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Abstract. We present the linear analysis of recent time filters used in numerical weather
prediction. We focus on the accuracy and the stability of the leapfrog scheme combined
with the Robert–Asselin–Williams filter, the higher-order Robert–Asselin type time filter,
the composite-tendency Robert–Asselin–Williams filter and a more discriminating filter.

1 Introduction

The leapfrog (LF) time-stepping scheme emerged, from the early years of numerical
weather prediction, as the method of choice and is still popular for a number of reasons.
Perhaps the most important attribute of the leapfrog scheme is that it preserves exactly
the amplitude of a pure oscillation. The dissipative characteristics of other time integra-
tion schemes are generally too strong, while the absence of computational damping of
leapfrog scheme is especially desirable for long-time integrations. Another feature of the
leapfrog method is efficiency, namely, it evaluates the right-hand side of the meteorological
tendency equations only once per time step, in contrast with most other schemes. The
leapfrog scheme applied to a generic differential equation

du

dt
= F (u)

is given by

un+1 = un−1 + 2∆tF (un),

where ∆t is the time step and un is the approximated solution at time tn = n∆t.
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The leapfrog method is a three-time-level scheme, and when applied to a simple set of
linear differential equations, it generates two modes of motion. One is the physical mode,
which contributes to the true solution, while the other one is the computational mode,
which is merely artificial and has no relation to the differential equations that are being
integrated. The computational mode of the leapfrog scheme is undamped in linear prob-
lems, meaning that it preserves the amplitude in each time step. In nonlinear problems,
however, the nonlinear terms introduce couplings between the physical and computational
modes which may amplify the computational mode. In short-time simulations of weather
and climate, the growth of the computational mode is generally hard to detect, but when
long-time integrations are considered, the computational mode dominates the solution.

One possible approach to control the leapfrog scheme’s computational mode is to pe-
riodically use a two-time-level scheme, e.g., a Matsuno step after every 11 leapfrog steps
[21]. The idea is to reset the amplitude to zero periodically, so it never becomes large
enough/problematic. Another technique is to use different explicit time-stepping schemes,
e.g., the second-order Adams-Bashforth method [18], the third-order Adam-Bashforth [8],
the leapfrog-trapezoidal method [14, 33] or the Magazenkov method [19].

The ubiquitous strategy in atmospheric models, for controlling the leapfrog scheme’s
computational mode, is the non-intrusive implementation of a time filter after each
leapfrog time step. Robert [25] designed such a filter, which Asselin [3] analyzed and
proved to effectively damp the computational mode of the leapfrog scheme. This time
filter is referred to as the Robert–Asselin (RA) filter. The RA-filtered leapfrog scheme is
defined by

vn+1 = un−1 + 2∆tF (vn),

un = vn +
ν

2

(
vn+1 − 2vn + un−1

)
,

where v and u denote the unfiltered (provisional) and filtered (definitive) variables, re-
spectively. The dimensionless parameter ν ∈ [0, 1] determines the strength of the filter.

The accuracy and stability properties of the RA filter were investigated in [4, 12,
6, 10, 26, 7, 24, 5, 28, 13]. Currently, the RA filter is used in operational numerical
weather prediction models, atmospheric general circulation models for climate simulation,
ocean general circulation models, and models of fluids in rotating annulus laboratory
experiments, etc. A comprehensive list of atmospheric models with RA filter can be found
in [28]. Unfortunately, the RA filter also damps the physical mode. As a result, the formal
second-order accuracy of the leapfrog scheme is reduced to first order, and can degrade the
accuracy of model simulations. Therefore, physical quantities (e.g., energy) conserved by
the time-continuous equations are not necessarily conserved by time-discretized equations
when the filter is used.

Because the RA-filtered leapfrog scheme is widely used in legacy codes for atmospheric
models, non-intrusive and simple-to-implement improvements of RA appear attractive,
in order to avoid the significant programming undertaking. Williams [28] proposed a
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modification of the RA filter, which combined with the leapfrog scheme is

wn+1 =un−1 + 2∆tF (vn),

un = vn +
να

2
(wn+1 − 2vn + un−1),

vn+1 =wn+1 − ν(1− α)

2
(wn+1 − 2vn + un−1),

where w, v, and u denote the unfiltered, once filtered, and twice filtered variables, re-
spectively. The parameter ν is as in the RA filter, and the new dimensionless parameter
α ∈ [0.5, 1]. Linear analysis shows that ν plays a role in controlling the computational
mode of the leapfrog scheme, while α is the remedy in restoring accuracy. The filter is now
referred to as the Robert–Asselin–Williams (RAW) filter. It reduces the negative impact
of the RA filter on the physical mode and increases the numerical accuracy to second
order, at the price of a slight instability. The filter has been implemented and studied in
[27, 1, 23, 32, 20, 31, 13], and its behavior in implicit-explicit (IMEX) integrations was
analyzed in [29].

Later, Williams [30] proposed two methods for further improving the RAW-filtered
leapfrog scheme. The first algorithm is a combination of the RAW filter with a composite-
tendency leapfrog (CTLF) scheme:

wn+1 =un−1 + 2∆t[γF (vn) + (1− γ)F (wn)],

un = vn +
να

2
(wn+1 − 2vn + un−1),

vn+1 =wn+1 − ν(1− α)

2
(wn+1 − 2vn + un−1),

where γ is a real number. A more discriminating filter takes the form (1,−4, 6,−4, 1)
instead of (1,−2, 1), and the scheme is

wn+1 =un−1 + 2∆t[γF (vn) + (1− γ)F (wn)],

un = vn + να(wn+1 − 4vn + 6un−1 − 4un−2 + un−3),

vn+1 =wn+1 − ν(1− α)(wn+1 − 4vn + 6un−1 − 4un−2 + un−3).

Both methods are computationally more demanding since they require two tendency cal-
culations per time step, which is the most expensive component of contemporary atmo-
sphere and ocean models. Nevertheless, the improvements to the amplitude accuracy are
considerable, especially, the latter. The increased accuracy may allow a longer time step
for the same error tolerance, tending to offset the increased expense. The RAW-filtered
leapfrog scheme is analyzed in [17], and its behavior in IMEX integrations is studied in
[2].
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Recently, Li and Trenchea [15] proposed a higher-order Robert–Asselin (hoRA) type
time filter.

vn+1 = un−1 + 2∆tF (vn),

un = vn +
β

2

(
vn+1 − 2vn + un−1

)
− β

2

(
vn − 2un−1 + un−2

)
,

where the dimensionless parameter β ∈ [0, 0.4]. Under the same computational cost as
RAW, the hoRA-filtered leapfrog scheme exhibits third-order accuracy. Compared with
the third-order Adams-Bashforth method, the hoRA-filtered leapfrog scheme is almost as
accurate, stable and efficient, yet easily implementable in legacy codes. A study of the
filter in IMEX integrations was conducted in [16].

In the sequel we present the linear analysis for the leapfrog scheme combined with the
aforementioned time filters, focusing on the accuracy and stability.

2 Linear analysis of the leapfrog scheme combined with time filters

We now derive the stability condition, amplitude, phase-speed, and the consistency
errors. These properties are illustrated by analyzing solutions to the pure oscillation
equation (see e.g., [8, 9])

du

dt
= iω u, (1)

where i is the imaginary unit, and ω a real constant. Define the amplification factor A
as the ratio of the approximate solution at two adjacent time steps, A = un+1/un. The
amplification factor yields information on two quantities of interest: the amplitude and
the relative phase change per time step. Specifically, A can be expressed in modulus-
argument form A = |A|eiθ, where

|A| =
√
Re(A)2 + Im(A)2, θ = tan−1(Im(A)/Re(A)).

For the true solution to the oscillation equation (1), the exact amplification factor Ae =
eiω∆t has unity magnitude and phase change ω∆t over a time interval ∆t. The amplitude
errors are defined as the difference between the magnitude of the approximate amplifi-
cation factor |A| and the correct value of unity. When |A| = 1, the scheme is neutral,
if |A| < 1, the scheme is damping (indicating stability), and if |A| > 1, it is amplifying
(instability). The relative phase change or the phase speed, on the other hand, is mea-
sured by the ratio of the phase change of the numerical scheme per time step divided
by the phase change of the true solution over the same time interval, and is denoted by
R = θ/ω∆t. The phase-speed errors are defined as the difference between the phase speed
R and the unity over a time interval ∆t. When R > 1, the method is accelerating, and if
R < 1, it is decelerating. Unlike the amplitude, the phase change does not influence the
stability of the numerical solution. Instead, the phase errors accumulate and can become
large over a long time period of integration.
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2.1 The hoRA-filtered leapfrog scheme

The hoRA-filtered leapfrog (LF-hoRA) scheme [15] applied to (1) is

vn+1 = un−1 + 2iω∆tvn, (2)

un = vn +
β

2

(
vn+1 − 2vn + un−1

)
− β

2

(
vn − 2un−1 + un−2

)
. (3)

The system of equations (2)-(3) is equivalent to the following linear multistep method:

un+1 − 2βun − (1− 2β)un−1 = iω∆t(2un − 3βun−1 + βun−2). (4)

2.1.1 Consistency errors, amplitude errors and phase-speed errors

Using Taylor expansion, the local truncation error of (4) is shown to be

τn(∆t) =
2− 5β

6
(iω∆t)2u′(tn) +

11β

12
(iω∆t)3u′(tn) +O[(iω∆t)4].

Thus, the LF-hoRA scheme is second order in general, and third order when β = 0.4.
Formula (4) yields the following equation for the amplification factor:

A3 − 2(β + iω∆t)A2 + (3βiω∆t− 1 + 2β)A− βiω∆t = 0. (5)

Equation (5) has three roots, one is the physical mode denoted Ap, and the other two are
computational modes. Since computational modes are well-controlled by the filter, we
focus on the amplitude and phase-speed errors for the physical mode. A series expansion
for |Ap| in powers of ω∆t yields the amplitude error as follows:

|Ap| − |Ae| = |Ap| − 1 =
β(2β − 3)

8(1− β)2
(ω∆t)4 +O[(ω∆t)6].

The amplitude error after taking a single time step scales as (∆t)4, hence it is of order
(∆t)3 over T/∆t time steps. The phase-speed error is

Rp − 1 =
arg(Ap)

ω∆t
− 1 =

2− 5β

12(1− β)
(ω∆t)2 +O[(ω∆t)4].

The phase speed of the physical mode is fourth-order accurate when β = 0.4 and second
order otherwise.

2.1.2 Stability analysis

To determine the maximum ω∆t for which all numerical amplification factors of the
LF-hoRA scheme are non-amplified, we use the root locus curve method (see e.g., [11]).
The characteristic equation of (4) is

ζ3 − 2βζ2 − (1− 2β)ζ − z(2ζ2 − 3βζ + β) = 0,
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where ζ denotes the points on the unit circle, i.e., ζ = eiθ for θ ∈ [0, 2π], and z ∈ C. The
curve z is called the root locus curve. In our case z = iω∆t lies on the imaginary axis,
and consequently θ satisfies

cos θ = 1 or cos θ = β − 1

2
, and hence z = 0 or z = ±i

√
3
4
+ β − β2

1 + 3
2
β − β2

,

which indicates the intersections of the root locus curve with the imaginary axis in the
complex plane. Thus, the stability of the LF-hoRA scheme is provided by

ω∆t ≤

√
3
4
+ β − β2

1 + 3
2
β − β2

, 0 < β ≤ 0.4.

2.2 The RAW-filtered composite-tendency leapfrog scheme

Notice that the RA-filtered leapfrog (LF-RA) scheme is recovered when α = 1 in the
RAW-filtered composite-tendency leapfrog (CTLF-RAW) scheme, while LF-RAW scheme
is a special case of CTLF-RAW when γ = 1. For this reason, it suffices to analyze CTLF-
RAW (refer to [30] for more details). The scheme applied to (1) is

wn+1 =un−1 + 2iω∆t(γvn + (1− γ)wn), (6)

un = vn +
να

2
(wn+1 − 2vn + un−1), (7)

vn+1 =wn+1 − ν(1− α)

2
(wn+1 − 2vn + un−1). (8)

The three dimensionless parameters in the scheme are ν, α, and γ, where ν corresponds to
the classical Robert–Asselin filter parameter, α partitions the RAW filter displacements
between the n’th and (n+ 1)’th time levels, and γ specifies the weighting coefficients for
the composite tendency. Although previous work [30] assumed 0 ≤ γ ≤ 1, here we allow
γ to vary outside this range.

The system of equations (6)-(8) is equivalent to the following linear multistep method:

un+1 − νun − (1− ν)un−1

= iω∆t
(
(2− νγ(1− α))un + ν(2γ + α− 2− 2αγ)un−1 + ν(1− α)(1− γ)un−2

)
. (9)

2.2.1 Consistency errors, amplitude errors and phase-speed errors

The local truncation error of (9) is

τn(∆t) =

(
1

2
− α

)
ν(iω∆t)u′(tn) +

1

6
(2− ν(7− 9α) + 6νγ(1− α)) (iω∆t)2u′(tn)

+
ν

24
(25− 28α− 24γ + 24αγ)(iω∆t)3u′(tn) +O(∆t4).
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The scheme is generally first-order accurate1 if ν �= 0, and second order if α = 0.5,
as noted by Williams [30]. Further, the method becomes third order if α = 0.5 and
γ = (5ν − 4)/(6ν). This third-order scheme would require γ < 0 if ν < 4/5. Finally, the
scheme exhibits fourth-order accuracy if α = 0.5, ν = −8, and γ = 11/12. This case is of
no practical interest because the negative value of ν forces the computational mode to be
amplified.

Remark 2.1 The LF-RA scheme is first-order accurate. The LF-RAW is firsr order in
general, and second order when α = 0.5.

The amplitude error of CTLF-RAW is given by

|Ap| − 1 =
ν(1− 2α)

2(2− ν)
(ω∆t)2 +O

[
(ω∆t)4

]
,

yielding first-order amplitude accuracy, independent of γ. Since LF-RA recovers when
α = 1, its amplitude is therefore first order. When α = 1/2, the quadratic term vanishes
and the amplitude error becomes

|Ap| − 1 =
ν(4γ − 3 + ν − νγ)

4(2− ν)2
(ω∆t)4 +O

[
(ω∆t)6

]
,

which implies the third-order amplitude accuracy. The fourth-order term now depends
on γ. Specifically, CTLF-RAW is amplifying when γ > (3 − ν)/(4 − ν), and is damping
if γ < (3− ν)/(4− ν). Recall that LF-RAW is recovered when γ = 1, hence it is unstable
when α = 1/2. When γ = (3− ν)/(4− ν), the amplitude error is fifth-order accurate:

|Ap| − 1 =
ν

4(4− ν)(2− ν)2
(ω∆t)6 +O

[
(ω∆t)8

]
.

However, the coefficient of the sixth-order term is always positive, implying a slight in-
stability of the scheme. The phase-speed error, when α = 1/2, is

Rp − 1 =
6νγ + 4− 5ν

12(2− ν)
(ω∆t)2 +O[(ω∆t)4].

The phase speed is fourth-order accurate if further γ = (5ν − 4)/(6ν).

2.2.2 Stability analysis

Using the similar technique as in Section 2.1.2, we derive the stability condition for the
CTLF-RAW scheme. First, the time step condition for LF-RA is

ω∆t ≤
√

2− ν

2 + ν
.

1If ν = 0, the scheme is generally second order, but then the filter is inactive and the computational
mode is uncontrolled. For this reason, ν �= 0 is not considered throughout the article.
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The LF-RAW is stable under the following condition:

ω∆t ≤ 1

α

√
(2− ν)(2α− 1)

2− ν + 2αν
, α ∈ [1/2, 1].

For the CTLF-RAW method, it is of more interest when α = 1/2 since the scheme is at
least second-order accurate. The stability condition in this case is given by

ω∆t ≤ 2

(1− γ)(4− ν)

√
(3− ν)− (4− ν)γ

1 + ν(1− γ)
, γ ≤ (3− ν)/(4− ν).

2.3 The composite-tendency leapfrog scheme with more discriminating filter

Applied to equation (1), the scheme [30] is

wn+1 =un−1 + 2iω∆t(γvn + (1− γ)wn), (10)

un = vn + να(wn+1 − 4vn + 6un−1 − 4un−2 + un−3), (11)

vn+1 =wn+1 − ν(1− α)(wn+1 − 4vn + 6un−1 − 4un−2 + un−3), (12)

which is equivalent to the following linear multistep method:

un+1 − ν(4 + 3α)un − (1− 7ν − να)un−1 − ν(4− 3α)un−2 + ν(1− α)un−3 (13)

= 2 (1− ν(1− α)γ)un − ν (8(1− α)(1− γ) + 12α)un−1

+ ν (12(1− α)(1− γ) + 8α)un−2 − ν (8(1− α)(1− γ) + 2α)un−3 + 2ν(1− α)(1− γ)un−4.

2.3.1 Consistency errors, amplitude errors and phase-speed errors

The local truncation error of (13) is

τn(∆t) =
1− ν(1 + 2α)

3
(iω∆t)2u′(tn) +

ν(3− 5α)

3
(iω∆t)3u′(tn)

+
181ν − 308αν − 120νγ + 120ανγ − 1

60
(iω∆t)4u′(tn) +O[(iω∆t)5].

Theoretically, the scheme could be third-order accurate if α = (1 − ν)/(2ν), and even
higher-order accurate for appropriate values of the parameters which set zero the coeffi-
cients of the higher-order terms. However, the root condition is not satisfied in this case.
To see this, set ω = 0 and write (13) in terms of the amplification factor A:

A4 − ν(4 + 3α)A3 − (1− 7ν − να)A2 − ν(4− 3α)A+ ν(1− α) = 0. (14)

It turns out that when α = (1−ν)/(2ν), equation (14) has the root A = 1 with multiplicity
two, violating the root condition (see e.g., [22]). Indeed, the numerical solution grows
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linearly in time, while is supposed to be constant. Thus, the scheme is second-order
accurate.

The amplitude error is

|Ap| − 1 = − ν(1− 2α)

2(1− ν − 2αν)
(ω∆t)4 +O[(ω∆t)6],

which, by setting α = 1/2, becomes

|Ap| − 1 =
ν(5− 8γ − 9ν + 14νγ)

8(1− 2ν)2
(ω∆t)6 +O[(ω∆t)8].

Further, the sixth-order term vanishes when γ = (5 − 9ν)/(2(4 − 7ν)) and gives the
seventh-order amplitude error:

|Ap| − 1 = − 5ν(4− 13ν + 11ν2)

32(1− 2ν)2(4− 7ν)
(ω∆t)8 +O[(ω∆t)10].

The phase-speed error, in this case, is second order:

Rp − 1 =
1

6
(ω∆t)2 +O[(ω∆t)4].

2.3.2 Stability

As shown in the consistency error analysis, the composite-tendency leapfrog scheme
with the more discriminating filter is second-order accurate regardless of the parameters.
Nevertheless, the amplitude exhibits the highest-order of accuracy when α = 1/2 and
γ = (5 − 9ν)/(2(4 − 7ν)). For this reason, we only consider the stability for the chosen
values of the parameters. Applying the root locus curve technique, the time step condition
for this scheme is

ω∆t ≤

√
1−

(
8− 45ν + 55ν2

12− 20ν

)2
8(4− 7ν)(2− 5ν + 5ν2)

(4 + 25ν − 55ν2)(16− 68ν + 105ν2 − 55ν3)
. (15)

3 Conclusions

The development of accurate and efficient time-stepping schemes is an important key
in improving the fidelity of the numerical simulations for weather and climate, and is still
an active area of research.

We surveyed the recent progress on time filters, a post-processing non-intrusive tech-
nique which improves accuracy and stability, and uses legacy codes in a black-box manner.
We focus on time filters used in conjunction with the leapfrog scheme, the most commonly
employed time-stepping scheme in the weather and climate community. Specifically, we
present the accuracy and stability analysis of RA, RAW, hoRA, and the more discrim-
inating filtered leapfrog/composite-tendency leapfrog schemes. The properties of these
methods are summarized in Table 1, an addendum to the comparison Table 2.2 in [9].
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Method Order Amplitude Phase speed Maximum ω∆t

LF-RA 1 1− ν
2(2−ν)

p2 1 + 1+ν
3(2−ν)

p2
√

2−ν
2+ν

LF-RAW 1 or 2 1− ν(2α−1)
2(2−ν)

p2 +O(p4) 1 +
(

(1−ν(1−α))(2−αν)
(2−ν)2

− 1
3

)
p2 1

α

√
(2−ν)(2α−1)
2−ν+2αν

LF-hoRA 2 or 3 1− β(3−2β)
8(1−β)2

p4 1 + 2−5β
12(1−β)

p2 +O(p4)

√
3
4
+β−β2

1+ 3
2
β−β2

CTLF-RAW 2 or 3 1 + ν(4γ−3+ν−νγ)
4(2−ν)2

p4 +O(p6) 1 + 6νγ+4−5ν
12(2−ν)

p2 +O(p4)
√

4((3−ν)−(4−ν)γ)
(1+ν(1−γ))[(1−γ)(4−ν)]2

CTLF-D 2 1− 5ν(4−13ν+11ν2)
32(1−2ν)2(4−7ν)

p8 1 + 1
6
p2 Formula (15)

Table 1: Comparison between the leapfrog scheme combined with time filters. The amplitude, phase
speed, and time step limitations are those associated with the application of each scheme to the oscil-
lation equation (1). For brevity, the more discriminating filtered composite-tendency leapfrog scheme is
abbreviated by CTLF-D. We denote p = ω∆t, and amplitude or phase speed that is with O(pk) indicates
that it is able to be of order up to pk.
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