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Summary 19 

1. Analysis of spatial patterns in species-environment relationships can provide new insights 20 

about the niche requirements and potential co-occurrence of species, but species abundance 21 

and environmental data are routinely collected at different spatial scales. Here, we investigate 22 

the use of codispersion analysis to measure and assess the scale, directionality, and 23 

significance of complex relationships between plants and their environment in large forest 24 

plots. 25 

2. We applied codispersion analysis to both simulated and field data on spatially-located tree 26 

species basal area and environmental variables. The significance of observed bivariate spatial 27 

associations between the basal area of key species and underlying environmental variables 28 

was tested using three null models.  29 

3. Codispersion analysis reliably detected directionality (anisotropy) in bivariate species-30 

environment relationships and identified relevant scales of effects. Null model-based 31 

significance tests applied to codispersion analyses of forest plot data enabled us to infer the 32 

extent to which environmental conditions, tree sizes, and/or tree spatial positions 33 

underpinned observed basal area-environment relationships, or whether relationships were 34 

due to other unmeasured factors.   35 

4. Codispersion analysis, combined with appropriate null models, can be used to infer 36 

hypothesized ecological processes from spatial patterns allowing us to start disentangling the 37 

possible drivers of plant species-environment relationships.  38 

KEYWORDS: Anisotropy, bivariate, environmental gradient, forest dynamics plot, spatial 39 

analysis, species-environment, variogram 40 

 41 

Introduction 42 

Environmental variability is a key driver of variation in biological diversity (Chesson 2000). 43 

Analysis of the spatial patterns in species-environment relationships can reveal clues about niche 44 

requirements of individual species and their potential for co-occurrence with other species 45 

(Silvertown 2004). Quantification of spatial patterns of species’ distribution and abundance can 46 

illuminate scales of variation. These patterns often suggest experimentally testable hypotheses 47 
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about multiple interacting processes that may drive species distribution and abundance patterns 48 

(Hubbell 1979; Weigand et al. 2012).  49 

The usual approach to relating spatial patterns of environmental gradients and 50 

populations of sessile organisms (e.g., plants, ant nests, barnacles) starts with recording the 51 

positions of individuals, or in the case of composite, plot-based measures, such as species 52 

richness or cover values, the positions of plots. This enumeration yields a spatial point pattern 53 

(Dale 1999). Environmental variables are then sampled, but they often are not measured at the 54 

same spatial grain as the point pattern. Examples include soil samples collected on a regularly-55 

spaced grid (John et al. 2007; Turner and Engelbrecht. 2011), elevation and slope measurements 56 

derived from a digital elevation model (Franklin 1995) or climate variables derived from a 57 

spatial database, such as ‘WorldClim’ (Hijmans 2005). Relationships between point patterns and 58 

environmental data can be analyzed using non-spatial methods that emphasize causal 59 

relationships (e.g., canonical correspondence analysis [Lepš and Šmilauer 2003], species 60 

distribution models [Elith and Leathwick 2009], or regression models [Shen et al. 2009]), or by 61 

spatial methods that deal with the visualization of pattern and quantification of scales of 62 

variability in correlations; our focus here is on the latter. 63 

The majority of the standard spatial descriptors used by ecologists, such as semi-64 

variograms, assume that the spatial processes underlying the distribution of organisms (spatial 65 

point pattern), the associated environmental gradient, and their covariation are stationary (spatial 66 

processes are invariant under translation) and isotropic (non-directional) within the sampling 67 

extent (Cressie and Wikle 2011; see Table 1 for spatial terminology used in this paper). 68 

However, whilst these assumptions are convenient mathematically, they are typically unrealistic 69 

for most real-world examples.  70 

First, the strong form of spatial stationarity (invariance under translation) is unlikely to be 71 

met in any real-world case. As a result, most spatial processes are assumed to have only second-72 

order stationarity: only the mean, variance, and covariance need be stationary (Vieira et al. 73 

2010). However, even second-order stationarity is unlikely in many ecological cases, and we 74 

assume only the “intrinsic hypothesis” – that the mean and the semi-variance of the distribution 75 

are dependent on inter-point distances, not specific locations (Vieira et al. 2010). Second, in 76 

many ecologically realistic cases, environmental gradients create anisotropic patterns in the 77 
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distributions or abundances of species, where changes in species’ distributions or abundances 78 

reflect changes in the magnitude of the environmental variable(s).  79 

A familiar example of anisotropic relationships between environmental gradients and 80 

species distribution arises from the ‘stress gradient hypothesis’ (Bertness and Callaway 1994). 81 

This hypothesis posits that as the environment becomes less stressful for species (e.g., salt spray 82 

decreases with distance from the high tide line), intra- or interspecific interactions switch from 83 

predominantly facilitative to predominantly competitive. As a result, the pattern of species 84 

distributions may shift from aggregated to regular (e.g., Malkinson et al. 2003; Lingua et al. 85 

2008) or even hyper-dispersed. Additional processes that may influence clumping of species 86 

across environmental gradients include dispersal limitation, habitat filtering, and density-87 

dependent interactions with natural enemies (Condit 2000; Morlon et al. 2008; McGill 2010). 88 

Accurate identification of the underlying causes of such complex spatial patterns requires 89 

analytical methods that are sensitive not only to the spatial grain of the pattern, but also to non-90 

stationarity and anisotropic changes over space.  91 

Here, we illustrate how to use codispersion analysis (Cuevas et al. 2013; Buckley et al. 92 

2016) to detect and display both isotropic and anisotropic spatial relationships between a spatial 93 

point pattern of species’ locations and attributes, and associated environmental variables 94 

measured at larger spatial grain. The analysis is based on the codispersion coefficient between 95 

the ecological characteristics of a plant species (e.g., the relative abundance, biomass, size or 96 

other functional trait) and an environmental variable in a given direction and within a given 97 

distance across a particular spatial extent, such as a plot. Codispersion analysis has been applied 98 

previously only to a few data types in ecology, including the relationship between tree size and 99 

an underlying environmental gradient (topography) at a landscape-level spatial extent (Cuevas et 100 

al. 2013), multivariate spectral data (Vallejos et al. 2015), and species co-occurrences (Buckley 101 

et al. 2016). In this study, we apply codispersion analysis first to simulated data, and then to tree 102 

location and size (diameter) data from two large forest plots, one tropical and one temperate. Our 103 

results illustrate how codispersion analysis can be used to detect spatial patterns in tree size 104 

across environmental gradients. In addition, we demonstrate a framework for using different null 105 

models to test the significance of these spatial patterns (i.e., the departure of observed patterns 106 

from random expectation), and how differences in significance among null model tests can be 107 

Page 4 of 41New Phytologist



5 
 

used to generate hypotheses about, and guide the structuring of, models of underlying spatial 108 

processes. Specifically, we ask, at a 20 × 20-m grain size, what is the direction, magnitude, and 109 

spatial pattern in covariation between selected tree species and environmental variables across 110 

these two large forest plots? For the purposes of illustrating this method, we selected common 111 

species that covaried with the environmental variables in a variety of ways to reflect some of the 112 

different underlying processes that can drive species-environment relationships. For example, we 113 

can explore if covariation is higher between a tree species’ basal area and an environmental 114 

variable within 50 m in a northerly direction than would be expected if the species was randomly 115 

distributed. 116 

 117 

Materials and Methods 118 

An overview of codispersion analysis 119 

Codispersion analysis quantifies the spatial covariation of two or more spatially-explicit 120 

datasets. The result is a two-dimensional codispersion graph that allows us to assess how the two 121 

datasets co-vary across a range of spatial lags (distances between points) and directions (Table 1; 122 

Fig. 1; Vallejos et al. 2014). Codispersion analysis can be applied to datasets organized as spatial 123 

point patterns, irregular plots, or rasters. Spatial point patterns depict the locations of individuals 124 

(e.g., trees) and possible attributes (“marks”) of these individuals (e.g., diameters or other 125 

functional traits) measured at these same locations. Rasters often are used to depict 126 

measurements of continuously-varying soil or topographic properties as regular grids of cells of 127 

a particular size (resolution), from interpolations of variables that have been measured within the 128 

same vicinity as, but not precisely at the locations of the point patterns. Spatial point patterns 129 

also may be converted (up-scaled) into rasters prior to codispersion analysis, such as by 130 

quantifying tree abundances (stem density) or basal areas within raster cells of a given size.  131 

In-depth statistical details of the mechanics of codispersion are given in Ruhkin and 132 

Vallejos (2008), Cuevas et al. (2013), and Buckley et al. (2016); in the latter we consider species 133 

co-occurrences. Annotated R code (R version 3.1.2, R Core Team 2014) for performing 134 

codispersion analysis, including its application to examples from this study, is provided in 135 

Supporting Information Notes S1.  136 

In brief, codispersion analysis for two spatial datasets involves five steps.  137 
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First, determine the set of spatial lags h = {h1, h2}: h ≤ 0.25×maximum distance of the 138 

shortest side of the sample plot. The two components of h are vectors representing the range of 139 

spatial lags to be analyzed for each input dataset X (e.g., tree basal area) and Y (e.g., elevation 140 

above sea level). h1 is oriented parallel to the x axis, and ranges from –hmax to +hmax (Fig. 1A). h2 141 

is oriented parallel to the y axis and ranges from 0 to hmax (Fig. 1A). We note that two opposite 142 

directions are incorporated into the analysis along the x axis (positive and negative), so any 143 

anisotropy in the data will be more apparent along this axis. We therefore recommend that the 144 

dataset be oriented in such a way that the directionality of patterns of particular interest is along 145 

the x axis direction, or, that the data be rotated and analyzed in both directions.  146 

 Second, an Epanechnikov kernel function (Cuevas et al. 2013) is applied across all 147 

possible raster cell-to-cell distances for each h, resulting in a smooth spatial variation surface for 148 

each individual dataset and their intersection. The “smoothness” of the kernel surfaces is 149 

controlled by a set of kernel bandwidth parameters k = {kX, kY, kXY} (Cuevas et al. 2013). As 150 

rasterization of a spatial point process implies a uniform smoothing at the scale of the raster cell 151 

(Buckley et al. 2016), when analyzing rasterized data, we recommend setting each element of k 152 

equal to the dimension of the raster cell to avoid unintentional repeated smoothing of the data.  153 

 Third, semi-variograms for X and Y and the semi-cross-variogram of the intersection of X 154 

and Y are computed for the kernel-smoothed surfaces (Cuevas et al. 2013).  155 

 Fourth, the empirical codispersion coefficient (Matheron 1965) is computed for each lag 156 

h as the semi-cross-variogram divided by the square root of the product of the semi-variograms 157 

for each of the two variables. The value of the codispersion coefficient ranges from -1.0 (strong 158 

negative codispersion) to + 1.0 (strong positive codispersion). 159 

Finally, the codispersion values are plotted for each lag h (Fig. 1B). The magnitude of the 160 

codispersion values on the graph, and the way in which codispersion values change across the 161 

graph, provide information regarding the strength and direction of covariation between the two 162 

datasets at different spatial grains (Fig. 1B).   163 

Here, we first apply codispersion analysis to simulated data and use three null models to 164 

assess the significance of the observed patterns in both simulated and field data. We then apply 165 

codispersion analysis to explore spatial relationships between tree basal areas and underlying 166 
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environmental variables measured within multi-hectare forest plots. The results provide new 167 

insights into potential processes underlying observed patterns, and can provide guidance for the 168 

development of flexible, mechanistic process-based models for the data. 169 

Simulations 170 

To illustrate how to apply and interpret codispersion analysis for species-environment 171 

relationships, we first generated and analyzed a range of species patterns on environmental 172 

gradients (examples in Fig. 2; the complete set of simulated patterns is in Supporting Information 173 

Notes S2; R code to generate them is in Supporting Information Notes S4). We simulated 174 

marked point patterns in a 300 × 300-m “plot” by generating 1500 point locations (representing 175 

individual trees) that either were completely spatially random (CSR) or were generated by a 176 

Thomas process (using the rThomas function in the spatstat package of R [Baddeley and 177 

Turner 2005]). A Thomas process generates a clumped spatial distribution of points using 178 

parameters that describe the spatial intensity of the pattern (in this case, kappa = 20 was used), 179 

the degree of variation within clumps (scale = 0.05), and the average number of points per 180 

cluster (mu = 10). A simulated diameter (i.e., a “mark”) was assigned to each simulated “tree”. 181 

Diameters were generated using a truncated lognormal distribution with minimum = 1, 182 

maximum = 80, mean = 40, and standard deviation = ln(80/15) cm. These marks were distributed 183 

across the 1500 trees either randomly, increasing or decreasing to the left side, right side, left or 184 

right top corners, or increasing as a large clump in the center of the plot (Fig. 2). We calculated 185 

the basal area of the simulated trees within each of 225 contiguous 20 × 20-m cells within the 186 

simulated 300 × 300-m plot; 20 × 20-m cells were used because this is the size of typical forest 187 

inventory plots used to characterize stand structure. We then generated values for environmental 188 

variables within each raster cell. The values of the environmental variable were generated at 189 

3600 points within the plot (5 × 5 m cells) and were distributed randomly among the cells or 190 

increasing or decreasing to the left side, right side, left or right top corners, or increasing towards 191 

a maximum in the center of the plot; these examples include gradient patterns at a range of 192 

angles and rotations. The environmental raster gridded into 5 × 5-m cells was upscaled by taking 193 

the average value in 20 × 20-m cells so that the values were at the same locations and scale as the 194 

basal area data. For the codispersion analyses of these simulated data, we set the bandwidth k = 195 

{20 m, 20 m, 20 m}.  196 
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 Forest plot data 197 

We analyzed species-environment relationships between tree size (basal area) and environmental 198 

characteristics at two sites. The two datasets include environmental data that were collected in 199 

different ways: (1) direct measurements in each raster cell and (2) spatial interpolation 200 

(downscaling) of sparser data to individual raster cells using kriging (John et al. 2007). 201 

 The first data set is from the third (2000-2002) complete census of the 16-ha Luquillo 202 

Forest Dynamics Plot (LFDP) at the Luquillo Long-Term Ecological Research Site, Puerto Rico 203 

(Thompson et al. 2002). The four species selected were Casearia arborea (L. C. Rich.) Urban 204 

(Salicaeae), Cecropia schreberiana Miq. (Urticaceae), Dacryodes excelsa Vahl. (Burseraceae), 205 

and Prestoea acuminata var montana (Willd.) H.E. Moore (Arecaceae). These are four of the 206 

most common species (out of 152 total) in the third census of the LFDP; together they account 207 

for 44% of the total basal area of the plot (Table 2A). For each species, the basal area (m2) of the 208 

main stem of each tree was calculated from its measured diameter; basal areas of all trees of a 209 

given species in each raster cell were summed to give the species’ total basal area for that cell. 210 

Elevation (range 333 – 428 m a. s. l.) was measured (1990 – 1992) and mean elevation was 211 

calculated for each cell as the mean of the elevations at the four corners of each 20 × 20-m cell 212 

(Thompson et al. 2002). Slope (range -0.7 – 65%) was calculated from the corner elevations of 213 

each 20 × 20-m cell (Thompson et al. 2002). 214 

 Basal area of Casearia and Prestoea decreases but basal area of D. exclesa increases with 215 

elevation in the LFDP due to the pattern of land-use history in the plot (Thompson et al. 2002). 216 

The northern (lower elevation) two-thirds of the plot were logged prior to 1934 and used for 217 

subsistence agriculture. Logging and agriculture ceased when the area was purchased in 1934, 218 

and the regenerating forest is dominated by Casearia, but Prestoea also has its highest basal area 219 

there. Prestoea is often associated with slopes and ravines and disturbed areas (Weaver 2010, 220 

Harris et al 2012). At the highest elevations and the southern third of the plot, human disturbance 221 

to the forest was limited to selective logging; Dacryodes dominates these areas of the plot 222 

(Thompson et al. 2002). The dominance of Cecropia in the northern portion of the plot recorded 223 

in the third census is thought to have resulted from interactions between land-use history and 224 

hurricane disturbance. Cecropia recruited in huge numbers following Hurricane Hugo in 225 

September 1989 (Zimmerman et al. 2010), such that more than 95% of Cecropia individuals of 226 
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this species recruited following this one disturbance event. Zimmerman et al. (1994) noted that 227 

Casearia was especially susceptible to uprooting during Hurricane Hugo, which opened the 228 

forest canopy. Walker (2000) found that Cecropia frequently recruited in soil pits caused by 229 

uprooted trees and survived longer in this area of the plot because of the persistence of canopy 230 

light gaps. Thus, the prevalence of Cecropia in the lowermost elevation and flatter northern 231 

portion of the plot may be the result of hurricane damage caused to Caesearia and other species 232 

in this portion of the plot. 233 

 The second dataset is from the Tyson Research Center Plot (TRCP), a 25-ha forest 234 

dynamics plot located at Washington University in St. Louis’ Tyson Research Center, Missouri, 235 

USA (Spasojevic et al. 2014). We analyzed species-environment relationships for five woody 236 

species in the central 20-ha of the plot: Frangula caroliniana (Walter) A. Gray (Rhamnaceae), 237 

Lindera benzoin L. Blume (Lauraceae), Quercus alba L., Q. rubra L., and Q. velutina Lam. 238 

(Fagaceae). The three Quercus species were some of the most widespread species in the plot, 239 

whilst Frangula and Lindera were selected because they were the two most abundant species in 240 

the plot and had interesting, highly-clumped spatial patterns. Together these five species 241 

comprised 78% of the total basal area of the TRCP in the 2013 census (Table 2B). Principal 242 

components analysis (see Supporting Information Notes S3) was used to summarize, in two 243 

composite principal axes, the variation in 17 physico-chemical soil properties that were 244 

measured at points across the TRCP in 2013 and kriged to 20 × 20-m raster cells (Spasojevic et 245 

al. 2014). Maps of individual environmental variables are available on the TRCP website: 246 

http://www.ctfs.si.edu/site/Tyson+Research+Center%2C+Missouri. 247 

Null model analyses 248 

To assess the significance of the observed codispersion patterns, we used three different null 249 

models to randomize aspects of the spatial point processes and their marks (diameters) (Table 3). 250 

In each, only the species location data, rather than both species and environment data, were 251 

randomized because this was sufficient to break any spatial association of the species data with 252 

the environmental variable and allowed us to test the significance of their covariation. The three 253 

null models were a CSR model (CSRM), a random labelling model (RLM), and a toroidal shift 254 

model (TSM) (see Weigand and Moloney [2014] for detailed descriptions of these null models 255 

and other examples of their use). 256 
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 The CSRM generated new spatial locations for trees; observed tree diameters then were 257 

assigned randomly (without replacement) to each tree at its new location. Comparison of the 258 

observed codispersion patterns with those generated by this null model tested whether there was 259 

any non-random spatial pattern in the covariation of the observed tree population (basal area 260 

within 20 × 20-m grid cells) and the environmental variable (Table 3). One difficulty with the 261 

CSR is that where species distributions are clumped, this may result in a Type I error rate that is 262 

higher than 0.05. Thus, a significant departure from the expectation of this null model may 263 

reflect the presence of clumping in the species’ distribution (Table 3) and the interpretation of a 264 

significant result must be made cautiously. For example, we can use a CSRM to ask if a species 265 

increases in basal area at lower elevations in the plot but if the spatial distribution of the species 266 

is clumped, we could obtain a “significant” result even if there were no relationship between 267 

basal area and elevation. Overall, however, this significance test can be used as an initial test for 268 

spatial non-randomness in the dataset. 269 

 The RLM permuted the observed diameters of the trees while retaining the observed 270 

spatial position of each tree. This null model tested whether, given the underlying spatial 271 

distribution of trees (a particular autocorrelation structure), their sizes were important in 272 

determining any covariation with the environmental variable (Table 3). For example, under this 273 

null model, we can test whether covariaton between basal area and soil fertility is due to 274 

differences in species’ growth rates along a soil fertility gradient, rather than changes in stem 275 

density. Mechanistically, in this example, the tree distributions may be driven by clumped 276 

dispersal processes that are uniform across the plot area but species’ growth rates may vary with 277 

soil fertility.  278 

 The TSM retained the autocorrelation structure of the tree populations by retaining their 279 

relative spatial positions and diameters but breaking their spatial association with the 280 

environmental variable by moving the entire species pattern in a random distance and direction 281 

as though the plot was a torus. This model tested whether the observed pattern in covariation 282 

between the species and environmental variable was the same in all parts of the plot, i.e., whether 283 

the pattern in covariation is stationary (Table 3). The TSM is similar to the CSRM in that it 284 

completely breaks any association between the two variables, but it fixes the distribution pattern 285 

of the species. Thus, it distinguishes the case in which a non-random codispersion pattern may 286 
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simply be driven by relative tree positions from a process-based link between the environment 287 

and the species. For example, under this null model, we ask if tree basal area varies with soil 288 

fertility and if the nature of that covariation is the same throughout the plot. When combined 289 

with the results of the CSRM, we can determine if non-randomness identified by using the 290 

CSRM is due to a species-environment relationship (significant TSM) or due to clumping in the 291 

species distribution (non-significant TSM) (Table 3). 292 

 For each species, each of three null models was used to generate 199 new datasets. For 293 

each species-environment combination, empirical tail probabilities were obtained by comparing 294 

the observed codispersion values at each spatial lag with the vector of codispersion values at the 295 

same spatial lags and directions determined from each null model. If the observed value was 296 

greater than or equal to the 195th null value or less than or equal to the 5th null value, we deemed 297 

it to be significantly different from expected (i.e., a two-tailed test; P < 0.05). Thus, the 298 

significance tests were made for each lag and direction for which we obtained a codispersion 299 

value. 300 

Finally, we determined the Type I error rate for each of the three null models by 301 

comparing the observed codispersion between two CSR simulated patterns (see Supporting 302 

Information Notes S4) to values generated by the CSRM, RLM, and TSM. Note that the Type I 303 

error rate, our ability to identify non-significant codispersion values, is invariant to rotation and 304 

the error rate tests of the null models do not address the Type II error rate (statistical power), 305 

which remains an issue of ongoing research. R code for the null model analysis is provided in 306 

Supporting Information Notes S1.  307 

 308 

Results 309 

Species-environment associations of simulated forest plot data 310 

Codispersion plots clearly illustrated the relationships between simulated species and their 311 

environment, and detected anisotropic, positive, and negative covariation between the two 312 

variables (Fig. 2). When the simulated environmental pattern was generated using a CSR 313 

process, the cross-variogram and the codispersion both ≈ 0 (little or no spatial covariation), 314 
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whether or not the spatial pattern in basal area was also CSR (Fig. 2A; extended results in the 315 

Supporting Information Notes S2). When the environmental variable was generated using a 316 

uniform process across the plot, but the basal area of the species decreased from the bottom left 317 

to the top right of the plot (i.e., southwest to northeast), the codispersion was weakly negative 318 

and weakly anisotropic. This result reflected the changing pattern of covariation in the two 319 

variables in the x- and y-directions. In contrast, the cross-variogram ≈ 0 (Fig. 2B). Sequential 320 

pattern rotations of 15 degrees showed that codispersion analysis can also distinguish smaller 321 

changes in pattern orientation (Supporting Information Notes S2). 322 

 When basal area tightly co-varied with the environmental variable, the cross-variogram 323 

steeply increased and the codispersion was very high, only weakening at smaller scales that 324 

approached the spatial grain of the pattern (Fig. 2C). This pattern, and in fact all pattern 325 

combinations, had lower codispersion values when the underlying point pattern of the species 326 

was clumped (Thomas process) rather than CSR (Fig. 2D; extended results in Supporting 327 

Information Notes S2). A difference in pattern between the left- (west) and right-hand (east) 328 

sides of the codispersion graph indicated anisotropy. For example, where the environmental 329 

variable decreased from bottom left (SW) to top right (NE), and basal area increased from west 330 

to east, codispersion measured negative covariation in the west-to-east direction, but showed 331 

some positive covariation at larger scales when looking to the northeast and negative covariation 332 

at larger scales when looking to the east (Fig. 2E). This pattern was also reflected somewhat in 333 

the cross-variogram, which was flat at small lags but negative at larger lags (Fig. 2E). Similarly, 334 

where there was some covariation in a given direction (Fig. 2F), in this case from bottom left 335 

(SW) to top right (NE), the codispersion map illustrated the anisotropy (the right hand side of the 336 

plot was more negative than the left hand side), showing a relationship that was more negative at 337 

larger scales. In this case, the cross-variogram was most negative at similar scales (100-150 m), 338 

but did not reflect the anisotropy (Fig. 2F).  339 

For all analysis combinations of the three null models and the two underlying tree 340 

distributions (CSR- and Thomas-process), none of the observed codispersion values from the 341 

two CSR patterns were significantly different from those expected under either model at the 5% 342 

level. In our simulations, the CSR model resulted in only one significant cell (out of 200 cells) in 343 
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the codispersion graph (see Supporting Information Notes S4). These results are indicative of a 344 

Type I error rate of less than or equal to 5%. 345 

Species-environment associations of observed forest plot data 346 

In the LFDP, basal area of Casearia, Cecropia and Prestoea generally decreased with increasing 347 

elevation, whilst basal area of Dacryodes increased with increasing elevation (Fig. 3, Table 2A), 348 

reflecting the interaction of elevation and land-use history in the plot (Thompson et al. 2002). 349 

For Casearia, this pattern was reflected in a weak, anisotropic codispersion pattern where west-350 

to-east codispersion was more positive than east-to-west codispersion, which became more 351 

negative in the north-east direction (Fig. 4A). The codispersion was weakly negative and 352 

anisotropic for the basal area of Cecropia (Fig. 4B) and similar, but positive, for that of 353 

Dacryodes (Fig. 4C). Basal area of Prestoea negatively co-varied with elevation at the larger 354 

scales, reflecting its lower basal area at the highest elevations (Fig. 4D). Basal area of Casearia 355 

negatively co-varied with slope, whilst basal area of Cecropia and Dacryodes positively co-356 

varied with slope. In contrast, basal area of Prestoea was not strongly related to slope.  357 

 The comparison of the observed patterns with the codispersion values from the CSRM 358 

randomizations revealed that the observed codispersion for all of the species with both elevation 359 

and slope was different from random expectation at some, but not all, scales and directions (Fig. 360 

4, columns 2 and 3). The only exception was for the relationship between Prestoea and slope, 361 

which was not significant (Fig. 4D). For all four species, the comparisons with the RLM showed 362 

that the number of significant observed codispersion values was lower than expected using the 363 

CSRM for about half of the relationships tested, was higher for some, and stayed the same for a 364 

few (Figure 4, columns 4 and 5). The comparisons with the TSM showed that the observed 365 

codispersion values were significant at few scales and directions for most species-environment 366 

combinations (Figure 4, columns 6 and 7).  367 

 In the TRCP, the first two components from the principal component analysis of the soil 368 

chemistry data explained 65% of the variation in measured soil chemistry (plots and PC loadings 369 

are given in Supporting Information Notes S2). Variables loading strongly on PC1 were 370 

associated with soil fertility and cations (i.e., pH, base saturation, calcium, magnesium, 371 

potassium, aluminum, and iron), whilst variables loading strongly on PC2 were associated with 372 
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soil nitrogen availability (i.e., total nitrogen, NH4, and nitrogen mineralization rate). These two 373 

principal components were used in the codispersion analysis of species-environment 374 

relationships for the five focal species. 375 

The basal area of the five focal species in the 20 × 20-m raster cells at TRCP showed a 376 

range of strong, weak, positive, and negative relationships with both soil pH and cations (PC1) 377 

and soil nitrogen (PC2) (Table 2B, Fig. 5). Although abundant, Frangula and Lindera were less 378 

widespread and their populations were concentrated largely in one or a few patches that 379 

corresponded to high values on PC1, generating positive covariation (Fig. 5A−B). The three 380 

Quercus species (Fig. 5C−E) were more widespread within the plot; Q. alba was weakly and Q. 381 

rubra and Q. velutina were more strongly negatively related to more fertile soils (high values on 382 

PC1). Quercus alba positively co-varied with nitrogen (PC2), whilst Q. rubra and Q. velutina 383 

had little or negative co-variation with nitrogen (Fig 5C−E).  384 

Codispersion plots revealed both spatial gradients in covariation between basal area and 385 

environment and the spatial scales at which covariation was the strongest (Fig. 6, column 1). For 386 

example, anisotropic species-environment associations for Frangula and Lindera were illustrated 387 

by positive codispersion with PC2 to the east within the plot, but negative codispersion when 388 

looking to the west (Fig. 6A, B). In addition, the spatial scales of covariation differed among 389 

species. For instance, the positive co-variation between Quercus alba and PC2 was highest at 390 

large lags (greater than 50 m) in the east-west direction, whilst Q. velutina negatively co-varied 391 

with PC1 at larger lags (greater than 60 m) in the north direction, but at smaller lags in the east-392 

west direction (up to 50 m).  393 

Observed patterns of species-environment associations at the TRCP often differed from 394 

null expectations, but the magnitude of the effect sizes varied among the different null models. 395 

The comparison of observed codispersion patterns with those from the null models revealed that 396 

the weaker observed codispersion patterns with both soil fertility and cations (PC1) and soil 397 

nitrogen variables (PC2) tended not to be significant when compared to expectation when trees 398 

were distributed CSR within the plot (Fig. 6, columns 2 and 3). In contrast, comparisons with the 399 

RLM (Fig. 6, columns 4 and 5) showed that observed codispersion values were mostly higher 400 

than expected. The exceptions to this were, for some scales and directions, for Frangula and Q. 401 

velutina with PC2, and for Q. rubra with PC1, each of which had significantly more negative 402 
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codispersion at some scales when looking to the west in the plot. The comparisons with the 403 

expected values from the TSM largely mirrored those of the CSR comparisons, but with fewer 404 

significant values in most cases, such as for Frangula and PC2, which was non-significant at all 405 

lags.  406 

 407 

Discussion 408 

Codispersion analysis is a useful method for exploring species-environment relationships in a 409 

spatially-explicit context. Simulations showed that the method correctly detected anisotropy and 410 

other spatial regularities in the co-variation of the two variables and correctly measured the scale 411 

of these effects (Fig. 2). Codispersion values in these simulations were influenced by the 412 

underlying spatial pattern of both the species and the environmental variable; more clumping in 413 

the tree distribution patterns reduced the magnitude of the codispersion values, even with the 414 

same basal area and environmental gradients (Fig. 2; Supporting Information Notes S2). 415 

Similarly, a uniform distribution of the environmental variable led to higher magnitude of 416 

codispersion values than resulted from a CSR environmental variable (Fig. 2; Supporting 417 

Information Notes S2). When observed patterns in field data were combined with null model 418 

analysis, codispersion analysis detected the scales and directions of statistically significant 419 

codispersion in basal area-environment relationships, and suggested the possible drivers of those 420 

relationships (Table 2).  421 

The selection of appropriate null models for analyzing spatial point patterns is especially 422 

important when the results are used to generate testable hypotheses about processes underlying 423 

the observed point patterns (Weigand and Moloney 2014). We suggest that comparisons of the 424 

results of the three null models we used to explore significance of codispersion in species-425 

environment relationship can help to tease apart possible influences on observed codispersion 426 

patterns (Table 4). In particular, whether observed patterns are found to be significantly different 427 

from expectations for one, two, or all three of the null models leads to different hypotheses about 428 

possible processes and ecological mechanisms determining the observed patterns (Table 4). 429 

The first possibility is that the observed pattern is not significantly different from 430 

expectation of all three null models. We obtained this result when examining codisperson of 431 
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Prestoea acuminata and slope at the LFDP (Fig. 4D). We interpret this result as evidence that 432 

any observed spatial pattern of the basal area distribution of this species must be due to factors 433 

we did not measure. For example, Prestoea is dominant in the northern two thirds of the LFDP, 434 

which was disturbed by the land use history, greater damage from Hurricane Hugo and is flatter 435 

than the southern third of the plot. The high abundance in the northern part of the plot as a result 436 

of the land use history reduces the relative strength of the association with slope in this analysis. 437 

A second possibility is that the pattern is significantly different under the CSRM, but non 438 

significantly different under the TSM. This likely reflects the situation where clumping in the 439 

species distribution has resulted in correlation with environment at some lags and directions, but 440 

this is not consistent across the plot and therefore, unlikely to reflect a causal dependence of 441 

species on environment. Such a result can be used to identify and understand spatial pattern in 442 

the species data.  443 

Alternatively, the observed pattern could be significantly different from expectation for 444 

only two of the three null models. For example, at TRCP, Q. rubra was strongly and negatively 445 

associated with soil pH and cations at all spatial lags when assessed with the CSRM and TSM 446 

(Fig. 6D). However, spatial co-variation was non-significant for a number of lags under the RLM 447 

and where it was significant, the observed codispersion was higher than expected. This suggests 448 

that although Q. rubra basal area was negatively related to the soil environment, the pattern of 449 

this relationship, at least at some spatial lags and directions, was not dependent on tree sizes, but 450 

rather on their relative spatial positions (autocorrelation structure). Thus, the observed 451 

codispersion patterns is likely to be due to processes that drive intraspecific clumping such as 452 

unmeasured variation in other environmental variables or land-use history (Thompson et al. 453 

2002), interspecific interactions, or dispersal limitation (e.g., Plotkin et al. 2002). 454 

Further, significant difference from expectation under the toroidal shift model reveals 455 

non-stationarity in the data, which should be taken into account in subsequently developed 456 

inferential statistical models. For example, variograms for the TRCP show non-stationarity in 457 

PC2 (a large scale trend such that the variogram does not level off and therefore has no sill). 458 

Observed codispersion of PC2 (soil nitrogen variables) and Quercus alba was significantly 459 

different from expectation at large scales suggesting that there was non-stationarity in this 460 

pattern. If, in a subsequent model, we were interested in regressing this covariation against other 461 
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variables, such as slope or elevation, we would need to account for the non-stationarity by 462 

applying a method such as generalized least squares, where the correlation in the errors is 463 

modelled and then specified in the regression model (Beale et al 2010). 464 

These results, and others summarized in Table 4, demonstrate how the application of 465 

different null models to codispersion analysis can reveal subtle differences in potential causes of 466 

observed bivariate spatial relationships. Other null models that could be explored fruitfully in 467 

further research include pattern reconstruction methods (Wiegand and Moloney, pp 368) and 468 

spectral methods using raster data (Deblauwe et al. 2015; Wagner and Dray 2015).  However, we 469 

must first understand what biological processes are being manipulated in each case to interpret 470 

observed departures from null expectations. Further, simultaneous comparisons across multiple 471 

lag distances can suffer from higher than desired Type I error rates (Loosmore and Ford 2006; 472 

Baddeley et al 2014). Future research should address developing a global significance test for 473 

codispersion where understanding scales of variation is important. 474 

Finally, we note that there are three important considerations to keep in mind when 475 

applying codispersion analysis to species-environment data: selecting values for the maximum 476 

spatial lag distance, the kernel bandwidth, and the orientation of the pattern in the analysis. We 477 

recommend a maximum lag distance of no more than one-quarter of the smallest plot dimension. 478 

If the maximum lag is too large, edge effects will influence the largest scales considered. Setting 479 

the maximum lag to 25% of the smaller plot dimension ensures an adequate sample size to detect 480 

the spatial pattern and minimizes edge effects. 481 

The selection of an appropriate kernel bandwidth is comparatively straightforward if data 482 

on a regular grid (raster) are used, as we have illustrated here. Because we rasterized the data to 483 

20-m grid cells, the scale at which the environmental data were obtained, setting each of the 484 

three bandwidth values (k = {kX, kY, kXY}) equal to 20 m makes sense, as 20 m is the smallest 485 

scale at which any pattern could be detected. However, if codispersion is used to analyze 486 

bivariate marked point patterns (e.g., two measurements, such as diameter and height, which are 487 

recorded for a single point location), the values used for the bandwidth parameters will 488 

determine the scales at which the codispersion analysis can detect patterns of spatial co-variation. 489 

If the scales of the two variables differ markedly, then their bandwidth parameters, and that of 490 

their cross-variogram, should be different. One possibility is to set the values of kX, kY, and kXY to 491 
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the values of the nuggets of their respective variograms (for kX, kY) or cross-variogram (for kXY). 492 

Alternatively, Cuevas et al. (2013) suggest an optimization method for identifying appropriate 493 

values for k.  494 

The x,y orientation of the observed biological spatial pattern matters for pattern of 495 

codispersion values displayed in the codispersion graph (but not the significance tests) because 496 

we have greater resolution of pattern in the x-axis than in the y-axis. Thus, users should think 497 

about directionality in the processes driving the spatial patterns being tested. If little is known, 498 

rotating the pattern around the midpoint and analyzing it in both directions may aid in identifying 499 

directionality in the spatial pattern. Note that this consideration does not affect the data collection 500 

unless the plot size or shape precludes the species-environment pattern under study from being 501 

adequately sampled within the study extent; therefore, we encourage researchers to consider their 502 

hypotheses of pattern during sampling design. 503 

Codispersion analysis is useful because it results in a graph that clearly identifies the 504 

magnitude, scale and directionality of the observed patterns; it can identify the presence and 505 

scale of anisotropy in the spatial pattern; when combined with null models, it can be used to 506 

suggest testable hypotheses of ecological process; and it can identify non-stationarity in the 507 

spatial pattern of covariation, which influences subsequent inferential modelling choices. It can 508 

be used to address a wide range of ecological questions where we are interested in the scale and 509 

nature of spatial covariation in variables derived from point-based or grid-based sampling 510 

schemes. Such variables may be associated with any attribute of organisms or their locations. 511 

The fact that fundamentally different processes can generate similar observed pattern of 512 

clumping reinforces the need for spatial methods, combined with appropriate null models, that 513 

allow ecologists to discern the relative importance of different processes. Importantly, 514 

codispersion can be used for composite measures, such as plant community richness or biomass, 515 

and extended to more than two variables (Vallejos et al. 2015), which may be a fruitful path for 516 

further ecological applications. Although this method is computationally intensive, the code 517 

provided here (Supporting Information Notes S1) is readily adapted for use in a parallel 518 

computing framework. Future applications of this approach across a broad range of organisms 519 

and biogeographic regions will provide new insights into the ecological causes and consequences 520 

of species-environment associations.  521 
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FIGURE CAPTIONS 653 

Figure 1. A. An illustration of the creation of directional spatial lags for ecological data 654 

organized as rasterized surfaces (both variables are represented by the large grid). The dashed 655 

lines represent different spatial lags h over which codispersion is calculated in different 656 

directions. B. The codispersion graph. The color of each cell is the value of the codispersion 657 

coefficient of two variables for each given spatial lag h and direction in x,y space. In this 658 

example, the graph shows negative covariation between the two variables when looking in the 659 

east direction, but positive covariation when looking in the northwest direction, indicating 660 

anisotropy in the way the two variables covary. The colour pattern on the graph also indicates 661 

that the two variables are most negatively correlated at spatial lags above 20m in the positive x 662 

direction, and most positively correlated at scales of about 20-30 m in the negative x direction 663 

and at about 50-80 m in the y direction. Figures taken from Buckley et al. (2016). 664 

 665 

Figure 2. Simulated species-environment patterns on 20 × 20-m grids in 300 × 300-m plots, their 666 

variograms and cross-variograms, and codispersion graphs. In the variograms, the blue line is the 667 

environment variogram, the green line is the species variogram and the pink line is the cross-668 

variogram. The colours of the codispersion graphs are scaled from –1 (purple) to +1 (orange). 669 

The underlying pattern (environment, basal area) and mean (standard deviation) codispersion 670 

values for each analysis were: (A) CSR, CSR: 0.03 (0.04), (B) uniform, decreasing x and y: 0.13 671 

(0.04) , (C) decreasing x, decreasing x: 0.46 (0.19), (D) decreasing x, decreasing x (underlying 672 

Thomas distribution): 0.25 (0.15), (E) decreasing x and y, increasing x: -0.16 (0.29), and (F) 673 

bivariate normal, increasingx and y: -0.23 (0.11).  674 

 675 

Figure 3. Observed patterns on 20 × 20-m grids in the 16-ha Luquillo Forest Dynamics Plot of 676 

elevation (top left), slope (top right), and basal area (m2.ha-1) of Casearia arborea (CASARB), 677 

Cecropia schreberiana (CECSCH), Dacryodes excelsa (DACEXC) and Prestoea acuminata 678 

(PREMON). The variogram for the environmental variable (blue line), variogram for the species 679 

(green line) and their cross-variogram (pink line) are shown for each species-environment 680 

combination; variables were centered and standardized prior to analysis. In each bubble plot, the 681 
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dots are positioned at the center of each grid cell point and the sizes of the symbols are scaled to 682 

the variable displayed.  683 

 684 

Figure 4. Observed codispersion values; observed minus expected values; and significance (red) 685 

or not (blue) at the P < 0.05 level relative to null expectation from three null models for bivariate 686 

species-environment combinations for four species (abbreviations as in Fig. 3) in the 16-ha 687 

Luquillo Forest Dynamics Plot. The colours on the codispersion and observed−expected graphs 688 

are scaled from –1 (purple) to +1 (orange); contour lines are at intervals of 0.1.The means and 689 

ranges of observed codispersion values are given in Table 2A. 690 

 691 

Figure 5. Observed patterns on 20 × 20-m grids in a 20-ha area of the Tyson Research Center 692 

Plot of soil variables represented by two principal components PC1 (top left), PC2 (top right), 693 

and basal area (m2.ha-1) of five species: Frangula caroliniana (FRACAR), Lindera benzoin 694 

(LINBEN), Quercus alba (QUEALB), Quercus rubra (QUERUB), and Quercus velutina 695 

(QUEVEL). The variogram for the environmental variable (blue line), variogram for the species 696 

(green line) and their cross-variogram (pink line) are shown for each species-environment 697 

combination; variables were centered and standardized prior to analysis. In each bubble plot, the 698 

dots are positioned at the center of each grid cell point and the sizes of the symbols are scaled to 699 

the variable displayed.  700 

 701 

Figure 6. Observed codispersion values; observed minus expected values; and significance (red) 702 

or not (blue) at the P < 0.05 level relative to null expectation from three null models for bivariate 703 

species-environment combinations for five species (abbreviations as in Fig. 5) in the 22-ha area 704 

of the Tyson Research Center Plot. The colours of the codispersion and observed−expected 705 

graphs are scaled from –1 (purple) to +1 (orange); contour lines are at intervals of 0.1.The means 706 

and ranges of observed codispersion values are given in Table 2B. 707 

708 
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TABLES 709 

Table 1: Definitions of spatial terminology used in this paper 710 

Term Description References 

Anisotropy When the spatial correlation is dependent on 

direction (opposite to isotropy, where the 

correlation is the same in all directions). For 

example, species across a stress gradient are 

anisotropic when associations vary between 

aggregated and segregated with decreasing stress 

(Bertness and Callaway 1994). 

 

Dale 1999 

Kernel bandwidth The bandwidth is the set of parameters used in 

the kernel function of the codispersion analysis 

that is applied across all possible raster cell-to-

cell distances for each spatial lag, resulting in a 

spatial variation surface. In the case of 20 × 20-

m grids, we apply a 20-m bandwidth because 

that is the smallest scale (spatial grain) of the 

data. 

 

Cuevas et al. 2013; 

Buckley et al. 

(2016); this paper 

Codispersion A measure of the covariation of two variables in 

space. For example, covariation in the basal area 

of two tree species measured in 20 × 20-m grid 

cells in a large forest plot. 

 

Cuevas et al. 2013; 

Buckley et al. 

(2016); this paper 

Marks Attributes associated with each point in a spatial 

point pattern. For example, diameters or 

diseased/ healthy status of trees in a forest plot. 

 

Wiegand and 

Moloney 2014 

Semi-variogram A function, usually plotted as a two dimensional Dale 1999 
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graph, revealing spatial correlation among 

measurements from a set of samples. It has three 

key parameters: nugget, sill and range. The 

semi-variogram shows at what spatial lags 

spatial variability occurs in a spatial dataset, i.e., 

the scale of variation in the data. 

 

Spatial 

autocorrelation 

Dependence of observations on spatial 

proximity. For example, tree sizes may be 

spatially autocorrelated if growth is positively 

influenced by a patchily-distributed 

environmental resource; high-resource patches 

will contain large trees and low-resource patches 

will contain small trees. 

 

Wiens 1989 

Spatial lag The distance over which a process is measured. 

For example, when visualizing codispersion of a 

species and an environmental variable, we plot 

the codispersion for a range of spatial lags (and 

directions), i.e., we ask, what is their covariation 

at distances (lags) of 20 m, 40 m, 60 m, …? 

 

Cuevas et al. 2013; 

Buckley et al. 

(2016); this paper 

Spatial point 

pattern 

A set of locations in x,y space. Spatial point 

patterns may be simply locations (unmarked 

pattern), or locations with attributes (marked 

pattern). For example, the x,y coordinate 

locations of trees in a forest plot. 

 

Dale 1999; 

Weigand and 

Moloney 2014 

Spatial processes A process whose action causes changes in a 

spatial pattern. 

 

Wiens 1989 
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Stationarity The “strong” form of spatial stationarity is the 

situation in which the joint distribution of the 

data is invariant when the pattern of either one is 

moved (translated) through space. A weaker 

form of spatial stationarity, “second-order 

stationarity,” assumes that only the mean, 

variance, and covariance must be stationary. A 

still weaker form of stationarity – the “intrinsic 

hypothesis” – is a lack of spatial trend, such that 

the mean and semi-variance of the distribution 

are dependent only on the distance between 

points, not their locations. Either second-order 

stationarity or the intrinsic hypothesis is an 

assumption of most spatial statistical inference 

methods. 

 

Dale 1999; Vieira et 

al. 2010 

 711 

 712 
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Table 2: Abundances, mean diameters (DBH) in centimeters (standard deviation), and the means and ranges in codispersion for basal 713 

area-environment relationships for the analyzed species in the (A) Luquillo Forest Dynamics Plot and (B) Tyson Research Center 714 

Forest Plot 715 

A. Luquillo Forest Dynamics Plot (2000-2002 census data) 

Species Number 

of stems 

Mean DBH 

(s.d.) 

Total basal 

area (m2h-1) 

Mean (s.d.) 

codispersion 

with elevation 

Range in 

codispersion 

with elevation 

(min, max) 

Mean (s.d.) 

codispersion 

with slope 

Range in 

codispersion 

with slope 

(min, max) 

Dacryodes excelsa 1544 21.18 (15.71) 84.28 0.00 (0.08) -0.17, 0.14 0.03 (0.02) -0.03, 0.10 

Cecropia schreberiana 2902 10.02 (6.65) 32.95 0.14 (0.04) 0.06, 0.22 0.11 (0.06) -0.05, 0.25 

Casearia arborea  3861 5.63 (5.38) 18.39 0.05 (0.09) -0.12, 0.21 -0.13 (0.06) -0.24, 0.02 

Prestoea acuminata 7707 14.29 (2.96) 128.82 -0.10 (0.07) -0.24, 0.02 0.10 (0.03) 0.02, 0.17 

        

B. Tyson Research Center Plot (2013 census data) 

Species Number 

of stems 

Mean DBH 

(s.d.) 

Total basal 

area (m2h-1) 

Mean (s.d.) 

codispersion 

with soil PC1 

Range in 

codispersion 

with soil PC1 

(min, max) 

Mean (s.d.) 

codispersion 

with soil 

PC2 

Range in 

codispersion 

with soil 

PC2 

(min, max) 

Frangula caroliniana 8715 2.04 (0.85) 3.34 0.41 (0.12) 0.17, 0.62 0.03 (0.10) -0.16, 0.21 

Lindera benzoin 4922 1.84 (0.66) 1.48 0.28 (0.14) 0.06, 0.56 0.06 (0.13) -0.11, 0.36 

Quercus alba 2066 29.57 (16.24) 184.66 -0.04 (0.04) -0.14, 0.07 0.13 (0.05) 0.03, 0.24 
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Quercus rubra 1551 30.03 (17.63) 147.73 -0.39 (0.12) -0.56, -0.15 0.03 (0.05) -0.06, 0.13 

Quercus velutina 691 33.46 (13.92) 71.27 -0.09 (0.09) -0.28, 0.08 -0.09 (0.05) -0.19, 0.03 

        

Codispersion was estimated in the 20 × 20-m raster cells in which environmental variables were measured. 716 

 717 
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Table 3: The three null models, an example realization of each, how they were applied in this 718 

paper, and their associated null process models. For each example, (which were randomized by 719 

each null model), the hypothesized ecological process is that basal area (BA) is conditional on 720 

one or more of the spatial point pattern of trees (ppp), their diameters (marks) and the spatial 721 

distribution of the environmental variable (env): BA | (ppp, marks, env). Each null model breaks 722 

apart this conditional process in a different way, as is indicated by the conditional statement (in 723 

bold type) and its associated explanation in the “Null process” column. 724 

Null model Example Null process Test 

Completely 

spatially 

random 

(CSRM) 

 

 

BA; (ppp, marks) | env 

The spatial distribution 

and diameters of 

individual trees, from 

which basal area is 

computed, are random and 

therefore independent of 

the environment.  

 

This model tests for 

non-random spatial 

covariation between 

BA and the 

environmental 

variable. 

 

Random 

labelling 

model 

(RLM) 

 

 

BA; marks | (ppp, env) 

Where individual trees 

grow is fixed (due to 

another process, such as 

competition), but how they 

grow (size) is independent 

of the environment.  

 

This model tests if the 

environmental 

variable is associated 

with growth 

differences among 

individual trees, 

whose diameters are 

aggregated to compute 

BA in each raster cell. 
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Toroidal 

shift model 

(TSM) 

 

 

BA; env | (ppp, marks) 

Where trees grow relative 

to one another and the 

spatial distribution of their 

relative sizes is driven by 

an unknown (unmeasured) 

process, but where and 

how they grow (e.g., size) 

is independent of the 

environment.  

This model tests for 

non-random spatial 

co-variation between 

BA and the 

environmental 

variable, given the 

underlying marked 

spatial point pattern of 

the species. 

 

  725 
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Table 4: Interpretation of the null model results with examples from the two forest plot datasets 726 

Null model results Interpretation Species-environment 

examples CSRM RLM TSM 

N.S. N.S. N.S. Basal area is independent of the 

environment. 

 

Prestoea acuminata vs. 

slope (Fig. 4D) 

 

Sig. N.S. N.S. Basal area is independent of the environment 

but aggregated in space; this pattern depends 

on tree spatial distributions, not tree sizes, 

i.e., the spatial pattern of basal area is not 

different than expected if diameters were 

randomly assigned to trees. 

 

Casearia arborea vs. 

elevation (Fig. 4A) 

N.S. Sig. N.S. Basal area is not strongly related to the 

environment because tree positions are 

independent of the environmental variable; 

however, the environment causes non-

random differences in tree growth. 

 

Quercus alba vs. PC1 

(Fig. 6C) 

 Sig. N.S. Sig. Basal area is non-randomly related to the 

environment; this pattern depends on the 

relative spatial positions of trees, not their 

sizes. 

 

Quercus rubra vs. PC1 

(Fig. 6D) 

Sig. Sig. N.S. Tree sizes, but not necessarily their positions, 

depend on the environment (the environment 

causes differences in tree growth; tree 

distributions are aggregated within the plot.  

 

Cecropia schreberiana 

vs. elevation (Fig. 4B) 

Sig. Sig. Sig. Basal area is non-randomly related to the Frangula caroliniana 
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environment and this depends on both tree 

spatial distributions and their sizes. The 

environment influences both where trees 

grow and their sizes. 

 

vs. PC1 (Fig. 6A) 

The CSR model (CSRM) resulted in completely spatially random (CSR) tree spatial positions 727 

within the plot. The random labelling model (RLM) shuffled the marks (here, diameters) 728 

associated with each tree. The toroidal shift model (TSM) fixed the relative tree positions and 729 

their observed diameters, but moved the entire set of tree point locations in a random distance 730 

and direction as though the plot is a torus. 731 
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Figure 2. Simulated species-environment patterns on 20 × 20-m grids in 300 × 300-m plots, their 
variograms and cross-variograms, and codispersion graphs. In the variograms, the blue line is the 

environment variogram, the green line is the species variogram and the pink line is the cross-variogram. 
The colours of the codispersion graphs are scaled from –1 (purple) to +1 (orange). The underlying pattern 
(environment, basal area) and mean (standard deviation) codispersion values for each analysis were: (A) 

CSR, CSR: 0.03 (0.04), (B) uniform, decreasing x and y: 0.13 (0.04) , (C) decreasing x, decreasing x: 0.46 
(0.19), (D) decreasing x, decreasing x (underlying Thomas distribution): 0.25 (0.15), (E) decreasing x and 

y, increasing x: -0.16 (0.29), and (F) bivariate normal, increasingx and y: -0.23 (0.11).  

348x274mm (300 x 300 DPI)  
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Figure 3. Observed patterns on 20 × 20-m grids in the 16-ha Luquillo Forest Dynamics Plot of elevation (top 
left), slope (top right), and basal area (m2.ha-1) of Casearia arborea (CASARB), Cecropia schreberiana 
(CECSCH), Dacryodes excelsa (DACEXC) and Prestoea acuminata (PREMON). The variogram for the 

environmental variable (blue line), variogram for the species (green line) and their cross-variogram (pink 
line) are shown for each species-environment combination; variables were centered and standardized prior 
to analysis. In each bubble plot, the dots are positioned at the center of each grid cell point and the sizes of 

the symbols are scaled to the variable displayed.  
370x500mm (300 x 300 DPI)  
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Figure 4. Observed codispersion values; observed minus expected values; and significance (red) or not 
(blue) at the P < 0.05 level relative to null expectation from three null models for bivariate species-

environment combinations for four species (abbreviations as in Fig. 3) in the 16-ha Luquillo Forest Dynamics 

Plot. The colours on the codispersion and observed−expected graphs are scaled from –1 (purple) to +1 
(orange); contour lines are at intervals of 0.1.The means and ranges of observed codispersion values are 

given in Table 2A.  
308x180mm (300 x 300 DPI)  
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Figure 5. Observed patterns on 20 × 20-m grids in a 20-ha area of the Tyson Research Center Plot of soil 
variables represented by two principal components PC1 (top left), PC2 (top right), and basal area (m2.ha-1) 
of five species: Frangula caroliniana (FRACAR), Lindera benzoin (LINBEN), Quercus alba (QUEALB), Quercus 

rubra (QUERUB), and Quercus velutina (QUEVEL). The variogram for the environmental variable (blue line), 
variogram for the species (green line) and their cross-variogram (pink line) are shown for each species-

environment combination; variables were centered and standardized prior to analysis. In each bubble plot, 
the dots are positioned at the center of each grid cell point and the sizes of the symbols are scaled to the 

variable displayed.  
407x505mm (300 x 300 DPI)  
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Figure 6. Observed codispersion values; observed minus expected values; and significance (red) or not 
(blue) at the P < 0.05 level relative to null expectation from three null models for bivariate species-
environment combinations for five species (abbreviations as in Fig. 5) in the 22-ha area of the Tyson 

Research Center Plot. The colours of the codispersion and observed−expected graphs are scaled from –1 
(purple) to +1 (orange); contour lines are at intervals of 0.1.The means and ranges of observed 

codispersion values are given in Table 2B.  
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