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Abstract: Additive manufacturing (AM) processes have undergone significant progress in recent
years, having been implemented in sectors as diverse as automotive, aerospace, electrical component
manufacturing, etc. In the medical sector, different devices are printed, such as implants, surgical
guides, scaffolds, tissue engineering, etc. Although nowadays some implants are made of plastics
or ceramics, metals have been traditionally employed in their manufacture. However, metallic
implants obtained by traditional methods such as machining have the drawbacks that they are
manufactured in standard sizes, and that it is difficult to obtain porous structures that favor fixation
of the prostheses by means of osseointegration. The present paper presents an overview of the use of
AM technologies to manufacture metallic implants. First, the different technologies used for metals
are presented, focusing on the main advantages and drawbacks of each one of them. Considered
technologies are binder jetting (BJ), selective laser melting (SLM), electron beam melting (EBM), direct
energy deposition (DED), and material extrusion by fused filament fabrication (FFF) with metal
filled polymers. Then, different metals used in the medical sector are listed, and their properties
are summarized, with the focus on Ti and CoCr alloys. They are divided into two groups, namely
ferrous and non-ferrous alloys. Finally, the state-of-art about the manufacture of metallic implants
with AM technologies is summarized. The present paper will help to explain the latest progress in
the application of AM processes to the manufacture of implants.

Keywords: additive manufacturing; electron beam melting; selective laser melting; Ti-Al4-V6 alloy;
CoCr alloys; implants; prostheses; biocompatibility

1. Introduction

Nowadays, industry is undergoing the 4th industrial revolution, which involves a lot of different
fields such as nanotechnology, Internet of Things (IoT), and Artificial Intelligence (AI), among others.
It also includes additive manufacturing (AM), which is the technology that builds 3D objects from
successive layers. In recent years, the use of 3D printed parts in the medical sector has increased.
According to the Wohlers report [1], the medical sector was the third most important one in the US in
2014 (Figure 1).

Additionally, the planet’s population is increasing every year, along with life expectancy. It is
therefore not difficult to imagine the different medical problems that can arise. For example, the
appearance of new diseases or more people in need of surgery for organs transplantation as well as
body parts’ replacements such as knees or hips.
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According to the current technological development, it is possible to think about personalized
medicine, for instance, the customization, design and fabrication of patient-particular products using
AM technologies. Moreover, this technology could offer several significant advances:

• Creation of ideal products.
• Reduction of manufacturing times.
• Cost savings.
• Improvement in the strength of implants.
• Higher accuracy achievement.
• Production of lightweight implants.
• Surface quality excellence.
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Polymers are common in different medical applications such as tissue engineering [2], and the
manufacture of surgical planning prototypes [3–7] and scaffolds [8]. Ceramic materials have also been
employed in scaffolds [9]. However, in recent years the use of metals has increased in medicine. They
can be found in several applications, such as surgical guides [10], prostheses [11], implants [12], etc.
(Figure 2).

Most metallic parts used in the medical sector have complex shapes, in many cases combined
with porous structures that favor their fixation in the body by means of osseointegration. AM can
provide these shapes without excessively increasing costs. In addition, it allows customized parts to be
produced from the DICOM (Digital Imaging and Communications in Medicine) files obtained, for
example, in radiology tests.

The present paper focuses on the recent advances in AM of metallic implants, which are tissues or
prostheses that are placed inside or on the surface of the body. Prostheses are artificially made parts of
the body that replace a part that is missing, either internal or external.

First, the main AM technologies for metals are explained: binder jetting (BJ), selective laser melting
(SLM), electron beam melting (EBM), direct energy deposition (DED), and fused filament fabrication
(FFF). Next, the main properties of the metals that are used to manufacture prostheses and implants are
summarized. Then, the recent advances regarding applications of AM metallic implants are presented.
Finally, the main conclusions of the paper are summarized.
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Figure 2. The medical applications of 3D printing of metals include the following: (a) cranial
prostheses [13]; (b) dental implants [14]; (c) spinal cord implants [15]; (d) surgical guides [16]; (e) hip
prostheses [17]; (f) interbody fusion cages. (a) Reprinted from Journal of Cranio-Maxillofacial Surgery,
42(8), A.L. Jardini, M.A. Larosa, R. M. Filho, C. A. de Carvalho Zavaglia, L. F. Bernardes, C. Salles
Lambert, D. Reis Calderoni, P. Kharmandayan, Cranial reconstruction: 3D biomodel and custom-built
implant created using additive manufacturing, 1877–1884, Copyright (2014), with permission from
Elsevier. (b) Reprinted from The Journal of Prosthetic Dentistry, 112(5), J. Chen, Zh. Zhang, X. Chen,
Ch. Zhang, G. Zhang, Zh. Xu, Design and manufacture of customized dental implants by using reverse
engineering and selective laser melting technology, 1088–1095, Copyright (2014), with permission from
Elsevier. (c) Reprinted from World Neurosurgery, 105, W. J. Choy, R. J. Mobbs, B. Wilcox, S. Phan, K.
Phan, Ch. E. Sutterlin, Reconstruction of Thoracic Spine Using a Personalized 3D-Printed Vertebral
Body in Adolescent with T9 Primary Bone Tumor, 1032.e13–1032.e17, Copyright (2017), with permission
from Elsevier. (d) Reprinted from Journal of Neuroscience Methods, 286, X. Chen, J. K. Possel, C.
Wacongne, A.F. van Ham, P. Ch. Klink, P.R. Roelfsema, 3D printing and modelling of customized
implants and surgical guides for non-human primates, 38–55, Copyright (2017), with permission
from Elsevier. (e) Reprinted from Journal of Orthopaedic Research, 15(8), S. Arabnejad, B. Johnston,
M. Tanzer and D. Pasini. Fully porous 3D printed titanium femoral stem to reduce stress-shielding
following total hip arthroplasty, 10, Copyright (2016), with permission from John Wiley and Sons.
(f) Reprinted from Medical Science Monitor, 23, W. Luo, L. Huang, B. H. Liu, W. Qu, X. Zhao, Ch. Wang,
Ch. Li, T. Yu, Q. Han, J. Wang, and Y. Qin, Customized Knee Prosthesis in Treatment of Giant Cell
Tumors of the Proximal Tibia: Application of 3-Dimensional Printing Technology in Surgical Design.,
1691–1700, Copyright (2017), with permission from ISL Publisher.

2. AM Technology Processes for Metals

According to the ASTM F2792-12a [18] standard, from ASTM International, West Conshohocken,
PA, US, additive manufacturing (AM) technologies can be classified into seven different groups: binder
jetting, directed energy deposition, material extrusion, material jetting, powder bed fusion, sheet
lamination, and vat photopolymerization. Among the procedures that allow metals to be processed,
the following can be highlighted: binder jetting, powder bed fusion—which includes selective laser
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melting (SLM) and electron beam melting (EBM)—direct energy deposition (DED), and material
extrusion by fused filament fabrication (FFF) with metal filled polymers.

2.1. Binder Jetting (BJ)

Binder jetting (BJ) is an AM technology process in which a liquid binding agent is selectively
deposited onto the layer of materials (in the form of powder) in order to bind the particles. First, a layer
of powder material is spread uniformly across the platform. Then, the binder droplets are dispensed
onto the layer by using an inkjet printing head that is moved along the X- and Y-axis to selectively
distribute the binder through a nozzle. Then, the binder bonds the powder particles and the build
platform lowers in Z direction for a small distance, in order to repeat the process again [19]. The binding
agent for metals is usually a polymeric adhesive. Finally, once the part is 3D-printed (known as green
part), it is separated from the 3D printing machine, and excess powder is removed with pressurized
air. The parts are in “green state”, with low mechanical properties and with high porosity. Improving
the final density of the parts requires a finishing treatment such as sintering or infiltration. In the
sintering process, the parts are placed into a high temperature furnace, eliminating the binding agent
and consolidating the metallic internal structure by a partial fusion process of the metallic powder.
However, sintering causes material shrinkage. Infiltration consists of heating the part in a furnace at a
lower temperature. Then, an alloy such as bronze infiltrates the voids by capillary action [20]. As a
general trend, infiltration leads to higher density than sintering [21]. Hot isostatic pressing can provide
pressure to the sintering operation, thus increasing the final density of the parts [22].

An example of a machine using this technology is the Studio System of Desktop Metal,
Burlingtion, MA, US. It has the following characteristics: speed up to 12,000 cm3/h, build volume of
490 × 380 × 260 mm3, and a resolution of ≤50 µm voxels. Additionally, it has a bi-directional printing
system [23].

The main advantages and disadvantages of metallic binder jetting can be seen in Table 1.

Table 1. Advantages and disadvantages of binder jetting [24–26].

Advantages Disadvantages

No need to design nor use supports Limited success in producing metallic parts
Unused powder can be reused Worse mechanical properties than powder bed fusion processes

Wide range of materials Low density
Fast process

Large build size Requirement of post processing (sintering/infiltration)

Although this technique is mainly used for ceramic materials, for example to obtain sand molds
and cores in the sand casting process [27], it is also employed for metal matrices [28]. For example,
iron parts with enhanced strength are obtained by means of bronze infiltration [29]. However, the
high density of metals makes them less stable than other materials, and the fine particles can be prone
to oxidation [26]. Different materials such as titanium [30], stainless steel [20], CoCr alloys [31], or
Inconel [21] have been manufactured with binder jetting. In addition, since this technology does not
require the use of an energy beam for processing metals, it is a good choice for reflective and thermally
conductive metals, which can be challenging to be processed by powder bed fusion technologies [32].

2.2. Powder Bed Fusion by Selective Laser Melting (SLM)

Powder bed fusion by selective laser melting (SLM) using metallic powder is an AM process that
is similar to selective laser sintering (SLS). Unlike SLS, in which the particles are only sintered, the SLM
technique uses a high power-density laser in order to melt and fuse the metallic powders together.
Other common names for this powder bed fusion technology for metals are DMLS (direct metal laser
sintering) and DMP (direct metal printing).
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The process starts by the spreading of a thin layer of the metal powder. Then, a high power-density
laser is used in order to melt and fuse the metallic powders together. After this, the build platform is
lowered in the Z direction and the process is repeated again until the 3D printed required part is built.
SLM takes place in a chamber with inert gas atmosphere, using, for instance, argon or nitrogen.

Two examples of machines using this technology are the SLM 125 and SLM 280 2.0 of SLM
Solutions Group AG, Lübeck, Germany [33]. On the one hand, SLM 125 has a build volume of
125 × 125 × 125 mm3 and a printing speed of 25 cm3/h. On the other hand, SLM 280 2.0 has a build
volume of 280 × 280 × 365 mm3 and a printing speed of 113 cm3/h. These latter values depend on the
materials and part geometry.

The main advantages and disadvantages of SLM can be seen in Table 2.

Table 2. Advantages and disadvantages of SLM [34–40].

Advantages Disadvantages

Medium productivity High price
Very complex shapes (thin walls, hidden holes,

porous structures) Corrosion sensitive

Excellent mechanical properties of the 3D object Lower scan speed than EBM
Good repeatability Parts have stresses that require a post heat treatment

Medium to high surface quality It requires build structures because of the weight of
the metallic parts and distortion at high temperature

Although ideal materials are pure metals, different alloys can also be used in the SLM process,
such as stainless steel, CoCr alloys, titanium alloys, and aluminum [41].

2.3. Powder Bed Fusion by Electron Beam Melting (EBM)

Powder bed fusion by electron beam melting (EBM) is a type of 3D printing process for metals in
which the object material, normally in the form of powder, is manufactured by melting layer-by-layer
with an electron beam at high temperature in a high vacuum atmosphere.

Firstly, a layer of metal powder is distributed onto the build platform, and melted by the electron
beam. Then, the build platform is lowered, and another layer of metal powder is subsequently coated
on top.

One example of a machine of this technology is the Arcam EBM Q20plus, from GE Additive,
Boston, MA, USA [42]. It has an electron beam power of 3 kW and a build volume of 350 mm in
diameter and 380 in heigtt. Additionally, EBM takes place in a vacuum and at high temperatures.

The main advantages and disadvantages of EBM can be seen in Table 3.

Table 3. Advantages and disadvantages of EBM [41,43].

Advantages Disadvantages

Possibility of working at elevated temperatures High fatigue
Better protection against contamination Danger for electrostatic charge of the powder

Low level of residual stresses
Absence of shrinkage, no thermal post-processing

Freedom of design, because of fewer supports
Allows stacking parts and obtaining meshes

Only conductive alloys can be obtained
Rough finish that requires polishing (depending on

process conditions)

Titanium alloys, CoCr alloys, stainless steel and Inconel are frequently employed in EBM
processes [41].

2.4. Direct Energy Deposition (DED)

Direct energy deposition (DED) is an additive manufacturing process in which an energy source
such as an electron, laser beam or electric arc, is aimed at the material (in the form of powder or wire),
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in order to fuse the materials by melting while they are being deposited. Due to the use of four-or
five-axis machines, the material can be deposited from any angle onto the existing surfaces of the object
and then melted. The process requires a chamber with inert gas to control the material properties and
to avoid oxidation of the material.

Two examples of machines using this technology are the INTEGREX i-400 AM and the DMD
503D/505D, from Yamazaki Mazak Corporation, Oguchi, Japan. On the one hand, INTEGREX i-400
AM is a five-axis multi-tasking machine and it is used for 3D printing of materials which are difficult
to be machined [44]. On the other hand, DMD 503D/505D has a build volume of 1590 × 1400 × 1470
mm3 and a position accuracy of 0.03 mm [45].

The advantages and disadvantages of DED can be seen in Table 4.

Table 4. Advantages and disadvantages of DED [46–49].

Advantages Disadvantages

Low waste of material Low build resolution
No supports are needed Poor surface finish

Rapid material deposition
Dense parts with high mechanical strength

Allows hybrid machines

Support structures can not be used, thus overhangs
can not be obtained

Machines are expensive

A wide range of metals can be used, including titanium alloys, stainless steel, aluminum alloys,
tantalum, tungsten, niobium, Inconel, nickel copper, etc. [47].

2.5. Material Extrusion by Fused Deposition Modelling (FDM) or Fused Filament Fabrication (FFF)

In the FFF or FDM technique, a filament is melted, extruded through a nozzle and subsequently
deposited on a printing bed layer-by-layer. Once a layer it deposited, the build platform is lowered (in
low-cost machines, the build platform does not lower after each layer is deposited). Finally, when
the piece is completed, it is placed into a sintering furnace to remove the plastic and sinter the metal
particle together. Both debinding and sintering processes are required after extrusion, which cause
material shrinkage.

One example of a machine of this technology is the Metal X of Markforged, Watertown, MA, USA.
It has a build volume of 300 × 220 × 180 mm3 and a Z resolution of between 50 and 125 µm [50].

The main advantages and disadvantages of FFF can be seen in Table 5.

Table 5. Advantages and disadvantages of FFF with high metallic content [51–53].

Advantages Disadvantages

Simple technology Low accuracy
Wide range of materials Shear stress on nozzle tip wall

Possibility to use low cost machines Bad resolution
Reliable Poor mechanical properties, although enhanced with respect to polymers

Thermal postprocess (associated with shrinkage)

Although it is associated with plastic materials such as polylactic acid (PLA) or acrylonitrile
butadiene styrene (ABS), the filament can be filled with a high percentage of metallic particles in order
to print metallic parts. Some of the metals used are copper [54], stainless steel [55], and titanium [56].

2.6. Comparison of the AM Technology Process for Metals

Before any object is 3D printed several factors must be considered. In other words, depending on
the objective of the product, the material used, etc., it might be better to use one technology or another.
Therefore, it is important to compare different aspects of the AM technologies (Table 6).
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Table 6. Comparison of the AM technology process for metals.

Characteristic BJ SLM EBM DED FFF References

Parts complexity Average Complex Average Simple Simple [37,57–59]
Resolution High High Average Low Low [59]

Productivity High High Average Low Low [37,59,60]
Surface finish High Average Average Poor Poor [43,61,62]
Mechanical
properties Average High Average Average Poor [40,62–68]

Printing speed Fast Low Average Average Average [40]
Porosity High Minimal Average High Minimal [37,62,65,69,70]
Accuracy Low High High High Low [37,40,71,72]

Corrosion resistance Low High High Average Average [26,37,73–75]

Regarding the manufacturing costs, the following values are the printing costs per unit [76]:
(1) $ 2.50–4 for laser powder bed, (2) $ 1.33–3 for e-beam powder bead, (3) $ 0.33–1.5 for powder DED,
(4) $ 0.25–0.6 for wire DED, and (5) $ 0.08–1.5 for binder jetting. Thus, among the studied processes,
the most expensive one is laser powder bed (SLM) followed by e-beam powder bed (EBM).

3. Metals Used in the Medical Sector

Different metals and alloys are currently used in the medical sector. They can be divided into two
categories: ferrous and non-ferrous (Figure 3).
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Figure 3. Metals classification in the medical sector.

Ideally, an alloy used for implants should be biocompatible and have good mechanical properties,
i.e., high tensile, compressive and shear strength, high fatigue strength to prevent failure under cyclic
loading, and low elastic modulus comparable to that of bone. They should also have high corrosion
resistance, high wear resistance, and a low price. Another important factor to be considered is the
possibility to obtain porous structures, because they influence both the mechanical strength and the
biological properties of the tissues. On the other hand, the osseointegration of bones depends on both
biomechanical interlocking and biological interactions, which are related to the surface roughness of
the implants. These properties are in more depth in Section 4.10.

Among the ferrous alloys, the most frequently employed one to manufacture implants is stainless
steel due to its high corrosion resistance. However, it has low fatigue strength and undergoes
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deformation. Consequently, it is mainly used for non-permanent implants. Regarding the non-ferrous
materials, some of them are bio tolerant like CoCr alloys, gold, niobium and tantalum, while pure
titanium and titanium alloys are bio inert [77]. Ion release is one of the main disadvantages of CoCr
alloys, titanium, and titanium alloys, although they provide high corrosion resistance. In addition,
differences in mechanical properties between the bone and the implant can lead to stress shielding
problems, with either a loosening of implants or the growth of soft fibrous tissue [78].

Figure 4 provides a comparison of metals by focusing only on the material price. This does not
include the manufacturing costs, and prices are related to the market price. According to their price,
metals can be divided into three categories. The green area corresponds to the cheap ones, the yellow
area to the medium ones, and the red area to the expensive ones, in this case tantalum, with a price
above 110 €/kg.Metals 2020, 9, x FOR PEER REVIEW 9 of 31 
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The manufacturing costs can be divided into two groups: fixed and recurring [62]. On the one
hand, the fixed costs correspond to the manufacturing tools, dies, machines, etc. These costs are
amortized over time and, therefore, the more the 3D printing machines are used, the lower the costs
per printed piece are. On the other hand, the recurring costs include the material price and labor.
Regarding the materials, it is important that they are easily 3D printed and have good physical and
mechanical properties, but without excessive cost.

The following paragraphs present the main characteristics of the metals that are employed to
manufacture metallic implants by means of AM processes.

3.1. Ferrous

A ferrous metal contains iron in its composition, as well as carbon. They can be divided into two
categories, namely (a) alloys such as stainless steel and (b) iron.

3.1.1. Stainless Steel

It is an iron alloy containing at least 10.5% of chromium and 1.2% of carbon. Chromium offers the
stainless steel the benefit of being resistant to corrosion thanks to the chromium oxide layer, unlike
the regular steel. Additionally, stainless steel can have other materials but in lower proportions such
as molybdenum or nickel [80]. Some examples of stainless steel are SAE 304, SAE 316 and SAE
316L Boron-titanium modified stainless steel, defined by the Society of Automotive Engineers (SAE).
SAE 316 L has been used in recent years for biomedical applications. Sintering of the material in a
nitrogen atmosphere helps to retain the nickel ions in the stainless steel [81], which would otherwise
be released from implants due to local corrosion [82]. Additionally, it is necessary to carry out cell
culture studies, such as cytotoxicity assays or cells imaging [83], to verify its biocompatibility. As
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for SLM manufactured stainless steel, biocompatibility increases when the material is coated with
hydroxyapatite [84].

The main advantages and disadvantages of stainless steel can be seen in Table 7.

Table 7. Advantages and disadvantages of stainless steel [80,85].

Advantages Disadvantages

High corrosion resistance Sometimes difficult to handle
Heat resistance Release of chromium and nickel
Biocompatible Prone to deformation

Excellent mechanical properties Low fatigue strength when subjected to oxidation
Easy fabrication

Non-porous

3.1.2. Iron

It is only the most common element on Earth by mass, and also in the human body. It can be
classified into three categories depending on the carbon content: wrought iron (less than 0.08% C),
carbon steel (between 0.08 and 1.76% C) or cast iron (more than 1.76% C). Additionally, cast iron can be
divided into smaller groups such as white, grey, malleable and nodular graphite.

The advantages and disadvantages of wrought iron can be seen in Table 8.

Table 8. Advantages and disadvantages of wrought iron [86].

Advantages Disadvantages

Tough Cannot be hardened
Excellent mechanical properties Sometimes difficult to handle

Corrosion resistance High cost
Excellent weldability

Weldability is an important factor to be taken into consideration when a part needs to be joined to
another of either a similar or dissimilar material [87], e.g., in implants. If cracks are easily avoided, the
materials are ‘weldable’.

Fe-Mn alloy has been used to produce bone scaffolds by SLM [88]. Mn is added to control the
high degradation of Fe. Moreover, in another study, a Fe-HA (iron-hydroxyapatite) composite was
manufactured using different particles sizes [89]. Not only were better corrosion rates obtained than
for pure iron, but also with the addition of HA closer mechanical properties to those of bone are also
obtained. For example, pure iron tensile strength is 215 MPa, for Fe + 2.5 wt% HA (1–10 µm) it is
117 MPa and the strength of the human femur bone is 135 MPa (longitudinal tension) [90].

The advantages and disadvantages of carbon steel can be seen in Table 9.

Table 9. Advantages and disadvantages of carbon steel [86].

Advantages Disadvantages

Excellent mechanical properties Ductility decreases with carbon content
Good weldability Susceptible to rust and corrosion
Good formability
Hard and tough

Low stress concentration
Resistant to oxidation

The main advantages and disadvantages of cast iron can be seen in Table 10.
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Table 10. Advantages and disadvantages of cast iron [86].

Advantages Disadvantages

Excellent mechanical properties High brittleness
Biocompatible Low machinability

Cytocompatibility
Good castability

Low stress concentration
Resistant to oxidation

Machinability is measured by focusing in the machinability index. The value of 100 is the average,
with carbon steel 1212 being the average. Therefore, a value lower than 100 means that the machinability
is more difficult and, therefore, the production time is lower; while with a value higher than 100 it is
easier. In terms of cast iron, it ranges from 36 to 78 [91].

3.2. Non-Ferrous

Non-ferrous metals do not contain iron in appreciable amounts and are generally more costly
than ferrous metals due to their desirable properties. They can be divided into different categories:
(a) alloys, (b) light metals, (c) rare metals, and (d) white.

3.2.1. CoCr Alloys

Cobalt-chromium alloys are alloys composed mainly of cobalt and chromium. They are used
in aerospace engineering amongst other applications. However, taking into account their excellent
properties, they have been used in dentistry for decades [85]. Most employed CoCr alloys in medical
applications are Co-Cr-Mo, Co-Ni-Cr-Mo, and Co-Cr-W-Ni [92]. Using this metal alloy has a major
drawback, which is the ion release, which could lead to adverse effects such as toxicity, metallic taste,
mucosities, etc.

The advantages and disadvantages of the CoCr alloys can be seen in Table 11.

Table 11. Advantages and disadvantages of the CoCr alloys [68,92].

Advantages Disadvantages

Excellent mechanical properties Wear and corrosion can lead to the release of metal ions
Excellent corrosion resistance High cost

Biocompatibility Limitations on component complexity

3.2.2. Nickel Alloys

Nickel (Ni) alloys are metals made from a combination of nickel as the primary element and
another material such as Ni-Al alloy, Ni-Cr alloy or Ni-Ti alloy. Although nickel is very toxic, a titanium
oxide layer is formed that prevents from nickel oxidation [92]. An example of Ni-Ti alloy is Nitinol,
which contains approximately 50% of Ni and 50% of Ti. Nitinol is a shape memory alloy, which retains
its original shape after severe deformations. It is used for hard tissue implants and in dentistry. In
recent years, the behavior of SLM printed Ni-Ti alloys has been addressed [93,94].

The advantages and disadvantages of the nickel alloys can be seen in Table 12. The low thermal
conductivity of nickel complicates its manufacture; for example, in machining or high temperature
AM processes, because heat cannot be easily removed from the working area, thus increasing
working temperatures.
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Table 12. Advantages and disadvantages of the nickel alloys [92,95].

Advantages Disadvantages

Heat resistance Low thermal conductivity
Corrosion resistance High price

Low-expansion Difficult to machine
Shape memory

Magnetic permeability

3.2.3. Titanium

Titanium (Ti) is the ninth-most abundant chemical element in the Earth’s crust and it can be
combined with other elements in order to form the known titanium alloys. It is widely used in
several applications such as dental implants, but during the last few years, it has assumed greater
importance in the biomedical applications such as hip prostheses, especially due to its biocompatibility
and high fracture resistance. These two parameters are important in prostheses for two reasons:
(1) biocompatibility so that the host tissue does not reject the implant: (2) high fracture resistance so
that the implant does not fracture. Commercial pure titanium (CP-Ti) has an excellent biocompatibility
because of a stable oxide layer that forms spontaneously on its surface [96].

Regarding the use of SLM, Taniguchi et al. [97] investigated the bone ingrowth of different pore
sizes of titanium implants manufactured by SLM. Finding the best titanium implant for osseointegration
is essential, so that the implant integrates as quickly as possible with the bone.

The advantages and disadvantages of the titanium can be seen in Table 13.

Table 13. Advantages and disadvantages of the titanium [98,99].

Advantages Disadvantages

Strength-to-density ratio Difficult to process
Corrosion resistance Unstable creep

Light-weight Low elastic modulus
Strength

Biocompatible Wear debris causes biological reactions

3.2.4. Titanium Alloys

Titanium alloys contain titanium and other chemical elements. Different alloys are used in medical
applications, such as α + β alloys, Ti-Al-Nb and β-Ti alloy [92]. However, the most typical example is
Ti-6Al-4V which is an α-β titanium alloy containing a 6% aluminum and 4% vanadium. A specific
alloy Ti6Al4V ELI (extra-low interstitial) alloy provides higher ductility and fracture toughness than
the conventional alloy [100].

The three most developed techniques for additively manufacturing titanium alloy structures are
direct energy deposition (DED), selective laser melting (SLM) and electron beam melting (EBM) [65,101].
For example, porous parts implants can be manufactured using SLM technology and they can achieve
a mimicking of the human bone at a 60% of porosity [102].

The advantages and disadvantages of the titanium alloys can be seen in Table 14.

Table 14. Advantages and disadvantages of the titanium alloys [65,103].

Advantages Disadvantages

Excellent biocompatibility Stress shielding
Corrosion resistance High price
High ratio strength Low elastic modulus

High temperature strength Poor tribological properties
Good creep resistance
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Other titanium alloys, such as Ti-6Al-7Nb [104,105], have been used for printing implants as
well as others such as Ti-24Nb-4Zr-8Sn [106] or Ti-33Nb-4Sn [107]. A typical niobium alloy used for
prostheses is Ti-42Nb.

3.2.5. Magnesium

Magnesium (Mg) is a light material with a relatively high mechanical strength that can replace
aluminum in some applications. However, its accelerated corrosion rate in physiological environments
reduces its potential use in implants [108]. Nevertheless, magnesium-based biodegradable materials
are promising candidates, making a second surgery for implant removal unnecessary [109,110].
Magnesium powder is flammable and should be handled with care [111].

The main advantages and disadvantages of magnesium can be seen in Table 15.

Table 15. Advantages and disadvantages of magnesium [85,108,111,112].

Advantages Disadvantages

Low density Flammable
Good machinability Poor corrosion resistance

Light-weight
Excellent in vivo compatibility High cost

Fully bioresorbable Low elastic modulus
Moderate strength

Magnesium scaffolds have been prepared with the purpose of bone regeneration [113].

3.2.6. Tantalum

Tantalum (Ta) is a very chemically resistant metal and, consequently, it is widely used in biomedical
applications. Additionally, it is inert to practically all the organic and inorganic compounds. Tantalum
has been printed with the SLM technique [114].

The main advantages and disadvantages of the tantalum alloys can be seen in Table 16.

Table 16. Advantages and disadvantages of the tantalum [115,116].

Advantages Disadvantages

Excellent biocompatibility High manufacturing costs
Good chemical stability High melting point

Excellent osseointegration
Good corrosion resistance

With designed porosity, similar elastic modulus to
that of bone

3.2.7. Zinc

Zinc (Zn) is one of the most indispensable trace elements in the human body and it is often
employed in industry for the surface treatment of steel, for example in galvanization or electroplating
processes. In medical applications, it has been used in cardiovascular stents and dental implants,
amongst others.

The strength of zinc can be improved by alloying with elements such as Mg, Ca, Sr, Li, and
Cu [117]. On the other hand, inorganic Zn compounds such as Zn-hydroxyapatite [118] or ZnO [119]
can be used to manufacture implants.

The main advantages and disadvantages of zinc can be seen in Table 17.
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Table 17. Advantages and disadvantages of zinc [117].

Advantages Disadvantages

Accuracy Low toughness
High impact strength Brittle

Durable
Cost-effective

Fully bioresorbable
Good biocompatibility

3.2.8. Other Metals and Alloys

There are other metals that are not as commonly used in the medical sector, except in a few
biomedical applications. For instance, copper (Cu) is the third most important trace element in the
human body. Some commercially available copper alloys are Cu-Al-Ni and Cu-Al-Mn [92]. However,
it has been proved that it is both difficult and expensive to print copper [120].

Pure Tungsten (W) powder has also been used in SLM processes [121], as well as pure Niobium
(Nb) [122]. Neodymium (Nd) has been added to the Mg-5Zn-0.35Zr-0.13Y, improving the mechanical
strength and corrosion resistance of the alloy [108].

Although aluminum is not a suitable material for implants because of its easy oxidation, it is
found in many titanium alloys like Ti-6Al-4V [85].

Gold alloys were used in the past for dental implants [92]. However, they are not commonly used
nowadays because of their high price.

3.2.9. Comparison of the Metals

A comparison of the different metals was made, regarding their most important properties
(Table 18).
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Table 18. Comparison of the metals and alloys used for implants.

Characteristics SS Iron CoCr Alloys Ni
Alloys

Ti
Alloys Mg Ta Zn References

Melting Point (◦C) 1325–1500 1150–1600 ≈1600 ≈1450 1670 650 2980 420 [123]
Yield Strength (MPa) ≈250 130 480–580 ≈600 ≈750 ≈150 ≈230 50–120 [124–128]

Tensile Strength (MPa) 450 350 ≈800 ≈1000 ≈900 ≈250 ≈260 100–200 [124,126,128,129]
Elastic Modulus (GPa) 200 200 ≥150 ≈150 120 ≈40 ≈185 ≈100 [124]
Vickers hardness (HV) 275 30–80 380–430 300 350 100 ≈1000 30 [129–132]
Corrosion Resistance High Good Excellent Good Average Poor Good Good [133–135]

Biocompatibility Excellent Good Excellent Average Excellent Excellent Excellent Good [134–136]
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4. Applications

Metals have been widely used in different applications in recent last years. Not only can they
be used in the automotive or aeronautical sectors, but also in the medical field. Within medicine,
they can be employed for several purposes: scaffolds, implants, surgical guides, fixation guides,
etc. The main applications of 3D printed metals in the manufacture of implants are presented in the
following subsections.

Nowadays, many implants such as the hip or knee prostheses are manufactured in metallic
materials. This is due to their high mechanical and fatigue strength and the easiness to manufacture
them with conventional machining processes. Some authors have attempted to print prostheses by
means of AM technologies. Unlike other manufacturing processes such as casting, AM technologies
allow customized prostheses to be manufactured in serial batches without incurring excessive costs.

Several kinds of implants are available: cranial, maxillofacial, spinal, hip, knee, or skeletal
reconstruction implants [12] among others. The ISO 5832 standard summarizes the characteristics, as
well as the test methods, of the material to be used in metallic implants. For example, ISO 5832-1 [137]
corresponds to wrought stainless steel, ISO 5832-3 to wrought titanium 6-aluminium 4-vanadium
alloy [138], and ISO 5832-4 [139] corresponds to cobalt-chromium-molybdenum alloys.

The following subsections present the recent advances in metallic implants manufactured by AM
methods, for cranial implants, maxillofacial implants, spinal implants, upper & lower limb implants,
and dental implants.

4.1. Cranial Implants

Moiduddin et al. reported a Ti-6Al-4V mesh cranial insert, manufactured with the EBM technique,
with a porosity level of 49.81% and pore size diameter of 700 µm [140] (Figure 5). Mazzoli et al.
obtained customized titanium cranial implants with the EBM technology [141].
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Figure 5. Cranial implant 3Dprinted in titanium with the EBM technique [140]. Reprinted from
Electronic Journal of Biotechnology, 29, K. Moiduddin, S. Darwish, A. Al-Ahmari, Sh. ElWatidy, A.
Mohammad, W. Ameen, Structural and mechanical characterization of custom design cranial implant
created using additive manufacturing, 22–31, Copyright (2017), with permission from Elsevier.

Jardini et al. [12] manufactured cranial implants with direct metal laser sintering (DMLS, same
technology as SLM)). The Ti-6Al-4V alloy was used (Figure 2a).

4.2. Maxillofacial Implants

Suska et al. [142] used EBM of Ti-6Al-4V alloy to manufacture a jaw prosthesis, which was
individually designed and implanted, with a good aesthetic outcome (Figure 6). They added
diamond-like porous structures to the upper and lower parts of the implant to favor the fixation
of the prosthesis by means of osseointegration. The strut size employed was 0.3 mm and the pore
size was 0.8 mm. Yan et al. [143] employed Ti-6Al-4V titanium alloy to manufacture a mandibular
prosthesis with a 3D mesh by means of EBM. The mesh porosity was 81.38% and the strut size, 0.7 mm.
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Moiduddin et al. obtained a titanium zygomatic implant with the EBM technique, using Ti-6Al-4V ELI
(extra low interstitial) powder [144]. The same author [145] compared different kinds of Ti-6Al-4V
ELI mandibular implants for goats: EBM plate with mesh, EBM titanium plate without mesh and a
commercial reconstruction plate. They found that the reconstructed plates with mesh showed a better
fit than the other ones. They obtained a very good fit with titanium alloy mandibular implants [146].
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Ciocca et al. [147] built DMLS titanium alloy meshes for the regeneration of atrophic maxillary
arches. They used a 0.6 mm thickness mesh. Jardini et al. [148] manufactured Ti-6Al-4V parts for
maxillofacial implants, using the DMLS technology. The same technology and material was used to
obtain customized parts for upper maxillary implants [149].

4.3. Spinal Implants

Yang et al. [150] used the EBM technique to obtain Ti-6Al-4V vertebral bodies of sheep.
Xu et al. [151] manufactured vertebral implants with the EBM technique and Ti-6Al-4V material,
and Li et al. [152] tested porous artificial vertebral bodies in vivo, manufactured with the same material
and technique. Choy et al. [14] printed titanium porous vertebral prostheses and performed in vivo
spinal surgery. Siu et al. [153] applied EBM to obtain Ti-6Al-4V interbody cages for the lumbar area, in
a case study with a deformity caused by osteoporotic fractures.

Hollander et al. [154] used direct laser forming (DLF) to obtain Ti-6Al-4V alloy vertebral bodies
(Figure 7). They manufactured meshes with nominal pore sizes of 500, 700, and 1000 µm, which were
reduced by 300 µm after the process. The prostheses’ surfaces allowed the growth of human osteoblasts.

McGilvray et al. [99] compared the performance of polyetheretherketone (PEEK), titanium-coated
PEEK and 3D printed porous titanium alloy with regard to the manufacture of interbody fusions of
the lumbar area of sheep. They reported higher cell ingrowth in titanium implants than in PEEK or
titanium-coated PEEK cages.
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4.4. Upper Limb Prostheses

Zou et al. [155] obtained customized macro-porous shoulder Ti-6Al-4V prostheses with the EBM
technique, implanted them and observed good short-term follow-up effects. In 2017, the same process
was used for the first time to manufacture a mold to cast a titanium first metacarpal hand implant [156].

4.5. Chest Implants

In 2013, Turna et al. reported the first 3D-printed chest implant [157]. It consisted of a plate for
sternum and ribs. Aranda et al. obtained a more advanced implant in 2015 [158]. Aragón and Méndez
manufactured a more flexible implant [159]. In 2017, a titanium chest implant was manufactured with
the EBM technique, and further fixed [160], showing the versatility of the 3D-printing processes to
obtain complex shapes. A clavicle was reconstructed in pure Ti by means of EBM [161].

4.6. Pelvic Implants

A pelvic specific implant was manufactured in Ti-6Al-4-V with EBM and subsequently
implanted [162].

Another pelvic patient-specific implant was manufactured with a laser powder bed fusion
technology [163].

4.7. Lower Limb Prostheses

Cronskar et al. [42] produced Ti6Al4V hip stems by means of EBM. They reported a reduction of
the fatigue limit using the rough surfaces obtained by 3D printing when compared to conventional
machining. Murr [164] reported a Ti-6Al-4 V porous acetabular cup, manufactured with the EBM
technique (Figure 8).

Weiβmann et al. [165] manufactured titanium alloy porous acetabular cups with the SLM technique.
They tested three types of cells: twisted, combined and combined open, and found that their mechanical
strength depends on the geometry of the unit cell employed, its dimensions and the volume and
porosity responsible for the press fit of the prosthesis. A custom-made component of a hip implant
endoprosthesis was obtained in titanium alloy with the same technique. The implant matched the
anatomical features of the patient, with porous structures to favor osseointegration, and with good
mechanical properties [166].

Xiu et al. [167] made Ti-6Al-4V femur condyle porous implants with the EBM technique, with
TiO2/CaP coatings. A pore size of 640 µm, strut diameter of 400 µm, and porosity of 73% were used.
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Croitoru et al. [168] printed porous Ti6Al4V femoral stems for a hip replacement using powder
bed fusion technology (laser sintering). They found that large fenestrations confer an elastic behavior to
the structure while also contributing to enhance osseointegation. Arabnejad et al. [16] manufactured a
titanium alloy stem taper-wedge implant with selective laser melting (SLM) (Figure 2e). They reported
high mechanical strength with reduced stress-shielding, while the implant respected bone in-growth.
Femoral implants have also been obtained with SLM in CoCrMo alloys [169].

Ruppert et al. [170] compared the performance of femoral implants manufactured by both the
EBM and the SLM methods. Osseointegration was evaluated by means of mechanical testing. Coarse
EBM implants showed higher removal torque than fine DMLS implants.

Murr et al. [171] made EBM porous structures for knee replacement, with Co-29Cr-6Mo alloy as
the femoral and Ti-6Al-4V as the tibial component of the knee prostheses. Liu et al. used the same
technique with titanium alloy as material to manufacture porous knee prostheses [172].

4.8. Dental Implants

Dental restorations have been obtained with the SLM technology [173]. Tolochko et al. used the
combination of SLS and SLM to obtain titanium dental implants [174]. CoCrMo alloys have also been
employed for the same purpose, with SLM processes [175–177].

Ortorp et al. [178] compared four different manufacturing techniques to obtain CrCo dental
prostheses: lost wax casting, lost wax with milled wax, milling, and direct laser metal sintering (DLMS).
The best fit was reported for the DLMS technique.

4.9. Implants in General

The binder jetting technology was used to manufacture stainless steel bone scaffolds [179]. Four
different lattices were studied, and it was observed that mechanical strength depends on the type of
lattice. Sintering time and temperature also influence mechanical strength. Porous titanium parts have
been characterized in order to use them as implants [180].

The DED technique has been employed, for example, to obtain functionally graded structure in
Ti-Mo alloys [181].

As an example of the extrusion processes (FFF or FDM), polylactic acid (PLA) and polyethene
terephthalate (PET) polymeric filaments mixed with stainless steel 316L and copper alloy Cu-10Sn
allowed for the printing of multi-material parts [182].



Metals 2020, 10, 686 19 of 30

4.10. Comparison of the AM Techniques and Materials Used for Metallic Implants

Table 19 shows a comparison among the different AM technologies used to manufacture implants.
The figures in the table denote the number of papers corresponding to each technique and material
that are presented in Section 4 of the present paper.

Table 19. Comparison of the metals and alloys used for implants.

Technique Ti Alloys/Ti CoCr alloys Stainless Steel References

Binder Jetting (BJ) 1 [179]
Selective Laser
Melting (SLM) 11 5 [12,16,147,148,154,163,165,166,168–170,174–178]

Electron Beam
Melting (EBM) 17 1 [11,42,140–145,150–153,160–162,170–172]

Direct Energy
Deposition (DED) 1 [181]

Fused Filament
Fabrication (FFF) 1 [182]

As can be observed in Table 19, the largest number of references in the present paper corresponds
to titanium alloys, firstly with the EBM technique and secondly with the SLM technique. They are
followed by far by other technologies like BJ, EBM and FFF. Both EBM and SLM are powder bed fusion
technologies. According to Table 6, both technologies have in common high dimensional accuracy and
high corrosion resistance of the parts, because of the use of inert atmospheres. SLM provides higher
resolution and part complexity than EBM. However, printing speed of EBM is higher than that of SLM,
and it is cheaper. In EBM, only conductive alloys are used. On the contrary, SLM can be used for
different alloys such as Inconel, stainless steel, etc.

In the following paragraphs, the impact of EBM and SLM techniques on biocompatibility, porosity,
mechanical performance, and biodegradability of the implants is addressed.

Nowadays, the concept of biocompatibility means not only that a metal should be non-toxic
but also that it should have a positive effect when interacting with living cells [183]. The three most
employed materials for implants, Ti alloys, CoCr alloys and stainless-steel show high biocompatibility
with the human body. However, high temperature AM processes such as EBM and SLM modify the
physical, chemical and mechanical properties of the alloys, which are related to biocompatibility. In
this line, Wang et al. found good haemocompatibility, no dermal irritation and no skin allergic reaction
of Ti-6Al-4V alloy with both EBM and SLM processes [184]. In another comparative study between
EBM and SLM processes, it was observed that SLM manufactured commercially pure titanium (CP-Ti)
scaffolds presented higher cell viability and cell adhesion than EBM manufactured Ti-6Al-4V (Ti64)
scaffolds [185]. The surface finish of the printed parts is an important factor influencing biocompatibility,
since it affects the cell attachment, proliferation and differentiation [38]. Low roughness values below
2.0 µm were reported to improve bone regeneration in titanium implants [186]. However, SLM and
EBM lead to higher roughness values of 5–20 µm and 20–50 µm respectively [187]. In order to reduce
roughness and improve cell adhesion along with cell proliferation, for example, the laser polishing
operation can be applied [177].

The porosity of implants is directly related to cell growth. For example, the porosity of the
cancellous bone ranges from 50% to 90% [77]. As for pore size, a certain variability is required, with
small pores to improve cell attachment and large pores that favor nutrient transport [78]. For example,
pore size values between 200 and 1000 µm are desirable in trabecular structures [117,188]. In addition,
pores should be interconnected, in order to favor permeability and nutrient transport [80]. Regarding
porosity, EBM combined with hot isostatic pressing achieved density values that were higher than 99%,
while SLM did not exceed 97% [189]. Heinl al. manufactured different Ti-6Al-4V porous structures
with interconnected porosity for bone implants, using selective electron beam melting (SEBM) [190].
Xue et al. used laser engineered direct shaping (LENS, a DED AM technology) to manufacture titanium
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porous implants for bone replacement [191]. Similar structures to those of the cancellous bone have
been printed in titanium with the SLM technique [192].

High mechanical strength is important to protect patients with implants from fractures [193].
Titanium and some of its alloys have good mechanical properties, including high strength, a quite
suitable elastic modulus, high fracture toughness and high fatigue strength [194]. However, additive
manufacturing processes affect the properties of the material. For example, the compression strength
of titanium aluminides obtained with the EBM technique, with preheating of the material and vacuum
surrounding, were similar to those of the wrought material [189]. The higher the preheating, the lower
the residual stresses are in EBM. Excellent wear properties were also reported in EBM processes in
the transverse direction [189]. SLM manufactured titanium alloys also presented good mechanical
properties [104]. On the other hand, metal implants should mimic the elastic modulus of bones.
However, usually titanium alloys have higher elastic modulus values (around 112 GPa) [195] than
those of the cortical bone, ranging from 7.7 to 21.8 GPa [196,197]. For this reason, porous structures can
be built that reduce the elastic modulus of solid materials [198].

Biodegradability is another important property of the metallic implants. Alloys can be divided
into two groups with regard to their biodegradability: materials with high mechanical properties but
lower biodegradability such as stainless steel, titanium and CrCo alloys, and metals or alloys with
higher biodegradability but lower mechanical strength such as zinc, magnesium and iron [117]. For
example, Ti and stainless steel structures do not degrade significantly with time, remaining in the
body as a foreign object [195]. This can lead to several diseases such as infections, physical irritation,
inflammatory reaction, etc. [199].

5. Conclusions

In recent years, additive manufacturing has been successfully incorporated into the manufacture
of metallic implants, thanks to the possibility to obtain customized parts with porous structures that
favor cell growth and osseointegration. The main conclusions are summarized next:

(1) The most-used metals in AM manufactured implants are titanium, titanium alloys, CoCr
alloys, and stainless steel, mainly because of their high mechanical properties and biocompatibility. In
addition, as a general trend, they maintain their properties when the parts are additively manufactured

(2) The most popular techniques to obtain AM metallic implants are EBM and SLM. Both
technologies belong to the powder bed fusion group, and both of them provide high dimensional
accuracy and high corrosion resistance. EBM uses higher printing speed than SLM, and it is cheaper. On
the contrary, SLM allows higher resolution, better surface finish and higher part complexity than EBM.

(3) Several examples are available in the literature of cranial, mandibular, spinal, and upper &
lower limb titanium alloy implants, among others, manufactured with EBM and/or SLM techniques.

(4) The use of BJ, DED, or FFF to manufacture metallic implants is still at an early stage, in which
metallic structures have been obtained and characterized, but with few in vivo tests. Further research
is required in order to use these technologies in implants.

The application of AM technologies to the manufacture of metallic implants is still under
development. Both the improvement of the printing technologies and the research investigating new
alloys will help to consolidate the use of AM technologies for this purpose.
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