy

Mean
time (s)

Sd
time (s)

Audiology Ens SNN A 85.6842 3.3270 3.1249 0.4251
Audiology Ens SNN A2 85.7632 3.4218 2.9168 0.1953
Audiology Ens SNN B 85.7105 3.3940 4.2393 0.3332
Audiology Ens SNN B2 83.7632 3.3161 9.7934 0.4102
Audiology Ens SNN C 78.1579 5.0856 8.8731 1.2903
Audiology Ens SNN C2 80.8421 4.7416 3.6157 0.2667
Audiology Random Forest RandForest 85.2368 3.6185 0.1108 0.0293
Glass Ens SNN A 70.9722 5.3773 3.7178 0.5424
Glass Ens SNN A2 70.9722 5.5431 3.6203 0.4844
Glass Ens SNN B 68.9444 5.8709 14.7871 3.7414
Glass Ens SNN B2 71.2500 6.0198 14.0818 0.7083
Glass Ens SNN C 64.9167 6.6450 11.3334 2.4195
Glass Ens SNN C2 62.5556 6.0113 2.1334 0.2699
Glass Random Forest RandForest 75.4167 4.8540 0.0749 0.0112
HorseColic1 Ens SNN A 67.5041 3.9843 3.3228 0.2412
HorseColic1 Ens SNN A2 67.5537 3.9364 3.1934 0.1973
HorseColic1 Ens SNN B 59.4711 4.4143 4.7216 0.5143
HorseColic1 Ens SNN B2 67.2066 4.3361 8.4611 0.4362
HorseColic1 Ens SNN C 61.4711 4.2891 12.7660 1.6017
HorseColic1 Ens SNN C2 60.4132 3.9872 4.1470 0.3418
HorseColic1 Random Forest RandForest 69.7521 4.0246 0.2106 0.0135
Annealing Ens SNN A 95.7218 1.2385 8.7573 0.7348
Annealing Ens SNN A2 95.7895 1.2686 8.4854 0.6167
Annealing Ens SNN B 94.4361 2.2441 13.8708 1.3692
Annealing Ens SNN B2 92.0000 1.4845 38.8668 1.2802
Annealing Ens SNN C 92.7744 2.0707 26.9700 5.0711
Annealing Ens SNN C2 93.2180 2.5700 15.7100 1.1091
Annealing Random Forest RandForest 87.5038 2.1503 0.3509 0.0230
Contraceptive Ens SNN A 54.4969 2.0483 10.2479 0.5703
Contraceptive Ens SNN A2 54.6680 2.1847 9.6668 0.4466
Contraceptive Ens SNN B 48.1996 2.1568 15.0437 0.7461
Contraceptive Ens SNN B2 54.9980 2.1109 28.9676 0.8235
Contraceptive Ens SNN C 51.1120 2.0594 85.4389 14.9056
Contraceptive Ens SNN C2 49.2383 2.4837 77.4590 5.0630
Contraceptive Random Forest RandForest 53.2994 1.6881 0.5989 0.0607
Diabetes Ens SNN A 58.5113 0.2363 1997.2821 315.8804
Diabetes Ens SNN A2 58.6770 0.1753 2147.2768 270.9392
Diabetes Ens SNN B 58.8816 0.1227 4621.6094 509.7326
Diabetes Ens SNN B2 58.9782 0.0756 9522.7875 2133.4364
Diabetes Random Forest RandForest 58.9609 0.1636 2423.7258 20.2017

Table B.6: Results of experiment 2 for multinomial classification problems.

75



B.3 Experiment 3
For this experiment, when the percentage of observations is 0% it is used 2 prototypes (minimum
case).

Regression problems

Dataset Percentage of observations
that are prototypes

Mean
NRMSE

Sd
NRMSE

Mean
time (s)

Sd
time (s)

Automobile 0% 0.4604 0.0621 0.1196 0.2393
Automobile 5% 0.3617 0.0882 0.0539 0.0131
Automobile 10% 0.1787 0.0386 0.1789 0.2549
Automobile 20% 0.1716 0.0362 0.0731 0.0330
Automobile 30% 0.1289 0.0273 0.1170 0.0206
Automobile 40% 0.1414 0.0506 0.1346 0.0131
Automobile 50% 0.1721 0.1339 0.1733 0.0507
Automobile 60% 0.2214 0.1102 0.1422 0.0615
Automobile 70% 0.8937 1.7982 0.1146 0.0507
Automobile 80% 1.0683 0.8013 0.1538 0.0657
Automobile 90% 3.4899 3.1238 0.2062 0.1184
Automobile 100% 43777.5989 137035.3460 0.1702 0.0759
AutoMPG 0% 0.2481 0.0377 0.0453 0.0068
AutoMPG 5% 0.1476 0.0174 0.1312 0.0191
AutoMPG 10% 0.1490 0.0270 0.0848 0.0386
AutoMPG 20% 0.1465 0.0316 0.2058 0.0592
AutoMPG 30% 0.1799 0.0331 0.1720 0.0959
AutoMPG 40% 0.2094 0.0523 0.2483 0.1632
AutoMPG 50% 0.3209 0.1428 0.3481 0.1966
AutoMPG 60% 0.3615 0.1590 0.4600 0.1970
AutoMPG 70% 0.3830 0.0898 0.7552 0.0994
AutoMPG 80% 0.6100 0.1677 0.8788 0.0992
AutoMPG 90% 1.3649 0.6092 0.9537 0.0757
AutoMPG 100% 2144.8579 6563.6163 1.1050 0.0702
Communities 0% 0.6130 0.0289 1.3474 0.1286
Communities 5% 0.3517 0.0269 5.2628 0.2992
Communities 10% 0.3613 0.0243 3.4063 0.1541
Communities 20% 0.3961 0.0246 7.2449 0.4356
Communities 30% 0.4538 0.0261 13.5282 4.6165
Communities 40% 0.5276 0.0401 17.8584 2.3382
Communities 50% 0.6597 0.0596 24.0280 3.1806
Communities 60% 0.8331 0.0862 28.7702 1.9799
Communities 70% 1.1290 0.1002 28.5420 0.8957
Communities 80% 1.7666 0.1896 32.0069 1.9117
Communities 90% 3.6208 0.6209 37.3002 1.5406
Communities 100% 1896.2534 2674.8342 40.4964 1.2198

Table B.7: Results of experiment 3 for regression problems.
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Binomial classification problems

Dataset Percentage of observations
that are prototypes

Mean
Accuracy

Sd
Accuracy

Mean
time (s)

Sd
time (s)

Heart 0% 80.7778 2.2861 0.1396 0.2721
Heart 5% 80.4444 3.5985 0.0833 0.0192
Heart 10% 80.4444 5.1373 0.1309 0.0196
Heart 20% 77.2222 4.6036 0.2224 0.0180
Heart 30% 72.1111 7.1521 0.3095 0.1011
Heart 40% 69.1111 4.2809 0.3458 0.0525
Heart 50% 67.2222 5.6716 0.4112 0.0737
Heart 60% 67.8889 6.1853 0.4226 0.0698
Heart 70% 65.7778 3.3457 0.4648 0.1076
Heart 80% 62.8889 5.9074 0.5672 0.1133
Heart 90% 60.5556 4.8644 0.5873 0.0976
Heart 100% 51.5556 6.5672 0.6795 0.1138
Pima 0% 66.9141 3.8672 0.1862 0.0301
Pima 5% 76.0547 1.9492 0.6828 0.1735
Pima 10% 75.3125 2.6608 1.5639 0.3314
Pima 20% 72.6172 2.0293 4.2847 0.6807
Pima 30% 69.5312 2.4637 6.2652 1.1149
Pima 40% 65.7422 2.1320 9.9388 3.1984
Pima 50% 63.4375 2.0356 8.7838 1.2538
Pima 60% 62.9688 1.8761 7.8721 2.2191
Pima 70% 64.1016 4.3360 8.4740 1.3334
Pima 80% 63.4766 4.1880 7.4571 0.9407
Pima 90% 59.4922 4.8756 8.3398 0.8380
Pima 100% 55.3125 5.4195 9.7056 0.6356
HorseColic2 0% 81.5574 2.7117 0.0741 0.0256
HorseColic2 5% 81.1475 2.5631 0.1646 0.0826
HorseColic2 10% 81.3115 2.5863 0.1952 0.0610
HorseColic2 20% 75.2459 2.3756 0.2845 0.0743
HorseColic2 30% 71.0656 3.0191 0.4205 0.1283
HorseColic2 40% 70.7377 3.6667 0.7581 0.1277
HorseColic2 50% 68.9344 3.8533 0.8144 0.1041
HorseColic2 60% 67.1311 3.4872 0.9132 0.0738
HorseColic2 70% 64.5082 4.1804 1.1416 0.1041
HorseColic2 80% 60.0000 5.2099 1.7533 0.5467
HorseColic2 90% 59.2623 3.0924 1.3483 0.3338
HorseColic2 100% 56.1475 2.2941 1.3879 0.1575
Mammographic 0% 67.4143 2.2426 0.1916 0.0286
Mammographic 5% 79.0343 2.6921 1.0888 0.3588
Mammographic 10% 78.0685 1.9931 2.8387 0.5162
Mammographic 20% 72.5545 4.3625 6.6377 2.8704
Mammographic 30% 69.1589 2.2703 7.1500 1.1104
Mammographic 40% 67.7882 3.2281 6.9876 1.2195
Mammographic 50% 56.0436 16.8509 8.7539 2.8296
Mammographic 60% 59.5016 6.4349 9.9113 2.7339
Mammographic 70% 50.5607 9.7811 10.0738 3.8023
Mammographic 80% 56.4174 10.6157 14.7311 5.6882
Mammographic 90% 53.5514 13.0993 22.9377 11.2873
Mammographic 100% 57.2274 6.5347 19.3434 6.0560

Table B.8: Results of experiment 3 for binomial classification problems.
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Multinomial classification problems

Dataset Percentage of observations
that are prototypes

Mean
Accuracy

Sd
Accuracy

Mean
time (s)

Sd
time (s)

Audiology 0% 71.9737 3.9741 0.0983 0.0323
Audiology 5% 82.1053 3.6800 0.1439 0.0206
Audiology 10% 79.7368 4.6500 0.2078 0.1098
Audiology 20% 78.6842 3.3860 0.2204 0.0393
Audiology 30% 78.4211 3.8336 0.2837 0.0274
Audiology 40% 78.0263 7.0463 0.4175 0.1081
Audiology 50% 79.0789 4.9796 0.3902 0.0651
Audiology 60% 80.0000 4.5496 0.4422 0.1012
Audiology 70% 79.8684 4.1632 0.5500 0.1275
Audiology 80% 80.9211 4.2183 0.5222 0.1200
Audiology 90% 78.6842 4.5071 0.5916 0.0958
Audiology 100% 79.8684 2.6352 0.7048 0.3249
Glass 0% 35.9722 5.8359 0.1281 0.0140
Glass 5% 58.7500 7.8853 0.3355 0.0972
Glass 10% 62.9167 6.7424 0.3174 0.0996
Glass 20% 63.3333 7.6129 0.3171 0.0603
Glass 30% 62.7778 4.5266 0.3738 0.1064
Glass 40% 64.8611 5.4010 0.3779 0.0185
Glass 50% 64.3056 4.4430 0.4171 0.0521
Glass 60% 65.4167 5.0056 0.5011 0.1044
Glass 70% 65.4167 6.1923 0.4988 0.0690
Glass 80% 65.5556 4.3331 0.5869 0.0589
Glass 90% 66.6667 4.3921 0.7312 0.0884
Glass 100% 68.3333 3.3894 0.7873 0.0989
HorseColic1 0% 17.0248 3.0972 0.0767 0.0174
HorseColic1 5% 64.0496 3.4682 0.1431 0.0244
HorseColic1 10% 64.1322 4.8221 0.2457 0.0641
HorseColic1 20% 61.3223 3.7124 0.3624 0.0307
HorseColic1 30% 58.7603 3.4726 0.4330 0.0403
HorseColic1 40% 58.6777 2.9670 0.4943 0.1070
HorseColic1 50% 60.9091 4.0870 0.5251 0.0594
HorseColic1 60% 60.4959 4.7524 0.6132 0.0749
HorseColic1 70% 59.8347 5.1567 0.6943 0.0674
HorseColic1 80% 58.4298 4.8668 0.6680 0.2418
HorseColic1 90% 57.6033 4.8355 0.6542 0.3732
HorseColic1 100% 56.2810 4.5509 0.5360 0.2089
Annealing 0% 2.9699 4.2586 0.2263 0.0754
Annealing 5% 95.0752 1.8959 0.9534 0.1672
Annealing 10% 97.0301 1.1410 2.0672 0.2298
Annealing 20% 97.1805 1.8692 4.4653 0.3175
Annealing 30% 88.4586 31.0878 7.7339 1.4005
Annealing 40% 88.4211 31.0852 11.8730 1.7602
Annealing 50% 97.7444 1.4614 11.9135 3.1722
Annealing 60% 87.9699 30.2937 9.1422 0.9465
Annealing 70% 88.2707 31.0255 9.0418 1.5286
Annealing 80% 88.1955 30.7440 10.7955 2.3210
Annealing 90% 96.8045 1.6742 11.8536 2.8015
Annealing 100% 96.3534 1.6817 13.3451 4.9609
Contraceptive 0% 46.0692 2.1550 0.4415 0.1093
Contraceptive 5% 52.7088 1.7750 10.0108 1.9786
Contraceptive 10% 51.4868 2.2777 29.2299 2.9630
Contraceptive 20% 47.5560 2.9157 69.3159 12.9493
Contraceptive 30% 45.1120 2.0664 105.0595 14.6734
Contraceptive 40% 44.7251 2.4044 125.9849 13.8911
Contraceptive 50% 44.6436 1.2838 118.8698 9.0113
Contraceptive 60% 44.4603 1.4657 89.3849 17.0330
Contraceptive 70% 44.6640 1.4906 65.6498 10.0515
Contraceptive 80% 44.2363 1.5083 38.4932 5.9946
Contraceptive 90% 44.8065 1.4176 25.1099 4.2761
Contraceptive 100% 44.2159 1.5255 28.5400 4.9655

Table B.9: Results of experiment 3 for multinomial classification problems.
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B.4 Experiment 4
Regression problems

Dataset Clustering method Mean
NRMSE

Sd
NRMSE

Mean
time (s)

Sd
time (s)

Automobile PAM 0.2135 0.0228 2.4805 1.8446
Automobile Random 0.1989 0.0259 1.9204 0.1340
AutoMPG PAM 0.1521 0.0229 2.5138 0.1722
AutoMPG Random 0.1492 0.0228 0.9981 0.1828
Communities PAM 0.3385 0.0215 348.3088 16.4894
Communities Random 0.3374 0.0221 17.5576 1.6195

Table B.10: Results of experiment 4 for regression problems.

Classification problems

Dataset Clustering method Mean
Accuracy

Sd
Accuracy

Mean
time (s)

Sd
time (s)

Heart PAM 82.3333 2.6938 2.8297 1.0472
Heart Random 82.7778 3.1098 1.5107 0.0842
Pima PAM 76.7188 2.0604 16.6981 3.2930
Pima Random 76.4062 1.3927 3.9121 1.3744
HorseColic2 (bin) PAM 82.3770 2.7930 3.4165 0.2944
HorseColic2 (bin) Random 82.6230 3.1816 2.8254 0.2383
Mammographic PAM 80.2181 2.0042 20.0315 2.9268
Mammographic Random 80.4984 2.3689 3.6970 0.2289
Audiology PAM 83.4211 2.2535 3.2946 0.2068
Audiology Random 83.9474 2.4655 3.2342 0.1282
Glass PAM 66.6667 8.4863 3.9227 0.2507
Glass Random 66.2500 7.6087 4.3502 0.2082
HorseColic1 PAM 66.6116 3.9192 3.1816 0.2055
HorseColic1 Random 68.1818 4.2899 2.8375 0.1090
Annealing PAM 96.7669 1.5672 19.1816 1.3579
Annealing Random 96.3534 1.0492 8.4673 0.5225
Contraceptive PAM 52.8513 2.6210 186.1039 10.6903
Contraceptive Random 54.3788 2.0208 18.4383 0.6604

Table B.11: Results of experiment 4 for classification problems.
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B.5 Experiment 5
Regression problems

Dataset Regularization of each of the SNNs
of the ensemble of SNNs

Mean
NRMSE

Sd
NRMSE

Mean
time (s)

Sd
time (s)

Automobile No 0.1338 0.0309 2.5242 0.7415
Automobile Yes 0.1451 0.0268 2.5350 0.4713
AutoMPG No 0.1407 0.0187 2.1274 1.1294
AutoMPG Yes 0.1443 0.0203 2.7399 0.5619
Communities No 0.3456 0.0214 29.0444 4.0871
Communities Yes 0.3518 0.0213 31.9718 5.0038

Table B.12: Results of experiment 5 for regression problems.

Classification problems

Dataset Regularization of each of the SNNs
of the ensemble of SNNs

Mean
Accuracy

Sd
Accuracy

Mean
time (s)

Sd
time (s)

Heart No 83.9444 4.5238 2.0446 0.3873
Heart Yes 82.8889 2.8784 17.8466 2.0061
Pima No 76.0156 1.6388 2.4466 0.1370
Pima Yes 76.7578 1.8529 30.6836 4.0792
HorseColic2 No 82.5410 3.7072 4.1394 1.1030
HorseColic2 Yes 83.0328 3.0924 24.3117 4.0951
Mammographic No 80.9657 2.0998 5.4104 1.9116
Mammographic Yes 80.4673 1.9319 42.4763 12.2666
Audiology No 85.9211 4.6437 3.0918 0.4006
Audiology Yes 83.8158 5.8203 60.3073 1.9731
Glass No 68.1944 6.9737 3.7482 0.4644
Glass Yes 61.2500 5.4169 84.4419 1.6462
HorseColic1 No 69.0083 2.1779 3.2335 0.0706
HorseColic1 Yes 66.4463 3.0228 55.9954 0.5599
Annealing No 95.4135 0.6340 8.6029 0.3631
Annealing Yes 84.4737 1.7003 155.9360 1.5385
Contraceptive No 54.2159 2.7773 9.8912 0.2871
Contraceptive Yes 51.4460 2.7429 174.9014 2.1916

Table B.13: Results of experiment 5 for classification problems.
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B.6 Experiment 6
Regression problems

Dataset Method to select
the number of prototypes

Mean
NRMSE

Sd
NRMSE

Mean
time (s)

Sd
time (s)

Automobile Uniform 0.1762 0.0325 5.9687 0.8032
Automobile Binomial 0.1777 0.0300 6.0321 0.3876
Automobile Poisson 0.1801 0.0298 5.9360 0.4476
Automobile Constant 0.1859 0.0288 6.0264 0.4392
AutoMPG Uniform 0.1463 0.0226 7.8754 1.0121
AutoMPG Binomial 0.1421 0.0210 6.9687 0.5857
AutoMPG Poisson 0.1431 0.0205 6.5646 0.4314
AutoMPG Constant 0.1405 0.0204 8.2123 0.7240
Communities Uniform 0.3388 0.0221 105.4056 5.5891
Communities Binomial 0.3380 0.0230 105.0609 5.4359
Communities Poisson 0.3380 0.0234 106.3258 5.0205
Communities Constant 0.3380 0.0230 102.2761 3.4644

Table B.14: Results of experiment 6 for regression problems.

Classification problems

Dataset Method to select
the number of prototypes

Mean
Accuracy

Sd
Accuracy

Mean
time (s)

Sd
time (s)

Heart Uniform 83.2222 3.0779 10.1522 1.0911
Heart Binomial 83.4444 2.6953 10.2513 1.3761
Heart Poisson 83.3889 3.2539 10.1081 0.6547
Heart Constant 82.9444 3.1689 10.0619 0.5398
Pima Uniform 76.3477 1.7810 29.0361 1.2641
Pima Binomial 76.6016 1.9630 29.3074 1.5159
Pima Poisson 76.4844 1.9902 28.8117 1.0735
Pima Constant 76.5625 1.9304 28.5243 1.1140
HorseColic2 Uniform 82.5410 3.1923 13.9488 0.8820
HorseColic2 Binomial 82.1721 2.9599 13.6140 0.7480
HorseColic2 Poisson 82.0902 3.1943 13.6632 0.8672
HorseColic2 Constant 82.1311 2.8219 13.9477 0.6250
Mammographic Uniform 80.7944 1.9317 37.5156 1.9585
Mammographic Binomial 80.4673 2.1300 39.3071 1.2304
Mammographic Poisson 80.3115 2.0728 40.7590 4.2869
Mammographic Constant 80.1869 2.0846 39.4839 1.4873
Audiology Uniform 83.4211 3.7557 20.7188 1.8828
Audiology Binomial 83.7500 2.8725 21.2536 0.9989
Audiology Poisson 83.8816 3.0747 21.2374 0.7029
Audiology Constant 83.8158 2.8349 21.9456 0.9317
Glass Uniform 68.6806 6.2027 25.6639 1.3802
Glass Binomial 68.5417 6.3130 25.4454 0.8334
Glass Poisson 68.5417 6.7182 25.0821 1.0129
Glass Constant 68.6111 5.6173 25.9626 1.1852
HorseColic1 Uniform 66.6116 3.3747 22.6849 0.7380
HorseColic1 Binomial 66.6116 3.8615 23.1085 1.2019
HorseColic1 Poisson 66.9008 3.8248 22.6894 0.7909
HorseColic1 Constant 66.9008 3.6121 22.5357 0.7819
Annealing Uniform 98.0075 0.8100 48.0669 1.8484
Annealing Binomial 98.4211 0.7867 48.1127 2.1093
Annealing Poisson 98.2519 0.8475 48.6608 1.7441
Annealing Constant 98.1767 0.8903 47.8419 2.3039
Contraceptive Uniform 54.7862 2.0420 119.1086 4.6548
Contraceptive Binomial 54.3890 1.9473 113.5524 5.5602
Contraceptive Poisson 54.8574 1.6602 111.7606 3.4926
Contraceptive Constant 54.5927 1.6084 107.6989 2.6657

Table B.15: Results of experiment 6 for classification problems.
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B.7 Experiment 7
Regression problems

Dataset
Method to choose

the number of observations
of each SNN (EnsSNN)

Mean
NRMSE

Sd
NRMSE

Mean
time (s)

Sd
time (s)

Automobile Uniform 0.1321 0.0314 3.6698 0.3966
Automobile Binomial 0.1352 0.0364 3.4226 0.2698
Automobile Poisson 0.1311 0.0354 3.5984 0.2873
Automobile Constant 0.1329 0.0359 3.5822 0.2688
AutoMPG Uniform 0.1321 0.0164 4.3458 0.4705
AutoMPG Binomial 0.1307 0.0183 4.0921 0.4275
AutoMPG Poisson 0.1307 0.0177 4.2284 0.3945
AutoMPG Constant 0.1316 0.0177 4.0374 0.3619
Communities Uniform 0.3444 0.0212 54.5404 8.2804
Communities Binomial 0.3436 0.0211 38.7829 3.5136
Communities Poisson 0.3428 0.0210 56.4734 29.3420
Communities Constant 0.3426 0.0211 71.5511 27.1689

Table B.16: Results of experiment 7 for regression problems.

Classification problems

Dataset
Method to choose

the number of observations
of each SNN (EnsSNN)

Mean
Accuracy

Sd
Accuracy

Mean
time (s)

Sd
time (s)

Heart Uniform 82.7778 3.3230 10.2818 4.8812
Heart Binomial 82.8889 3.5602 6.9539 1.2732
Heart Poisson 82.2222 2.6708 6.4709 0.2134
Heart Constant 83.1111 2.6084 6.6952 0.8033
Pima Uniform 76.6016 1.6922 14.3119 0.8732
Pima Binomial 76.1719 1.8136 13.1276 1.0758
Pima Poisson 76.7578 1.9422 12.9235 1.4798
Pima Constant 76.4453 1.9922 12.6509 0.3091
HorseColic2 Uniform 82.7869 2.1514 8.2387 0.3015
HorseColic2 Binomial 82.3770 2.8721 8.2150 0.5080
HorseColic2 Poisson 81.9672 2.9172 7.9285 0.5919
HorseColic2 Constant 82.7049 3.7750 7.7479 0.3858
Mammographic Uniform 80.5296 2.2380 17.3152 1.4121
Mammographic Binomial 80.4984 2.0831 15.6274 0.6198
Mammographic Poisson 80.6542 2.1049 15.4166 0.5992
Mammographic Constant 80.4673 1.8462 15.0540 0.7863
Audiology Uniform 86.5789 2.6894 13.6558 2.3409
Audiology Binomial 86.5789 2.6169 17.1046 6.1016
Audiology Poisson 86.1842 2.9908 11.6459 0.7632
Audiology Constant 86.3158 3.2349 11.2433 0.5378
Glass Uniform 70.1389 7.0895 15.9809 0.9820
Glass Binomial 68.3333 8.0932 13.9482 1.0324
Glass Poisson 68.7500 7.2981 13.4049 0.6319
Glass Constant 69.3056 7.3333 13.4435 0.5395
HorseColic1 Uniform 68.0992 4.2890 12.2369 0.7830
HorseColic1 Binomial 66.9421 5.1391 14.0884 1.9426
HorseColic1 Poisson 67.2727 4.0337 14.6278 3.2769
HorseColic1 Constant 66.7769 5.0316 13.6783 0.7823
Annealing Uniform 98.2331 0.9386 33.8117 7.5612
Annealing Binomial 98.1955 0.7886 34.2750 12.2408
Annealing Poisson 98.2331 0.7935 28.7016 2.3282
Annealing Constant 97.8571 0.9552 28.3021 4.1688
Contraceptive Uniform 54.9084 1.5337 63.2700 9.4626
Contraceptive Binomial 54.3381 1.3672 53.0528 7.9359
Contraceptive Poisson 54.7454 1.3706 46.7019 4.7160
Contraceptive Constant 54.8269 1.4395 40.3186 2.4972

Table B.17: Results of experiment 7 for classification problems.
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B.8 Experiment 8
Regression problems

Dataset Proportion of observations
used to train each SNN (EnsSNN)

Mean
NRMSE

Sd
NRMSE

Mean
time (s)

Sd
time (s)

Automobile 0% 288.8448 871.4941 1.9334 0.1012
Automobile 10% 28.2060 62.4932 1.9394 0.1574
Automobile 20% 0.1490 0.0330 2.1526 0.1414
Automobile 30% 0.1444 0.0311 2.3232 0.5456
Automobile 40% 0.1376 0.0306 2.2116 0.1776
Automobile 50% 0.1344 0.0303 2.0720 0.0485
Automobile 60% 0.1375 0.0314 2.0948 0.1680
Automobile 70% 0.1391 0.0321 2.2168 0.0876
Automobile 80% 0.1364 0.0296 2.1749 0.1293
Automobile 90% 0.1360 0.0290 2.2069 0.1498
Automobile 100% 0.1378 0.0297 2.1966 0.2062
AutoMPG 0% 33.0184 70.4411 0.8349 0.0223
AutoMPG 10% 0.1738 0.0268 1.0615 0.1267
AutoMPG 20% 0.1422 0.0213 1.1571 0.1539
AutoMPG 30% 0.1416 0.0188 1.2406 0.2088
AutoMPG 40% 0.1411 0.0195 1.2924 0.2162
AutoMPG 50% 0.1412 0.0185 1.2562 0.1616
AutoMPG 60% 0.1421 0.0193 1.2802 0.1895
AutoMPG 70% 0.1415 0.0198 1.2139 0.1292
AutoMPG 80% 0.1410 0.0191 1.2253 0.1172
AutoMPG 90% 0.1419 0.0193 1.3415 0.1811
AutoMPG 100% 0.1406 0.0195 1.3139 0.1341
Communities 0% 84.7196 194.7314 5.5254 0.7397
Communities 10% 0.3618 0.0225 6.8387 0.5967
Communities 20% 0.3576 0.0219 7.3251 0.9862
Communities 30% 0.3531 0.0217 8.8689 1.2485
Communities 40% 0.3483 0.0222 9.6139 0.4482
Communities 50% 0.3449 0.0216 11.7462 0.5614
Communities 60% 0.3432 0.0224 13.2240 1.4286
Communities 70% 0.3408 0.0220 15.0583 0.7164
Communities 80% 0.3386 0.0220 19.7774 4.2876
Communities 90% 0.3379 0.0212 33.9608 11.8286
Communities 100% 0.3367 0.0218 56.8291 14.4478

Table B.18: Results of experiment 8 for regression problems.
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Binomial classification problems

Dataset Proportion of observations
used to train each SNN (EnsSNN)

Mean
Accuracy

Sd
Accuracy

Mean
time (s)

Sd
time (s)

Heart 0% 80.5556 3.7377 1.5632 0.0838
Heart 10% 78.7222 3.4441 1.7968 0.1118
Heart 20% 82.2222 3.3040 2.0580 0.3042
Heart 30% 83.0000 2.7240 2.2780 0.2955
Heart 40% 82.6667 3.0885 2.1714 0.4012
Heart 50% 83.0000 3.5339 2.0357 0.1662
Heart 60% 82.7222 3.3908 2.0879 0.3558
Heart 70% 82.6667 3.3620 2.0865 0.4299
Heart 80% 81.7778 3.5985 1.9227 0.0852
Heart 90% 82.2222 3.3538 1.9830 0.1907
Heart 100% 82.0000 3.2203 2.0476 0.1022
Pima 0% 73.6328 2.2900 1.4452 0.1295
Pima 10% 76.2891 2.3441 2.6166 0.4934
Pima 20% 76.5039 2.2107 1.9244 0.1363
Pima 30% 76.1914 1.7537 2.0830 0.1902
Pima 40% 75.5469 2.1260 2.2614 0.1935
Pima 50% 76.0742 1.7828 2.3608 0.1587
Pima 60% 75.9180 2.0249 4.4147 7.8056
Pima 70% 75.8984 1.5630 2.7588 0.1661
Pima 80% 75.5469 1.1962 3.0125 0.1925
Pima 90% 75.8203 1.0490 3.3434 0.1665
Pima 100% 76.0547 1.7763 3.8276 0.1815
HorseColic2 0% 79.5902 2.8876 2.4463 0.1893
HorseColic2 10% 81.7623 3.2120 2.7191 0.1794
HorseColic2 20% 81.8852 2.6977 2.8281 0.1917
HorseColic2 30% 82.0082 2.6121 2.8861 0.3108
HorseColic2 40% 82.1311 3.0738 2.7581 0.1756
HorseColic2 50% 82.0492 3.0426 2.6948 0.1721
HorseColic2 60% 81.9262 3.0953 2.8530 0.1630
HorseColic2 70% 82.7049 2.9287 2.7338 0.1118
HorseColic2 80% 82.9508 3.2741 2.7510 0.1390
HorseColic2 90% 82.2951 3.0474 2.8054 0.0739
HorseColic2 100% 82.4590 3.1910 2.8561 0.1182
Mammographic 0% 78.3801 2.1190 1.7418 0.3125
Mammographic 10% 79.7819 1.8369 2.3094 0.5762
Mammographic 20% 80.5296 2.2524 2.2192 0.1600
Mammographic 30% 80.5919 2.0138 2.4641 0.3959
Mammographic 40% 80.8723 1.9877 2.6607 0.2194
Mammographic 50% 80.6854 2.0082 2.9945 0.1360
Mammographic 60% 80.7477 1.7549 3.7354 0.5405
Mammographic 70% 80.8411 1.9441 3.6606 0.1788
Mammographic 80% 80.6231 1.7793 4.3401 0.1674
Mammographic 90% 80.7165 2.2001 4.9035 0.4997
Mammographic 100% 80.7788 1.9815 6.1992 1.2236

Table B.19: Results of experiment 8 for binomial classification problems.
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Multinomial classification problems

Dataset Proportion of observations
used to train each SNN (EnsSNN)

Mean
Accuracy

Sd
Accuracy

Mean
time (s)

Sd
time (s)

Audiology 0% 77.8947 4.0579 2.7787 0.4967
Audiology 10% 79.6053 5.0104 2.9366 0.2906
Audiology 20% 83.0263 4.3618 2.9585 0.0933
Audiology 30% 84.8684 3.6300 3.2976 0.2498
Audiology 40% 85.6579 3.3084 3.5454 0.2066
Audiology 50% 85.3947 3.2498 3.9972 1.3920
Audiology 60% 85.2632 3.4978 5.5071 3.1191
Audiology 70% 85.2632 3.3860 3.9026 0.3461
Audiology 80% 85.9211 3.4002 4.1640 0.3743
Audiology 90% 85.7895 4.4209 4.2269 0.2923
Audiology 100% 85.9211 4.4318 4.5809 0.3197
Glass 0% 60.5556 4.4502 1.3110 0.0844
Glass 10% 61.3889 4.1821 1.9083 0.1814
Glass 20% 65.1389 5.4954 2.3678 0.1215
Glass 30% 66.2500 6.8057 2.3294 0.0657
Glass 40% 66.9444 7.5734 3.1143 0.4766
Glass 50% 68.6111 5.7153 3.8803 0.5356
Glass 60% 70.0000 7.4708 6.2264 1.4252
Glass 70% 69.7222 6.7662 11.1874 4.5028
Glass 80% 69.8611 7.4377 12.3692 1.3690
Glass 90% 70.1389 6.6205 12.9283 1.0848
Glass 100% 69.3056 6.7233 14.5146 0.9213
HorseColic1 0% 63.8843 4.6759 3.1362 0.7454
HorseColic1 10% 66.8595 4.5174 3.6907 1.0958
HorseColic1 20% 65.4545 3.9308 3.0101 0.2099
HorseColic1 30% 66.1983 3.7863 3.5724 0.1974
HorseColic1 40% 66.2810 4.7042 3.8658 0.3642
HorseColic1 50% 67.1901 4.7723 3.4967 0.2115
HorseColic1 60% 67.6860 4.5174 3.6050 0.2075
HorseColic1 70% 67.3554 5.6625 3.7723 0.2255
HorseColic1 80% 68.4298 4.8316 4.0163 0.2988
HorseColic1 90% 67.8512 4.1861 4.4014 0.5406
HorseColic1 100% 68.4298 5.1949 5.1696 1.5977
Annealing 0% 76.4662 2.2361 7.0263 3.4042
Annealing 10% 91.5414 1.7387 8.8404 2.5992
Annealing 20% 93.5714 1.0095 9.2696 1.1402
Annealing 30% 95.1880 1.0303 7.6229 3.7981
Annealing 40% 95.7895 1.0303 6.9932 0.3262
Annealing 50% 95.9774 0.7529 9.2147 0.4496
Annealing 60% 96.1278 0.8131 11.6906 0.7929
Annealing 70% 96.5038 0.7735 12.9318 0.6086
Annealing 80% 96.3534 0.9715 15.2648 0.9301
Annealing 90% 96.5789 1.0989 18.0333 1.3203
Annealing 100% 96.8421 0.9576 20.2601 1.0426
Contraceptive 0% 45.8248 1.6685 2.8132 0.2194
Contraceptive 10% 53.5031 2.3282 4.9542 0.3211
Contraceptive 20% 53.5845 1.6998 5.3912 1.0102
Contraceptive 30% 53.2383 1.7786 6.2077 0.3172
Contraceptive 40% 53.2790 2.0280 8.1833 0.7357
Contraceptive 50% 53.7882 1.9827 10.8867 0.6775
Contraceptive 60% 53.7067 2.1014 15.4909 1.3654
Contraceptive 70% 54.1752 1.9769 21.2833 3.8775
Contraceptive 80% 54.5010 2.1105 28.1963 2.5856
Contraceptive 90% 54.4603 1.7915 35.9466 5.7332
Contraceptive 100% 54.7251 1.3340 40.8154 5.7132

Table B.20: Results of experiment 8 for multinomial classification problems.
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B.9 Experiment 9
Regression problems

Dataset Percentage of
missing values

Mean
NRMSE

Sd
NRMSE

Mean
time (s)

Sd
time (s)

Automobile 0% 0.1338 0.0314 2.0505 0.1258
Automobile 10% 0.1895 0.0308 2.0801 0.0957
Automobile 20% 0.2858 0.0584 2.0438 0.1354
Automobile 30% 0.3270 0.0399 2.1679 0.1517
Automobile 40% 0.3812 0.0855 2.1381 0.1238
Automobile 50% 0.5140 0.1243 2.0787 0.0461
Automobile 60% 0.5442 0.0711 2.1549 0.1676
Automobile 70% 0.5531 0.0879 2.1100 0.0868
Automobile 80% 0.6698 0.0693 2.1039 0.1680
Automobile 90% 0.8778 0.1269 2.1310 0.1010
AutoMPG 0% 0.1407 0.0187 1.1208 0.1139
AutoMPG 10% 0.1738 0.0246 1.0875 0.0770
AutoMPG 20% 0.1946 0.0255 1.1097 0.0748
AutoMPG 30% 0.2160 0.0307 1.1704 0.1419
AutoMPG 40% 0.2505 0.0306 1.1119 0.0774
AutoMPG 50% 0.3063 0.0362 1.2008 0.1953
AutoMPG 60% 0.3614 0.0421 1.2070 0.1075
AutoMPG 70% 0.4662 0.0520 1.1633 0.0936
AutoMPG 80% 0.5925 0.0553 1.2083 0.1131
AutoMPG 90% 0.7914 0.0411 1.1618 0.0959
Communities 0% 0.3456 0.0214 11.9838 1.6802
Communities 10% 0.3588 0.0191 13.9959 1.2243
Communities 20% 0.3771 0.0141 15.6987 1.2243
Communities 30% 0.3943 0.0154 17.0339 1.2090
Communities 40% 0.4180 0.0166 16.0820 0.2808
Communities 50% 0.4466 0.0208 16.0297 0.6871
Communities 60% 0.4863 0.0207 15.6502 1.6954
Communities 70% 0.5486 0.0306 14.6036 0.5575
Communities 80% 0.6262 0.0241 13.4777 0.7341
Communities 90% 0.7183 0.0172 12.2089 0.4281

Table B.21: Results of experiment 9 for regression problems.
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Binomial classification problems

Dataset Percentage of
missing values

Mean
Accuracy

Sd
Accuracy

Mean
time (s)

Sd
time (s)

Heart 0% 82.5556 2.3454 2.4243 0.5888
Heart 10% 81.3333 1.8739 2.4101 0.4885
Heart 20% 80.2222 3.6590 2.0799 0.1714
Heart 30% 80.6667 3.4427 2.0429 0.1298
Heart 40% 79.8889 3.7570 2.0096 0.1839
Heart 50% 77.5556 4.4073 1.9931 0.0680
Heart 60% 76.4444 3.4665 2.0081 0.1796
Heart 70% 71.7778 3.8561 1.9767 0.0682
Heart 80% 68.3333 4.0656 1.9765 0.1373
Heart 90% 64.3333 4.6392 2.1345 0.1095
Pima 0% 76.0156 1.6388 2.2403 0.2022
Pima 10% 75.4688 1.6450 2.1874 0.1340
Pima 20% 75.5469 1.6897 2.2303 0.1639
Pima 30% 74.1406 1.5603 2.2500 0.1703
Pima 40% 73.9062 1.6346 2.1922 0.0974
Pima 50% 72.5391 2.5452 2.2094 0.1080
Pima 60% 71.4062 1.6857 2.2831 0.3597
Pima 70% 69.5312 2.0172 2.2696 0.1919
Pima 80% 68.0859 0.8037 2.4047 0.1857
Pima 90% 66.0547 2.0293 2.4163 0.2137
HorseColic2 0% 82.5410 3.7072 2.7250 0.1424
HorseColic2 10% 81.3934 3.3696 2.9410 0.1555
HorseColic2 20% 79.3443 3.7820 3.9662 1.7796
HorseColic2 30% 79.0164 3.6082 2.8241 0.3877
HorseColic2 40% 76.3934 3.4517 2.9466 0.2112
HorseColic2 50% 74.5902 4.3545 2.9595 0.5691
HorseColic2 60% 74.1803 4.7521 2.7350 0.1525
HorseColic2 70% 72.0492 5.1181 2.7345 0.1711
HorseColic2 80% 70.9016 3.0486 2.6944 0.1775
HorseColic2 90% 66.7213 2.4192 2.9629 0.1930
Mammographic 0% 80.9657 2.0998 2.9104 0.1843
Mammographic 10% 80.0935 1.9003 2.9615 0.1672
Mammographic 20% 79.0031 1.5416 2.9677 0.1856
Mammographic 30% 77.5389 2.4681 2.9592 0.1961
Mammographic 40% 75.4829 1.8227 2.9984 0.2384
Mammographic 50% 72.4299 2.0988 3.0040 0.1769
Mammographic 60% 69.9688 1.7878 3.1394 0.3481
Mammographic 70% 65.3271 2.2515 3.0333 0.1957
Mammographic 80% 60.8100 2.4032 3.0718 0.3665
Mammographic 90% 56.5732 0.8588 2.9507 0.1662

Table B.22: Results of experiment 9 for binomial classification problems.
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Multinomial classification problems

Dataset Percentage of
missing values

Mean
Accuracy

Sd
Accuracy

Mean
time (s)

Sd
time (s)

Audiology 0% 85.1316 4.3882 3.1887 0.2096
Audiology 10% 84.0789 3.4227 3.2181 0.2292
Audiology 20% 82.3684 2.0758 3.1047 0.1407
Audiology 30% 77.7632 3.3661 3.1469 0.0948
Audiology 40% 75.7895 4.6911 3.1507 0.0947
Audiology 50% 73.6842 4.5580 3.1555 0.1154
Audiology 60% 72.6316 4.1050 3.1860 0.1087
Audiology 70% 67.8947 4.9699 3.3023 0.1660
Audiology 80% 63.4211 6.1654 4.2178 0.4581
Audiology 90% 49.7368 11.1786 3.4037 0.1394
Glass 0% 68.1944 6.6914 3.9979 0.6485
Glass 10% 65.2778 7.0820 3.9960 0.6591
Glass 20% 55.4167 6.5620 4.0903 0.5747
Glass 30% 52.7778 8.3590 4.2577 0.6083
Glass 40% 47.7778 4.3528 4.1174 0.4444
Glass 50% 47.3611 4.0598 4.2632 0.2267
Glass 60% 49.0278 6.1784 4.3567 0.3551
Glass 70% 39.8611 7.8853 5.2143 1.0252
Glass 80% 35.2778 9.5599 7.0388 0.3893
Glass 90% 22.2222 9.9725 4.7358 0.6540
HorseColic1 0% 67.3554 4.0347 3.4738 0.2580
HorseColic1 10% 67.5207 3.7983 3.4825 0.1954
HorseColic1 20% 66.1983 3.9433 3.3927 0.1854
HorseColic1 30% 64.3802 5.8627 3.4184 0.1872
HorseColic1 40% 64.4628 4.1960 3.5914 0.2815
HorseColic1 50% 62.3967 4.1824 3.3756 0.1515
HorseColic1 60% 62.8099 4.7874 3.2887 0.1477
HorseColic1 70% 61.9008 3.1033 3.3270 0.1547
HorseColic1 80% 60.9917 4.9861 3.4828 0.1770
HorseColic1 90% 59.0083 7.0901 3.5802 0.1660
Annealing 0% 96.2030 1.4337 8.8857 0.5814
Annealing 10% 90.9398 0.9779 9.2227 0.7101
Annealing 20% 86.4662 2.0206 9.0816 0.7699
Annealing 30% 81.4662 1.7187 9.4021 0.3634
Annealing 40% 80.6015 2.3120 9.1418 0.3654
Annealing 50% 77.5188 1.6511 8.9696 0.4294
Annealing 60% 77.2180 1.8003 8.8812 0.3040
Annealing 70% 76.2782 1.8025 10.1573 0.8900
Annealing 80% 76.5789 1.9738 11.1743 0.4686
Annealing 90% 76.0526 2.1417 9.0229 0.3572
Contraceptive 0% 53.4623 2.0236 10.9086 0.5031
Contraceptive 10% 51.1202 1.5331 9.9007 0.3630
Contraceptive 20% 49.9185 1.4448 9.8012 0.2600
Contraceptive 30% 48.1466 1.6828 9.8428 0.2592
Contraceptive 40% 46.6599 2.8293 10.2488 0.3611
Contraceptive 50% 45.4990 1.8721 10.2061 0.2406
Contraceptive 60% 44.1344 2.6660 10.9461 0.3904
Contraceptive 70% 44.8676 1.9394 10.6283 0.3213
Contraceptive 80% 43.8086 1.9308 10.3472 0.5430
Contraceptive 90% 43.5031 1.9421 9.4760 0.3775

Table B.23: Results of experiment 9 for multinomial classification problems.
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