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Abstract  
 
Radioisotopes of caesium (Cs) and strontium (Sr) have been distributed in the 
environment due to weapons testing, nuclear power production and 
accidents at nuclear facilities. Radiocaesium and radiostrontium are of major 
concern in the medium to long term following accidental releases as they 
have high energies, long half lives (137Cs≈30 years; 90Sr≈29 years) and their 
easy assimilation into biological systems due to their similarity to the 
biologically important elements potassium (K) and calcium (Ca), respectively. 
Radio-caesium and -strontium are transferred to humans primarily via plant 
root uptake, and therefore minimising this uptake has been the focus of a 
number of remediation strategies, such as ploughing and fertiliser application. 
Species or cultivar substitution, where a species/cultivar that has higher 
uptake is replaced by a species/cultivar that has lower uptake, has been 
proposed as an effective and socially acceptable remediation strategy for 
contaminated agricultural land, but not enough is known about its efficacy for 
it to be recommended internationally. 
 
The aim of this thesis is to evaluate the potential of species or cultivar 
substitution as a remediation strategy for contaminated agricultural areas. 
Chapter 2 consists of meta-analysis of the available data (115 experiments) on 
the inter-cultivar variation in Cs and Sr accumulation by 27 plant species. 
Chapter 3 includes experiments conducted in the laboratory (UK) and two 
experiments in the field (Ukraine) investigating inter-cultivar variation in 
radiocaesium and radiostrontium accumulation in Brassica oleracea, and 
whether consistently lower-accumulating cultivars could be identified. 
Chapter 4 details analysis of samples from grass breeding experiments in 
Aberystwyth and Edinburgh (UK) from four forage grass species; hybrid 
ryegrass (Lolium perenne L. x Lolium multiflorum Lam.), L. perenne, L. 
multiflorum and Festuca arundinacea Shreb., and investigates inter-species 
and inter-cultivar variation in uptake of stable Cs and Sr. Hybrid ryegrass 
cultivars that were lower-accumulating in Cs and/or Sr were also identified. 
Chapter 5 compares the stable Cs and Sr uptake in six L. perenne and two F. 
arundinacea cultivars grown in Aberystwyth and Narodychi (Ukraine). Chapter 
6 compares the performance in terms of yield and forage quality (elemental 
concentrations, digestibility and water soluble carbohydrate content) of six 
hybrid ryegrass cultivars and ten F. arundinacea cultivars identified as 
consistently lower-accumulating in Cs and/or Sr against the performance of 
two commercial hybrid ryegrass cultivars. 
 
The mean inter-cultivar variation in Cs and Sr was 1.8-fold and 2.0-fold, 
respectively when 27 plant species were studied. Thirty-five-fold variation in 
radiocaesium and 23-fold variation in radiostrontium was found between c. 
70 Brassica oleracea cultivars. In two field experiments in Ukraine, five 
cultivars had consistently lower radiocaesium concentration ratios and two 
cultivars consistently lower radiostrontium concentration ratios. One cultivar 
had lower radiocaesium and radiostrontium concentration ratios. Festuca 
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arundinacea cultivars had lower Cs and Sr concentration ratios than cultivars 
of hybrid ryegrass, L. perenne and L. multiflorum. Three out of 17 hybrid 
ryegrass cultivars had consistently lower Cs concentration ratios, two cultivars 
consistently lower Sr and one consistently lower Cs and Sr. Despite 
differences in soil properties and environmental conditions, F. arundinacea 
cultivars grown in Aberystwyth and Narodychi accumulated less stable and 
radioactive Cs and Sr than L. perenne cultivars. One L. perenne cultivar also 
accumulated less Cs and Sr at both sites. Festuca arundinacea cultivars 
accumulated less Cs and Sr than commercial hybrid ryegrass cultivars, but also 
had up to 59% lower yield and a reduction of up to 19% in K accumulation, up 
to 46% in Ca accumulation, up to 7% in dry matter digestibility and up to 17% 
in water soluble carbohydrate content. Selecting lower-accumulating cultivars 
was found to reduce Cs and Sr accumulation less, but with a smaller yield 
penalty and a smaller reduction in digestibility and water soluble 
carbohydrate content.  
 
It is concluded that species and cultivar substitution could be an effective 
remediation strategy in contaminated agricultural land provided implications 
for yield and quality are considered. 
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Chapter 1. General introduction  

1.1 Caesium and strontium  

Caesium (Cs) is a soft, gold-coloured alkali metal present in group I of the 

periodic table. There are 40 known isotopes of Cs with mass numbers from 

112-151 (Emsley, 2011). Only one of these 40 isotopes is a stable isotope 

(133Cs), which originates predominantly from the mineral pollucite 

(Cs4H4Al4Si9O27; Emsley, 2011), the remaining 39 are radioisotopes.   

Strontium (Sr) is a soft silvery-white alkaline-earth metal from group II of the 

periodic table (Stwertka, 2002). There are 33 known isotopes of Sr with mass 

numbers ranging from 73-105. Four of these are stable isotopes (84Sr, 86Sr, 
87Sr and 88Sr), which are primarily found in the minerals celestite (SrSO4) and 

strontianite (SrCO3; Emsley, 2011), whilst the other 29 are radioisotopes. 

1.2 Caesium and strontium in the environment  

Stable Cs and Sr are distributed in the environment via the erosion of Cs and 

Sr containing minerals, and are present in soils at a concentration of <1-30 mg 

kg-1 (Cs) and 5-3100 mg kg-1 (Sr) and in plants at <0.01-3 mg kg-1 (Cs) and 1.5-

74 mg kg-1 (Sr; Kabata-Pendias and Szteke, 2015). 

134Cs, 137Cs and 90Sr are the most common radioisotopes produced as by-

products when other radioactive materials such as uranium (U) and 

plutonium (Pu) undergo nuclear fission (Ashraf et al., 2014). The fission of U 

and Pu creates a huge amount of energy, and thus has been used to make 

nuclear weapons and for production of nuclear power.  

Radioisotopes of Cs and Sr have been widely deposited in the environment 

due to weapons testing, nuclear power production and accidents at nuclear 

facilities (Shaw, 2007). The two largest nuclear accidents occurred at the 

Chernobyl nuclear power plant, Ukraine, in 1986 and at the Fukushima Daiichi 

nuclear power plant, Japan, in 2011 (Steinhauser, 2014). The primary 

radionuclide of concern for human radiation dose immediately following both 

of these accidents was another fission by-product, radioiodine (principally 131I; 

Alexakhin et al., 2006; Matsuzaki et al., 2012), which has a short half-life of c. 

8 days and concentrates in the thyroid (Baverstock et al., 1992; Cardis et al., 

2005) The radiation produced due to this accumulated radioiodine can cause 

thyroid cancer, especially in children and adolescents (Reiners et al., 2013). In 

the long term, radioisotopes of Cs and Sr with longer half-lives (137Cs≈30 

years) and (90Sr≈29 years) are of principal concern to human health. This is 

due not only to their relatively long half-lives, but also their high energy 

emissions and assimilation into biological systems due to their chemical 

similarity to the biologically important elements potassium (K; Cs) and calcium 

(Ca; Sr). 
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1.3 Radiocaesium and radiostrontium from the Chernobyl and Fukushima 

accidents 

The Chernobyl accident caused many petabequerels (PBq) of 137Cs and 90Sr to 

be released into the environment (Table 1), and approximately 125,000 km2 

of land in Belarus, Ukraine and Russia were contaminated with radiocaesium 

deposition greater than 37 kBq m2 following the accident. Around 52,000 km2 

of this land was under agricultural use at the time of the accident (NEA, 2002). 

Although the releases of 137Cs and 90Sr from the Fukushima accident were one 

to two orders of magnitude less than those of Chernobyl, 4221 ha of rice 

paddy and 1332 ha of ‘dry field’ (fields containing crops other than rice) were 

contaminated with >10 kBq kg -1 soil (Atomic Energy Society of Japan, 2014).  

Table 1 Activity concentrations (PBq) of 137Cs and 90Sr released during the Chernobyl (NEA, 

2002) and Fukushima accidents (UNSCEAR, 2014; Casacuberta et al., 2013) 

 

Total release during the 

accident 

 137Cs (PBq) 90Sr (PBq) 

Chernobyl 85 10 

Fukushima 8.8 0.08-0.09 

 

1.4 Caesium and strontium transfer and exposure pathways 

There are a number of transfer and exposure pathways for 137Cs and 90Sr to 

humans (Fig. 1). From terrestrial and freshwater environments, external 

exposure from soil and atmospheric dispersion and internal exposure via 

inhalation, the drinking of contaminated surface water and ingestion of 

freshwater fish are important exposure pathways. However, the most 

important transfer pathways are primarily from the consumption of 

contaminated plant and animal products from agricultural land, and these 

therefore are the focus of this thesis 
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Figure 1 Some major transfer and exposure pathways of aerial radionuclide releases following 

a nuclear accident (redrawn from Takahashi, 2014). The transfer and exposure pathways 

shown in red are the main pathways discussed in this thesis 

Agricultural food products that provided the largest contribution to daily 137Cs 

intake in rural populations in areas of the former Soviet Union affected by the 

Chernobyl accident were found to be bread (6.8-11 %), potatoes (9.5-19 %) 

and milk (13-50 %; Beresford et al., 2001). Following the Fukushima accident, 

consumption of food from contaminated areas was rigorously restricted, and 

therefore there was little transfer of radionuclides to humans via food 

products.  

1.5 Plant uptake of Cs and Sr 

Plants have no known biological requirement for either Cs or Sr, but 

accumulate these elements because of their chemical similarities to the plant 

macronutrients K and Ca. Caesium is predominantly taken up by plants via 

root cell membrane K+ transporters and K+ channels (White and Broadley, 

2000; Zhu and Smolders, 2000) and is transported easily and quickly around 

the plant (Middleton et al., 1960; Buysse et al., 1995). Strontium is thought to 

be taken up and transported in the plant in the same way as its chemical 

analogue Ca (Willey and Fawcett, 2006), via Ca+ channels and apoplastic 

pathways (White and Broadley, 2003). 
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1.6 Soil characteristics affecting plant uptake of Cs and Sr  

The extent to which Cs and Sr are taken up by plants is strongly affected by 

soil characteristics such as K, Ca and NH4 concentrations, pH and soil type. Cs 

uptake is significantly reduced by increasing soil K+ concentrations (Shaw and 

Bell, 1991; Zhu and Shaw, 2000; Kubo et al., 2015), and increases in soil K+ 

concentrations has also been shown to reduce plant uptake of Sr (Frere et al., 

1967; Lembrechts, 1993). Increasing soil Ca concentration has been shown to 

decrease uptake of both Cs (White and Broadley, 2000; Zhu and Smolders, 

2000) and Sr (Frere et al., 1967; Lembrechts, 1993). Conversely, an excess of 

NH4
+ in soil appears to increase Cs uptake (Livens and Loveland, 1988), though 

NH4
+ is not present in high concentrations in the soil solution in aerobic soils, 

and therefore under normal conditions its effect on Cs plant uptake is thought 

be minimal (Zhu and Smolders, 2000). Soil type and pH strongly affect the 

mobility of nutrients in the soil solution, and therefore has a strong, 

principally indirect effect, on plant uptake of Cs and Sr (Prister et al., 1992)  

1.7 Current remediation strategies to reduce transfer of Cs and Sr from 

agricultural land 

Current remediation strategies for radiologically contaminated land fall into 

three main categories: mechanical soil amendments, chemical soil 

amendments and treatment of livestock. 

Ploughing to 20-30 cm using a common single-furrow plough can reduce 

uptake of Cs and Sr by up to 4-fold by burying the radionuclides from top-soil 

to a depth deeper than the crop rooting zone, thus reducing their availability 

for plant uptake (IAEA, 2012). Deep ploughing, which can be utilised in soils 

with a depth exceeding 50 cm, is used to invert the top 20-45 cm of soil. This 

buries the radionuclides to an even greater depth and can reduce the transfer 

of Cs and Sr by 2-4 fold, with a maximum recorded reduction of 10-fold 

(Maubert et al., 1993; Vovk et al., 1993; Bogdevitch, 2002; Fesenko et al., 

2007). Following the accident in Fukushima, the preferred mechanical soil 

amendment for agricultural areas contaminated at an activity concentration 

>5 kBq m-2 (IAEA, 2014) has been removal of the surface soil layer (c. 5 cm; 

Nakano and Yong, 2013).  

Chemical soil amendments aimed at reducing plant uptake of 137Cs and 90Sr 

have also been widely applied following contamination incidents. Mainly due 

to their ability to increase the concentration of plant-available K and Ca, the 

application of organic and mineral fertilisers is known to reduce the uptake of 
137Cs and 90Sr by 1.3-3-fold (organic fertilisers) and 2-5-fold (mineral 

fertilisers; IAEA, 2012). The addition of lime (calcium and/or magnesium rich 

minerals) is known to reduce Cs and Sr uptake by 1.5-4-fold (IAEA, 2012).  

Animal-based remediation strategies can also be used after a contamination 

incident to reduce the transfer of radionuclides to humans via animal 
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products. Natural (e.g. clay minerals) or artificial (e.g. ‘Prussian blue’) binding 

agents can be added to the livestock diet to reduce Cs uptake from the gut, 

and thus transfer to products such as meat and milk by up to 5-fold (clay 

minerals) and 8-fold (Prussian blue type compounds; IAEA, 2012). Sr transfer 

can be reduced by supplementing the diet with Ca (Beresford et al., 1998). 

Clean feeding, where animals are fed with uncontaminated fodder was 

utilised widely after the Fukushima accident (Manabe et al., 2013) and can be 

highly effective in reducing the transfer of radionuclides to animal products, 

but can be expensive as a long-term strategy and relies on the supply of 

uncontaminated feedstuffs (IAEA, 2012).    

1.8 Plant-based remediation strategies 

It has been known since the 1950s that plant species vary in the degree to 

which they take up Cs and Sr (e.g. Fuller and Flocker, 1955; Middleton et al., 

1960). It has been proposed that plant species with high uptake of Cs and Sr 

could be used to remove Cs and Sr from contaminated land, a strategy known 

as phytoremediation (Entry et al., 1996). However, due to biological 

constraints on the amount of Cs and Sr a plant can accumulate, this has been 

shown to produce a large amount of low-level radioactive waste that needs to 

be disposed of (Vandenhove, 2013).  

Therefore, another approach where species with lower Sr and/or Cs uptake 

are selected as ‘safer’ crops that can limit transfer of radionuclides from the 

soil to humans has been proposed (White et al., 2003; IAEA, 2012). Variation 

in Cs and Sr accumulation between different plant species can exceed 100-

fold (Fesenko et al., 2000; Sanzharova, 2009). However, the knowledge and 

skills required to produce the ‘safer’ selected crop must be sufficient 

(Beresford et al., 2006) and there must be an available economically viable 

market for the selected crop (IAEA, 2012). 

There is not only variation in uptake between species, there is also variation 

in uptake within species (between cultivars). Selection of lower-accumulating 

‘safer’ cultivars has been shown to reduce transfer by up to 4.5-fold 

(Alexakhin, 1993), but the available information regarding inter-cultivar 

variation has not been sufficient for it to be internationally recommended as 

remediation measure (Beresford et al., 2006).  

1.9 Aims and thesis structure 

The aims of this thesis are to: 

- To assess current knowledge of the variation in Cs and Sr accumulation 

by plant cultivars  

 

- To integrate existing datasets regarding inter-cultivar variation in Cs 

and Sr accumulation into a usable database 
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- To quantify Cs and Sr accumulation among a large number of cultivars 

grown under the same conditions in long-term pasture-grass breeding 

trials 

 

- To identify whether lower Cs and/or Sr accumulating cultivars 

consistently display lower-accumulation at multiple sites and harvests  

 

- To identify whether there is variation in Cs and Sr accumulation 

between forage grass species  

 

- To quantify the potential reduction in soil-cow Cs and Sr transfer by 

exploiting the variation in Cs and Sr accumulation between forage grass 

cultivars  

 

- To elucidate the potential effects of selecting ‘safer’, lower-

accumulating forage grasses on yield and forage quality 

 

Thesis structure: 

Chapter one introduces caesium and strontium, the distribution of 

radioisotopes of these elements in the environment, the problems arising 

from their transfer to humans and remediation strategies to minimise this 

transfer.  

Chapter two is a meta-analysis of inter-cultivar variation in Cs (69 

experiments) and Sr (58 experiments) accumulation, comprising a total of 27 

plant species. 

Chapter three presents the findings of four experiments investigating 

variation in Cs and Sr accumulation between cultivars of Brassica oleracea, 

two laboratory experiments conducted in the UK, and two field experiments 

conducted in the Chernobyl Exclusion Zone, Ukraine. Cultivars identified as 

lower accumulating in Cs and Sr are tested to evaluate whether they are 

consistently lower-accumulating in between the laboratory and field 

experiments, and between the two field experiments.  

Chapter four concerns the results of analyses of Cs and Sr concentrations in 

397 cultivars of four forage grass species; hybrid ryegrass (101), Lolium 

perenne (269), Lolium multiflorum (17) and Festuca arundinacea (10) grown in 

Aberystwyth and Edinburgh. The variation in Cs and Sr accumulation between 

these species and between cultivars of these species was calculated. 

Seventeen hybrid ryegrass cultivars grown in Aberystwyth and Edinburgh are 

tested to see if any cultivars could be identified as consistently lower 

accumulating in Cs and/or Sr at both sites and in spring and summer harvests 
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in two years. The number of cultivars required to encompass the maximum 

inter-cultivar variation between forage grass cultivars was also investigated.  

Chapter five reports the findings of experiments comprising of L. perenne and 

F. arundinacea cultivars grown in Aberystwyth and Narodychi. Forage grass 

species and cultivars consistently lower-accumulating in Cs and Sr at both 

experimental sites are identified. The relationship between Cs and K and Sr 

and Ca are investigated.  

Chapter six compares the dry and fresh weight yield, percentage dry weight, 

Cs, Sr, K and Ca concentrations, water soluble carbohydrate content and dry 

matter digestibility in hybrid ryegrass cultivars considered consistently lower 

Cs and/or Sr accumulating in chapter four and cultivars of F. arundinacea 

found to be a lower-accumulating species in chapters four and five with two 

commercially grown hybrid ryegrass cultivars. The potential effect on yield 

and forage quality is also evaluated.  

Chapter seven includes a general discussion of the thesis contents and 

provides recommendations for future work.  

1.10 References 

Alexakhin, R.M., 1993. Countermeasures in agricultural production as an 

effective means of mitigating the radiological consequences of the Chernobyl 

accident. Sci. Total Environ. 137, 9-20. http://dx.doi.org/10.1016/0048-

9697(93)90374-f. 

Alexakhin, R., Anspaugh, L., Balonov, M., Batandjieva, B., Besnus, F., Biesold, 

H., Bogdevich, I., Byron, D., Carr, Z., Deville-Cavelin, G., Ferris, I., Fesenko, 

S., Gentner, N., Golikov, V., Gora, A., Hendry, J., Hinton, T., Howard, 

B., Kashparov, V., Kirchner, G., LaGuardia, T., Linsley, G., Louvat, D., Moberg, 

L., Napier, B., Prister, B., Proskura, M., Reisenweaver, D., Schmieman, 

E., Shaw, G., Shestopalov, V., Smith, J., Strand, P., Tsaturov, Y., Vojtsekhovich, 

O., Woodhead, D., 2006. Environmental consequences of the Chernobyl 

accident and their remediation: Twenty years of experience. Report of the 

Chernobyl Forum Expert group “Environment”. International Atomic Energy 

Agency, Vienna, Austria.  

Ashraf, M.A., Khan, A.M., Ahmad, M., Akib, S., Balkair, K.S., Bakar, N.K., 2014. 

Release, deposition and elimination of radiocesium (137Cs) in the terrestrial 

environment. Environ. Geochem. Health 36, 1165-1190. 

http://dx.doi.org/10.1007/s10653-014-9620-9. 

Atomic Energy Society of Japan, 2014. The Fukushima Daiichi Nuclear 

Accident- Final report of the AESJ Investigation Committee by Atomic Energy 

Society of Japan. Maruzen Publishing Co., Ltd., Tokyo, Japan.  

http://dx.doi.org/10.1007/s10653-014-9620-9


8 
 

Baverstock, K., Egloff, B., Pinchera, A., Ruchti, C., Williams, D., 1992. Nat. 359, 
21-22. http://dx.doi.org/10.1038/359021b0.   
 
Beresford, N.A., Mayes, R.W., Hansen, H.S., Crout, N.M.J., Hove, K., Howard, 
B.J., 1998. Generic relationship between calcium intake and radiostrontium 
transfer to the milk of dairy ruminants. Radiat. Environ. Biophys. 37, 129-131. 
http://dx.doi.org/10.1007/s004110050105  
 
Beresford, N.A., Voigt, G., Wright, S.M., Howard, B.J., Barnett, C.L., Prister, B., 

Balonov, M., Ratnikov, A., Travnikova, I., Gillett, A.G., Mehli, H., Skuterud, L., 

Lepicard, S., Semiochkina, N., Perepeliantnikova, L., Goncharova, N., Arkhipov, 

A. 2001. Self-help countermeasure strategies for populations living within 

contaminated areas of Belarus, Russia and Ukraine. J. Environ. Radioactiv. 56, 

215-239. http://dx.doi.org/10.1016/S0265-931X(01)00055-8. 

Beresford, N.A., Barnett, C.L., Howard, B.J., Rantavaara, A., Rissanen, K., 
Reales, N., 
Gallay, F., Papachristodoulou, C., Ioannides, K., Nisbet, A., Hesket, N., 
Oughton, D., Bay, I., 2006. EURANOS Compendium of Countermeasures for 
theManagement of Food Production Systems. Version 1.3. Available from: 
http://www.euranos.fzk.de. 
 
Bibak, A., Sturup S,Knudsen, Beresford, N.A., Barnett, C.L., Howard, B.J., 
Rantavaara, A., Rissanen, K., Reales, N., Gallay, F., Papachristodoulou, C., 
Ioannides, K., Nisbet, A., Hesket, N., 
Oughton, D., Bay, I., 2006. EURANOS Compendium of Countermeasures for 
the Management of Food Production Systems. Version 1.3. Available from: 
http://www.euranos.fzk.de. 
 
Bogdevitch, I.M. (Ed.), 2002. Recommendations on agricultural production in 
conditions of radioactive contamination of lands in Belarus, approved by the 
Ministry of Agriculture and Food of Belarus Republic, BRISSA. [in Russian] 
 
Buysse, J., Van de Brande, K., Merckx, R., 1995. The distribution of 
radiocaesium and potassium in spinach plants grown at different shoot 
temperatures. J. Plant Physiol. 146, 263-267. 
http://dx.doi.org/10.1016/S0176-1617(11)82051-1. 
 
Cardis, E., Kesminiene, A., Ivanov, V., Malakhova, I., Shibata, Y., Khrouch, V., 
Drozdovitch, V., Maceika, E., Zvonova, I., Vlassov, O., Bouville, A., Goulko, G., 
Hoshi, M., Abrosimov, A., Anoshko, J., Astakhova, L.,  Chekin, S., Demidchik, 
E., Galanti, R., Ito, M., Korobova, E., Lushnikov, E., Maksioutov, M., Masyakin, 
V., Nerovnia, A., Parshin, V., Parshkov, E., Piliptsevich, N., Pinchera, A., 
Polyakov, S., Shabeka, N., Suonio, E., Tenet, V., Tsyb, A., Yamashita, S., 
Williams, D., 2005. Risk of thyroid cancer after exposure to 131I in childhood. J. 
Natl. Cancer Inst. 97, 724-732. http://dx.doi.org/10.1093/jnci/dji129. 
 

http://dx.doi.org/10.1016/S0176-1617(11)82051-1


9 
 

Casacuberta, N., Masque, P., Garcia-Orellana, J., Garcia-Tenorio, R., Buesseler, 

K.O., 2013. 90Sr and 89Sr in seawater off Japan as a consequence of the 

Fukushima Dai-ichi nuclear accident. Biogeosciences. 10, 3649-3659. 

http://dx.doi.org/10.5194/bg-10-3649-2013. 

Emsley, J., 2011. Nature’s building blocks: an A-Z guide to the elements. 

Oxford University Press, Oxford, UK.    

Entry, J.A., Vance, N.C., Hamilton, M.A., Zabowski, D., Watrud, L.S., Adriano, 
D.C., 1996. Phytoremediation of soil contaminated with low concentrations of 
radionuclides. Water Soil Poll. 88, 167-176. 
http://dx.doi.org/10.1007/BF00157420%T. 
 
Fesenko, S.V., Alexakhin, R.M., Balonov, M.I., Bogdevitch, I.M., Howard, B.J., 
Kashparov, V.A., Sanzharova, N.I., Panov, A.V., Voigt, G., Zhuchenka, Y.M., 
2007. An extended review of twenty years of countermeasures used in 
agriculture after the Chernobyl accident. Sci. Total. Environ. 383, 1-24. 
http://dx.doi.org/10.1016/j.scitotenv.2007.05.011. 
 
Fesenko, S.V., Alexakhin, R.M., Sanzharova, N.I., 2000. Site 
characterisationtechniques used in restoration of agricultural areas on the 
territory of the Russian Federation contaminated after the accident at the 
Chernobyl NPP, in: IAEA, Site characterization techniques used in 
environmental restoration activities, IAEA-TECDOC-1148. IAEA, Vienna, 
Austria. 
 
Frere, M.H., Menzel, R.G., Roberts Jr, H., Myhre, D.L., Amemiya, M., Beale, 

O.W., Timmons, D.R., Wood, E.H., 1967. Reduction in the plant uptake of Sr-

90 by soil management treatments. In: Technical Bulletin No. 1378. 

Agricultural Research Service, United States Department of Agriculture, 

Washington D.C., USA.  

Fuller, W.H., and Flocker, W.J., 1955. The uptake of radiostrontium by certain 

type crops from calcareous soils. Univ. Ariz. Agri. Stn. Tech. Bull. 130.  

IAEA, 2012. Guidelines for Remediation Strategies to Reduce the Radiological 
Consequences of Environmental Contamination. Technical Report Series No. 
475. International Atomic Energy Agency, Vienna, Austria. 
 
IAEA, 2014. The Fukushima Daiichi accident technical volume 5 post-accident 
recovery. International Atomic Energy Agency, Vienna, Austria.  
 
Kabata-Pendias, A., Szteke, B., 2015. Trace Elements in Abiotic and Biotic 

Environments. CRC Press, Florida

http://dx.doi.org/10.1007/BF00157420%25T
http://dx.doi.org/10.1016/j.scitotenv.2007.05.011


10 
 

Kubo, K., Nemoto, K., Kobayashi, H., Kuriyama, Y., Harada, H., Matsunami, H., 
Eguchi, T., Kihou, N., Ota, T., Keitoku, S., Kimura, T., Shinano, T., 2015. 
Analyses and countermeasures for decreasing radioactive cesium in 
buckwheat in areas affected by the nuclear accident in 2011. Field Crop. Res. 
170 40-46. http://dx.doi.org/10.1016/j.fcr.2014.10.001. 
 
Lembrechts, J.F., 1993. A review of literature on the effectiveness of chemical 

amendments in reducing the soil.to-plant transfer of radiostrontium and 

radiocaesium. Sci. Total Environ. 137, 81-98. http://dx.doi.org/10.1016/0048-

9697(93)90379-K. 

Livens, F.R., Loveland, P.J., 1988. The influence of soil properties on the 

environmental mobility of caesium in Cumbria. Soil Use Manag. 4, 69-75. 

http://dx.doi.org/10.1111/j.1475-2743.1988.tb00739.x 

Manabe, N., Takahashi, T., Li, J-Y., Tanoi, K., 2013. Changes in the transfer of 
fallout radiocaesium from pasture harvested in Ibaraki Prefecture, Japan, to 
cow milk two months after the Fukushima Daiichi Nuclear Power Plant 
accident, in: Nakanishi, T.M., Tanoi, K. (Eds.), Agricultural Implications of the 
Fukushima Nuclear Accident. Springer, Tokyo, Japan. 
http://dx.doi.org/10.1007/978-4-431-54328-2. 
 
Matsuzaki, H., Fujiwara, T., Saito, T., Yamagata, T., Honda, M., Muramatsu, Y., 

2012. Isotopic ratio of radioactive iodine (129I/131I) released from Fukushima 

Daiichi NPP accident. Geochem. J. 46, 327-333. 

http://dx.doi.org/10.2343/geochemj.2.0210. 

Maubert, H., Vovk, I., Roed, J., Arapis, G., Jouve, A., 1993. Reduction of soil-
plant transfer factors: mechanical aspects. Sci. Total Environ. 137, 163-167. 
http://dx.doi.org/10.1016/0048-9697(93)90384-I. 
 
Middleton, L.J., Handley, R., Overstreet, R., 1960. Relative uptake and 
translocation of potassium and cesium in barley. J. Plant Physiol. 35, 913–918. 
 
Nakano, M., Yong, R.N., 2013. Overview of rehabilitation schemes for 

farmlands contaminated with radioactive cesium released from Fukushima 

power plant. Engineering Geology. 155, 87-93. 

http://dx.doi.org/10.1016/j.enggeo.2012.12.010. 

Nuclear Energy Agency (NEA), 2002. Chernobyl: Assessment of Radiological 

and Health Impacts. http://www.nea.fr/html/rp/chernobyl/ (accessed 

25.09.15). 

Prister, B., Loshchilov, N., Perepelyatnikova, L., Perepelyatnikov, G., Bondar, 

P., 1992. Efficiency of measures aimed at decreasing the contamination of 

agricultural products in areas contaminated by the Chernobyl NPP accident. 

112, 79-87. http://dx.doi.org/10.1016/0048-9697(92)90240-S. 

http://dx.doi.org/10.1016/j.fcr.2014.10.001
http://dx.doi.org/10.1016/0048-9697(93)90379-K
http://dx.doi.org/10.1016/0048-9697(93)90379-K
http://dx.doi.org/10.1007/978-4-431-54328-2
http://ci.nii.ac.jp/lognavi?name=crossref&id=info:doi/10.2343/geochemj.2.0210
http://dx.doi.org/10.1016/0048-9697(93)90384-I
http://dx.doi.org/10.1016/j.enggeo.2012.12.010
http://www.nea.fr/html/rp/chernobyl/
http://dx.doi.org/10.1016/0048-9697(92)90240-S


11 
 

Reiners, C., Biko, J., Haensheid, H., Hebestreit, H., Kirinjuk, S., Baranowski, O., 
Marlowe, R.J., Demidchik, E., Drozd, V., Demidchik, Y., 2013. Twenty-Five 
Years After Chernobyl: Outcome of Radioiodine Treatment in Children and 
Adolescents With Very High-Risk Radiation-Induced Differentiated Thyroid 
Carcinoma. J. Clin. Endocrinol. Metab. 98, 3039-3048. 
http://dx.doi.org/10.1210/jc.2013-1059. 
 

Sanzharova, N., Shubina, O., Vandenhove, H., Olyslaegers, G., Fesenko, S., 

Zang, Z.R., Reed, E., Velasco, H., 2009. Root uptake: temperate environment, 

in: Quantification of radionuclide transfer in terrestrial and freshwater 

environments for radiological assessments, IAEA-TECDOC-1616. IAEA, Vienna, 

Austria.  

Shaw. G., Bell, J.N.B., 1991. Competitive effects of potassium and ammonium 

on caesium uptake kinetics in wheat. J. Environ. Radioact., 13,283–296. 

http://dx.doi.org/10.1016/10.1016/0265-931X(91)90002-W 

Shaw, G., (Ed.), 2007. Radioactivity in the terrestrial environment.  Elsevier, 

Oxford, UK.  

Steinhauser, G., Bradl, A., Johnson, T.E., 2014. Comparison of the Chernobyl 
and Fukushima nuclear accidents: A review of the environmental impacts. Sci. 
Total Environ. 470-471, 800-817.  
http://dx.doi.org/10.1016/j.scitotenv.2013.10.029. 
 
Stwertka, A., 2002. A guide to the elements 2nd ed. Oxford University Press, 

Oxford, UK. 

Takahashi, S., ed., 2014. Radiation Monitoring and Dose Estimation of the 

Fukushima Nuclear Accident. Springer, Tokyo, Japan.  

United Nations Scientific Committee on the Effects of Atomic Radiation 
(UNSCEAR), 2014. Sources, effects and risks of ionizing radiation. Report 
Volume I, Report to the general assembly scientific Annex A: Levels and 
effects of radiation exposure due to the nuclear accident after the 2011 great 
east-Japan earthquake and tsunami. Available from: 
http://www.unscear.org/docs/reports/2013/14-
06336_Report_2013_Annex_A_Ebook_website.pdf. 
 
Vandenhove, H., 2013. Phytoremediation options for radioactively 
contaminated sites evaluated. Ann. Nucl. Energy 62, 596-606. 
http://dx.doi.org/10.1016/j.anucene.2013.02.005. 
 
Vovk, I.F., Blagoyev, V.V., Lyashenko, A.N., Koyalev, I.S., 1993. Technical 
approaches to decontamination of terrestrial environments in the CIS. Sci. 
Total Env. 137, 49-63. http://dx.doi.org/10.1016/0048-9697(93)90377-I. 
 

http://dx.doi.org/10.1210/jc.2013-1059
http://dx.doi.org/10.1016/0265-931X(91)90002-W
http://dx.doi.org/10.1016/j.scitotenv.2013.10.029
http://www.unscear.org/docs/reports/2013/14-06336_Report_2013_Annex_A_Ebook_website.pdf
http://www.unscear.org/docs/reports/2013/14-06336_Report_2013_Annex_A_Ebook_website.pdf
http://dx.doi.org/10.1016/0048-9697(93)90377-I


12 
 

White, P.J., Broadley, M.R., 2000. Mechanisms of caesium uptake by plants. 
New Phytol. 147, 241-256. http://dx.doi.org/ 10.1046/j.1469-
8137.2000.00704.x 
 
White, P.J., Broadley, M.R., 2003. Calcium in plants. Ann. Bot. 487-511.  
 
White, P.J., Swarup, K., Escobar-Gutiérrez, A.J., Bowen, H.C., Willey, N.J., 
Broadley, M.R., 2003. Selecting plants to minimise radiocaesium in the food 
chain. Plant Soil 249, 177-186. 
  
Willey, N., Fawcett, K., 2006. A phylogenetic effect on strontium 
concentrations in angiosperms. Environ. Exp. Bot. 57, 258-269. 
http://dx.doi.org/10.1016/j.envexpbot.2005.06.005. 
 
Zhu, Y.G., Shaw, G., 2000. Soil contamination with radionuclides and potential 
remediation. Chemosphere 41,121-128. http://dx.doi.org/10.1016/S0045-
6535(99)00398-7 
 
Zhu, Y.G., Smolders, E., 2000. Plant uptake of radiocaesium: a review of 
mechanisms, regulation and application. 51, 1635-45. 
http://dx.doi.org/10.1093/jexbot/51.351.1635 
 
 
 

http://dx.doi.org/10.1016/j.envexpbot.2005.06.005
http://dx.doi.org/10.1016/S0045-6535(99)00398-7
http://dx.doi.org/10.1016/S0045-6535(99)00398-7


 

120 
 

Chapter 7. General discussion  
 
7.1 Genetic variation in caesium and strontium in plants 

This study has shown that there is genetic variation in the uptake of 
caesium (Cs) and strontium (Sr) within a number of different plant 
species. This is in accordance with previous studies that have shown wide 
variation in the concentration of plant macronutrients such as calcium 
(Ca), potassium (K) and magnesium (Mg; e.g. Broadley et al., 2004; 
Vreugdenhil et al., 2004; White and Broadley, 2005; Harada and Leigh, 
2006; Waters and Grusak, 2008; El-Nashaar et al., 2009; Garcia-Oliviera et 
al., 2009) and with studies that have shown variation in plant uptake of Cs 
and Sr between plant families (e.g. Broadley and Willey, 1997; Broadley et 
al., 1999; Willey and Fawcett, 2006; Watanabe et al., 2007; Willey, 2010), 
species (e.g. Andersen, 1967; Zhu and Smolders, 2000) and cultivars (e.g. 
Rasmusson et al., 1963; Payne et al., 2004; Ohmori et al., 2014). It has 
been suggested that this variation can be used to reduce the transfer of 
radioisotopes of Cs and Sr to crop plants following a contamination 
incident.  
 
For the first time, within species (inter-cultivar) variation from all available 
studies was investigated, finding an average of 1.8-fold variation in Cs and 
2.0-fold variation in Sr in 27 plant species from a total of 115 experiments 
(Chapter 2). However, most of these experiments were conducted on 
fewer than seven cultivars, and focussed on main food crop species, 
especially wheat (Triticum aestivum) and barley (Hordeum vulgare).   
 
The experimental work in Chapters 3, 4 and 5 regarding Brassica oleracae 
(Chapter 3), hybrid ryegrass (Chapter 4) Lolium perenne (Chapters 4 and 5) 
and Lolium multiflorum (Chapter 4) showed higher variation than the 
average found in Chapter 2 in Cs (up to: 35-fold; 14-fold; 13-fold; 2-fold) 
and Sr (up to 23-fold; 4.4-fold; 2.5-fold and 2.9-fold) concentration ratios. 
This may be due to the larger numbers of cultivars in these experiments 
(number of cultivar were up to: 71, 100, 189 and 29, respectively). The 
study detailed in Chapter 4 including 397 cultivars of forage grass (hybrid 
ryegrass=101; L. perenne=269; L. multiflorum=17; F. arundinacea=10), is 
likely to be the largest study regarding inter-cultivar variation in Cs and Sr 
accumulation to date. Recent studies including larger numbers of cultivars 
such as Ohmori et al., (2014) who studied 137Cs activity concentrations in 
85 rice (Oryza sativa) cultivars have also found larger inter-cultivar 
variation (10-fold) than the average found in Chapter 2. The relationship 
between the number of cultivars and inter-cultivar variation in Cs and Sr 
accumulation has not been investigated before; Chapter 4 includes an 
investigation into this relationship, and these results suggest that there is 
a positive relationship between the number of cultivars and the 
magnitude of the inter-cultivar variation. However, this relationship 
appears to start to plateau, suggesting there is a maximum number of 
cultivars needed to be able to reach the maximum inter-cultivar variation. 
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This relationship was also shown to be different for each plant species 
studied and the maximum number of cultivars was different in each 
location. It is possible that this relationship was affected by climate, small 
differences in soil properties, differences in the soil concentrations of the 
analogous elements K and Ca or differences in soil concentrations of Cs 
and Sr. Further work needs to be carried out in order to understand the 
factors influencing this relationship.  
 
Although the relationships between the number of cultivars and inter-
cultivar variation generally appeared to be starting to plateau, they 
suggest that the maximum inter-cultivar variation is larger than the inter-
cultivar variations found in our experiments. This suggests that the 
potential reduction in transfer of Cs and Sr using species or cultivar 
substitution could be even higher than reported in this thesis. It is 
recommended that future research on inter-cultivar variation includes as 
many cultivars as possible in order to encompass the maximum variation.   
 
7.2 Consistently lower-accumulating cultivars 

Though inter-cultivar variation appears to vary with location, we have 
been able to identify cultivars of Brassica oleracea (Chapter 3), hybrid 
ryegrass (Chapter 4), L. perenne (Chapter 5) and F. arundinacea (Chapter 
5) that were significantly consistently lower accumulating in multiple 
locations. Previously, consistently lower accumulating cultivars have been 
found in the experiments of Csupka et al., (1969; wheat), Øhlenschlæger 
and Gissel-Nielsen, (1989; barley), Øhlenschlæger et al., (1993 barley), 
Sarfraz et al., (2007; rice). Other experiments where the same cultivars 
were grown in multiple sites found little consistency in lower-
accumulation of Cs and Sr (Csupka et al., 1969, wheat; Gertsmann and 
Schimmack, 2006, wheat; Øhlenschlæger and Gissel-Nielsen, 1991, 
barley), though cultivars in these experiments were defined as 
consistently lower accumulating if the lowest accumulating cultivar was 
the same in experiments in multiple locations. Using this method of 
defining lower accumulation, one is less likely to find lower-accumulating 
cultivars, as the cultivars always have to be the lowest, not just lower. The 
likelihood of a cultivar being the lowest decreases significantly with the 
number of cultivars, the number of locations and the number of sampling 
events. The likelihood of a cultivar being in the lowest 5th percentile-which 
is how lower accumulation is defined in this thesis- also decreases with 
number of cultivars, locations and sampling events, though to a lesser 
degree. Furthermore, it is not as important for cultivars to be the lowest 
accumulating as it is for them to be amongst the lowest accumulating 
cultivars. It is therefore recommended that when comparing large 
numbers of cultivars and/or several locations or sampling events, it is 
recommended that instead of trying to find a cultivar that is consistently 
lowest accumulating the statistical methods used in Chapters 3-5 are 
applied. 
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7.3 Cultivar substitution as a remediation strategy for contaminated land 
Substituting higher-accumulating species or cultivars for lower 
accumulating ones has been proposed as a remediation strategy for 
radiologically contaminated land since the 1950s (e.g. Fuller and Flocker, 
1955; Middleton et al., 1960; Rasmusson et al., 1963), but the lack of 
information meant it was not possible previously to evaluate its efficacy 
(Beresford et al., 2006). From the work of the studies included in this 
thesis, it is concluded that there is considerable variation in Cs and Sr 
concentration ratios between plant species and cultivars, which is in 
agreement with the findings of e.g. Prister et al., (1992), Alexakhin, (1993) 
and White et al., (2003). Therefore species or cultivar substitution is 
recommended as an effective remediation strategy in contaminated 
agricultural areas. 
 
Other remediation strategies to minimise root uptake of radionuclides by 
plants fall into two main categories; mechanical soil amendments and 
chemical soil amendments. Mechanical soil amendments such as 
ploughing can reduce transfer of radionuclides by up to 4-fold using a 
single-furrow plough and up to 10-fold using deep ploughing techniques 
(IAEA, 2012). Chemical soil amendments such as the application of organic 
fertilisers have been found to reduce 137Cs and 90Sr by up to 3-fold, 
mineral fertilisers by 2-5 fold and lime by 1.5-4 fold (IAEA, 2012). The 
possible reductions in transfer of these elements using species 
substitution found in Chapter 4 (up to 19-fold in Cs, if hybrid ryegrass is 
replaced by F. arundinacea; up to 2.6-fold in Sr, if L. multiflorum is 
replaced by F. arundinacea) or cultivar substitution found in Chapter 3 (up 
to 35-fold for Cs, up to 23-fold for Sr; Brassica oleracea) and Chapter 4 (up 
to 14-fold for Cs, up to 4.4-fold for Sr, hybrid ryegrass) are in the same 
order of magnitude or higher than these established techniques, and 
therefore is potentially an effective remediation strategy following a 
contamination incident. Furthermore, crop substitution could be 
implemented in conjunction with one or more of these existing soil-based 
remediation strategies to produce an even larger reduction of transfer of 
Cs and Sr.     
 
7.4 The effects of cultivar substitution on crop yield and quality 
The effect of lower-accumulation on crop yield and quality has not been 
extensively studied before. This is possibly because previously there were 
too few cultivars identified as lower accumulating in Cs and/or Sr. Results 
from the experiments in Chapter 6 suggest that species substitution could 
affect crop yield and quality. If F. arundinacea was planted instead of 
commercial hybrid ryegrasses, the fresh weight yield could be reduced by 
up to 59%, though the quality parameters dry matter digestibility (DMD) 
and water soluble carbohydrate content (WSC) were less affected (a 7% 
and 16% reduction, respectively).  
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Results of the experiment in Chapter 6, however, suggest that cultivar 
substitution has little negative effect on crop yield and quality. 
Substituting commercial hybrid ryegrass cultivars for lower accumulating 
hybrid ryegrass cultivars showed to have little effect on the yield, Ca and K 
concentrations and DMD and WSC content. However, it is not known how 
the yield might be affected by cultivar substitution in other species. In 
addition to this, quality parameters vary between crop species, so it is not 
known how these might be affected if lower-accumulating cultivars or 
species were selected. Many of the existing remediation strategies have 
been evaluated in terms of their acceptability to stakeholders (e.g. Nisbet 
et al., 2009). Species and cultivar substitution were not included in these 
evaluations, as too little was known about its effectiveness as a 
remediation strategy. Therefore how stakeholders such as farmers and 
consumers would feel about species or cultivar substitution following a 
contamination incident is not known. It is therefore suggested that the 
acceptability of species and cultivar substitution is assessed prior to being 
recommended or implemented.   
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