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Abstract 24 

A high-resolution, near-surface geophysical survey was conducted in 2013 on the Campeche 25 

Bank, a carbonate platform offshore of Yucatán, Mexico, to provide a hazard assessment for 26 

future scientific drilling into the Chicxulub impact crater.  It also provided an opportunity to 27 

obtain detailed information on the seafloor morphology and shallow stratigraphy of this 28 

understudied region.  The seafloor exhibited two morphologies: (1) small-scale (<2 m) bare-rock 29 

karstic features, and (2) thin (<1 m) linear sand accumulations overlying the bedrock.  Solution 30 

pans, circular to oblong depressions featured flat bottoms and steep sides, were the dominant 31 

karstic features; they are known to form subaerially by the pooling of rainwater and dissolution 32 

of carbonate.  Observed pans were 10-50 cm deep and generally 1-8 m wide, but occasionally 33 

reach 15 m, significantly larger than any solution pan observed on land (maximum 6 m).  These 34 

features likely grew over the course of many 10’s of thousands of years in an arid environment 35 

while subaerially exposed during lowered sea levels.  Surface sands are organized into linear 36 

bedforms oriented NE-SW, 10’s to 100’s meters wide, and kilometers long.  These features are 37 

identified as sand ribbons (longitudinal bedforms), and contained asymmetric secondary 38 

transverse bedforms that indicate NE-directed flow.  This orientation is incompatible with the 39 

prevalent westward current direction; we hypothesize that these features are storm-generated. 40 

 41 

Key Words: Carbonate Platform, Solution pans, sand bedforms, Campeche Bank, seafloor, 42 

multibeam, CHIRP  43 
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1.0 Introduction 44 

 Drowned carbonate platforms are found at many of the Earth’s continental margins 45 

(Schlager, 1981).  During sea level low-stands, much of these platforms are subaerially exposed 46 

to karstic weathering, subject to the local climatic conditions at those times (Read and Grover, 47 

1977).  Subsequent sea level rise will preserved karst features against additional weathering; 48 

where the sediment cover is thin, such geomorphology may be exposed at the seafloor and 49 

accessible to acoustic surveys (Obrochta et al., 2003).  Detailed seafloor mapping over carbonate 50 

platforms therefore has the potential to enable investigating ancient karstic morphologies and, by 51 

analogy to modern settings, provide an understanding of past climate conditions.   52 

 This paper documents such an investigation on the continental shelf of the Yucatán 53 

Peninsula, Mexico, also known as the Campeche Bank, a carbonate platform extending into the 54 

southern Gulf of Mexico (Figure 1).  Aside from the early research by Logan et al. (1969), the 55 

Campeche Bank is understudied, particularly in regards to the detailed geomorphology of the 56 

vast regions of seafloor between coral reefs.  It is unlikely to be featureless.  Subaerially exposed 57 

by sea level low-stands, the thin sediment veneer to exposed limestone seafloor is apt to exhibit 58 

well-preserved karstic landforms (compare, for example, the morphology of the Florida shelf 59 

(Obrochta et al., 2003)).   60 

 An opportunity to conduct high-resolution mapping of the Campeche Bank seabed was 61 

provided in 2013, when the European Consortium for Ocean Research Drilling (ECORD) funded 62 

a hazards assessment survey ahead of scientific drilling by the International Ocean Discovery 63 

Program (IODP) into the Chicxulub impact crater, roughly half of which extends beneath the 64 

offshore Campeche Bank (Gulick et al., 2013).  The hazards assessment sought to ascertain the 65 

stability of the seafloor and shallow substrate for jack-up drilling operations.  It required high-66 
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resolution mapping of the seabed morphology and characterization of the shallow sedimentary 67 

stratigraphy of the drill sites.  This paper is therefore exploratory in nature, an investigation of 68 

opportunity in an interesting region that has received little attention in the scientific literature.  In 69 

particular, the observations provide two avenues of research: fossil karstic geomorphology and 70 

modern sedimentary bedforms.  Karstic morphology is abundant on the bare-rock exposures at 71 

the seafloor, formed in a subaerial environment when the shelf was exposed by lowered sea 72 

levels.  Such morphology may illuminate surface hydrologic processes and environmental 73 

conditions across the peninsula during global glacial conditions.  Unconsolidated sediments 74 

(carbonate sands) are also distributed throughout the survey area.  The bedform morphology of 75 

these sediments can provide information on modern hydrodynamic conditions. 76 

 77 

1.1 Setting 78 

 The Campeche Bank is a broad shelf, covering ~57,000 km2 and extending ~100-300 km 79 

from the shoreline to the shelf break at ~200-300 m water depth with an overall gradient of 80 

~0.0002-0.001 (Logan et al., 1969).  Most of the shelf seafloor is composed of indurated, karstic 81 

limestone of probable Pleistocene age (Logan et al., 1969).  Sedimentary cover from the 82 

shoreline to the ~60 m isobath is identified as the Progreso Blanket (Logan et al., 1969), and 83 

ranges in thickness from 0 m to around 1 m. With no major drainage systems on the Peninsula, 84 

there is very little terrigenous sediment, particularly to the north and east.  What deposits do exist 85 

in these regions are composed primarily of medium- to fine-grained skeletal carbonate sand, 86 

presumably formed by the breakup of skeletal material along the bottom due to wave-current 87 

action (Logan et al., 1969).  Reef complexes fringe the Campeche bank near the 60 m isobaths 88 

(Kornicker and Boyd, 1964; Logan et al., 1969; Blanchon and Perry, 2004), and additional reefs 89 
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are mapped within the shallower regions of the Progreso Blanket (Zarco-Perelló et al., 2013).  90 

Nevertheless, the inner shelf is not a protected, lagoonal setting; rather, it is open to the passage 91 

of waves and currents and, like the west Florida shelf, the Campeche Bank is considered to be an 92 

“open, deeply submerged inclined shelf”, as well as a “high energy” environment (Logan et al., 93 

1969).  The Yucatán shelf is typically subjected to westerly currents (Zavala-Hidalgo et al., 94 

2003), and it is frequented by hurricanes and tropical storms (Boose et al., 2003) that can 95 

mobilize sand in large quantities. 96 

 97 

2.0 Methods 98 

 The ECORD survey on the Campeche Bank was conducted through a partnership between 99 

the University of Texas Institute for Geophysics (UTIG), the Universidad Nacional Autónoma de 100 

México (UNAM), and Seafloor Geotec LLC (SGL).  The survey included a broad spectrum of 101 

data collection: multibeam bathymetry, side-scan backscatter, CHIRP and boomer acoustic 102 

reflection, cone penetrometer, and sediment samples which were analyzed for grain size 103 

distribution.  It was conducted aboard the UNAM R/V Justo Sierra from 16 April to 23 April, 104 

2013, over a study area within the Chicxulub impact crater that encompasses three potential 105 

IODP drilling sites.  The planned study area covered an area ~10.58 km2, located ~32 km 106 

northwest of Puerto Progreso, Mexico in ~16-18 m water depth (Figure 1). This region is within 107 

the sedimentological environment identified as the Progreso Blanket (Logan et al., 1969), and 108 

east of the Sissal Reefs mapped by Zarco-Perelló et al. (2013).  Survey speeds were typically 4-5 109 

kts for all instrumentation.  Primary navigation for the R/V Justo Sierra multibeam echosounder 110 

was by the Seatex Seapath 200 positioning system.  Navigation for all other instrumentation was 111 

derived by differential GPS with a base station located in Puerto Progreso.  112 
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 113 

2.1 Multibeam Echosounder 114 

 The R/V Justo Sierra is fitted with a hull-mounted Kongsberg EM3002 multibeam 115 

echosounder system with data acquisition using the Kongsberg SIS software. The operating 116 

frequency of the system is 280-310 kHz. Track density (~70 m) was sufficient to provide >100% 117 

coverage in the area of interest.  The raw multibeam data were corrected for heave, pitch, roll, 118 

and yaw.  Sound velocity profile corrections were made based on CTD casts.  Tide corrections 119 

were performed based on raw data from a year-old tide station installed by UNAM in Puerto 120 

Progreso.  These data have not yet been calibrated to a specific sealevel datum, which typically 121 

takes two years of measurements to calculate (J. Zavala Hidalgo, pers. comm., 2013).  Erroneous 122 

echosounder pings were manually edited within CARIS software.  Navigation data were also 123 

edited within CARIS and the multibeam lines were merged and motion data were applied to 124 

correct for heave, pitch, roll, and yaw.  The final edited data were gridded at 0.00001 by 0.00001 125 

degrees (~1 m) with a vertical resolution of ~10 cm. Topographic profiles were generated for 126 

different feature types. 127 

 128 

2.2 Side-scan Sonar 129 

 The side-scan sonar data were collected using an EdgeTech 2000-DSS dual frequency 130 

system, towed simultaneously with multibeam acquisition. Track density (~70 m) and maximum 131 

slant range (100 m) were sufficient to provide >200% coverage, allowing for mosaics with 132 

uniform look direction.  The side-scan sonar system were operated at a frequency of between 385 133 

and 435 kHz, and data were acquired using EdgeTech’s Discover software.  Calculated layback 134 

corrections were input into the topside logging computer and applied to the recorded data.  The 135 
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towfish-generated side-scan data were slant-range corrected to remove the water column along 136 

the nadir of the data using CARIS software.  These data were then mosaicked using the 137 

integrated GPS locations corrected to the towfish position.  The mosaicked data were gridded at 138 

0.00001 by 0.00001 degrees (~1 m).  Images were made using single-direction illumination at 139 

full resolution (0.1 m) to allow for clearer geologic interpretation.  However, many important 140 

small-scale features that could be observed in the unmosaicked data were irreparably degraded 141 

by the stretching and averaging associated with the mosaicking process.  We will therefore also 142 

present unmosaicked side-scan images data in order to demonstrate these features. 143 

 144 

2.3 CHIRP Acoustic Reflection 145 

 CHIRP data were collected simultaneously with the side-scan data using the same EdgeTech 146 

2000-DSS instrument.  Approximately 435 line kilometers of CHIRP data were acquired.  The 147 

CHIRP sonar operated at a frequency of 2-15 kHz and acquired using EdgeTech’s Discover 148 

software.  Vertical resolution is ~10 cm.  Calculated layback corrections were input into the 149 

topside logging computer and applied to the recorded data.  A heave filter and fish-depth 150 

correction were applied to the data.  CHIRP data were interpreted using Landmark Decision 151 

Space software.  The sole interpretable horizon below the seafloor is the sand/limestone contact. 152 

 153 

2.4 Surface-towed boomer 154 

 Surface tow boomer (STB) data were collected along ~194 line kilometers.  These data have 155 

a median frequency of ~400 Hz, and a vertical resolution of ~1 m.  Layback was applied during 156 

acquisition.  STB reflection data are single channel and thus require minimal processing.  Data 157 

were converted from CODA format to SEGY and then imported into the Paradigm Geophysical 158 
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FOCUS seismic processing package. In FOCUS, the amplitudes were laterally balanced but no 159 

other filtering or scaling proved necessary.  Heave filtering was also applied to improve 160 

interpretability of the data.  Processed STB data were interpreted using Landmark Decision 161 

Space software 162 

 163 

2.5 Cone Penetrometer (CPT) and Grab Sampling 164 

 The CPT system used is a 2 cm2 cone penetrometer deployed from a 1300 kg frame.  Two 165 

attempts were made to collect CPT measurements on seafloor that was interpreted to consist of 166 

sand accumulations.  However, in each case the CPT head was bent backwards within 10-15 cm 167 

of the CPT base, indicating hard bottom at the seafloor or only very minimal sediment cover. 168 

 To assess the seafloor sediment in further detail, a series of grab samples using a Smith-169 

McIntyre grab sampler were taken around the IODP scientific drill sites.  Carbonate content of 170 

sands were tested by submersion in a 10% HCL bath; complete dissolution indicated 100% 171 

carbonate content.  Grain size analysis was performed by dry sieve for grain size larger than 1 172 

mm, and settling column for grain sizes 1 mm to 64 µm.  Visual observations indicated that the 173 

samples contain an insignificant (typically <1%) fine (< 63 micron) fraction, and so were not 174 

analyzed.   175 

 176 

3.0 Results 177 

3.1 Side-scan Backscatter and Grain Size Analysis 178 

 The side-scan mosaic (Figure 2) reveals the survey area to be dominated by a NE-SW 179 

oriented, linear fabric of alternating high and low backscatter zones, over width scales of 10’s to 180 

100’s of meters and length scales greater than the extent of the survey.  The full suite of grain 181 
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size analysis are shown in the supplemental material.  Grab samples 1, 5, 6 and 8 were collected 182 

in high-backscatter regions (Figures 2, 3).  All of these grabs collected very thin (< 2 cm deep) 183 

amounts of sample, indicating an inability of the grab to significantly penetrate the seabed.  Grab 184 

8 in particular collected no sediments, returning only living flora and fauna: coral, sea urchin, 185 

worms, at least two species of green flora, and a scallop.   186 

 Grabs 1, 5 and 6 also returned live flora and fauna along with sparse sediments.  These 187 

samples included coarse material consisting of whole and broken shells and coral fragments.  188 

The high-backscatter regions are therefore interpreted to be fully exposed hardgrounds, or areas 189 

of minimal sediment cover, assumed to be carbonate platform rock given the location on the 190 

Campeche Bank and documented geology of the Yucatán shelf (Logan et al., 1969; Ahr, 1973).   191 

 Grabs 2, 3, 4, 7, 9 and 10 were collected in low-backscatter regions (Figures 2, 3).  All these 192 

grabs returned, to >4 cm depth, well-sorted fine carbonate sand, with occasional small whole 193 

shells, and large foraminifera.  The low-backscatter regions are therefore interpreted to be sand 194 

accumulations overlying the hardgrounds.  195 

 Enlarged, higher-resolution images from the side-scan mosaic (Figure 4) reveal additional 196 

details, including variations in backscatter intensity within the sand accumulations, a scarp, and 197 

higher-backscatter returns from the base of a channel (these will be further detailed in 198 

presentation of bathymetry results in the following section).  However, even at the highest-199 

possible resolution (0.1 m), the smallest features observable on the seafloor are poorly imaged.  200 

In particular, the high-backscatter, hardground regions of the survey are extensively pitted by 201 

shallow, flat-bottomed, circular to oblong depressions that are best observed on unmosaicked, 202 

raw data images (Figure 5) rather than the mosaic.  Acoustic shadows cast on the nadir-side of 203 

the depressions (Figure 5a) indicate that they are steep-walled, possibly vertical.  The 204 
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depressions are typically ~1-8 m width (Figure 5a), but individual depressions can reach 10-15 m 205 

wide (Figure 5b), and aggregates (merging of multiple depressions; Figure 5a) can reach sizes of 206 

up to 50 m (Figure 5c).  The floors of the depression generally exhibit higher backscatter returns 207 

than outside the depression (Figure 5), and in some cases exhibit ripples (Figure 5c), providing 208 

evidence of coarse-grained unconsolidated sediments, possibly gravel.  Where depressions are 209 

proximal to sands, we occasionally observe low backscatter returns within the depressions, 210 

evidence of partial filling by the fine sands (Figure 5b).   211 

 The morphology of the hardground depressions is closely matched to “solution pans” (Ford 212 

and Williams, 2007), a karren type of karstification that forms subaerially on bare rock by 213 

rainwater-induced dissolution of carbonate.  An excellent example of a subaerial solution pan is 214 

shown in Figure 6 (Hassiba et al., 2012), observed on limestone outcrops in the Qatar desert.  215 

This pan measures ~3 m across and ~20-30 cm deep, with vertical walls, bearing a strong 216 

resemblance in size and shape to the smaller depressions imaged acoustically in Figure 5.  217 

Solutions pans obtain their distinctive shape by preferentially growing outward, rather than 218 

downward, owing to sediment accumulation within the depression (e.g., Figure 6), which inhibits 219 

dissolution on the floor while concentrating it on the edges (Cucchi, 2009).  220 

 Solution pans are frequently referred to in the literature as “kamenitzas” (e.g., Di Stefano and 221 

Mindszenty, 2000; Cucchi, 2009; Hassiba et al., 2012), and less often by numerous other terms 222 

largely dependent on where they were observed (see Cucchi, 2009).  An early study of solution 223 

pans in Texas (Udden, 1925) referred to them as “tinajitas”, a local Spanish term for these 224 

features that translates to “small water containers.”  Although this term may be appropriate given 225 

the location in Mexican waters, we opt to use “solution pan” as a more generically descriptive 226 

term.  Solution pans observed on land are, however, considerably smaller than the largest 227 



11 
 

examples observed in this study, typically ranging from a few centimeters to 1-2 m wide, with a 228 

maximum observed size of 6 m (Cucchi, 2009).  A particularly large example mapped by Udden 229 

(1925) in Texas limestone measured ~5 m long, ~3 m wide and ~60 cm deep. 230 

 231 

3.2 Multibeam Bathymetry 232 

 The overall bathymetry of the survey area is flat-lying, with short-scale variations ranging 233 

from ~16 to ~18 m water depth (Figure 7).  The sand bedforms observed in the side-scan sonar 234 

backscatter intensity data are also observed in the bathymetry (Figures 7, 8) to be topographic 235 

highs up to 1 m relief, with morphology organized at two scales.  The overall NE-SW trend (also 236 

observed on the side-scan sonar backscatter data; Figure 2) constitutes the larger scale, while at 237 

smaller scales we observe an orthogonal sand-wave morphology (~20-100 m wavelengths and 238 

relief of ~0.2-0.6 m), which are asymmetric with steeper slopes facing NE (Figure 9a).  The 239 

larger scale morphology can be classified as longitudinal bedforms (ribbons).  Such combined 240 

longitudinal/transverse bedform morphology is known to be indicative of strong current 241 

velocities (Kenyon, 1970).   242 

 Hardground regions between the sand bedforms exhibit morphology abundantly pitted by 243 

depressions (Figures 7, 8b), consistent with the observations of numerous pans from the 244 

unmosaicked side-scan images (Figure 5).  A bathymetric profile sampled within the hardground 245 

region (Figure 9b), although not well-enough resolved spatially to delineate the steep-walled, 246 

flat-bottom pan morphology of the depressions, can nevertheless be used to quantify the vertical 247 

relief of these features.  From this profile we observe relief of ~0.1 to 0.5 m, values consistent 248 

with, for example, the larger subaerial limestone solution pans documented by Udden (1925) and 249 

Hassiba et al. (2012; Figure 6).   250 
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 The morphology in the NW sector of the survey area (Figures 7, 8a), represents a notable 251 

departure from the sand bedforms/hard ground fabric that dominates the rest of the survey area.  252 

We observe ~1 m-relief scarps, and sinuous, dendritic channels of up to ~2 m of relief that 253 

appear to be paleo-flow features. This sector exhibits the strongest topographic variability, with 254 

up to 3 m total relief (Figure 7), and is dominated by high-backscatter reflectivity (Figures 2, 4a) 255 

indicative of hard grounds.  There are, however, surface sands evident in the backscatter (Figures 256 

2, 4a) which are not clearly evident in the bathymetry, indicating that the sand accumulations in 257 

this region are likely very thin. 258 

 259 

3.3 CHIRP and Boomer Reflection Data 260 

 Examination of reflection profiles revealed that the CHIRP data successfully imaged much of 261 

the sand bedforms, with detectable sub-seafloor reflections as shallow as ~0.15 ms (twtt) below 262 

the seafloor (~13 cm, assuming 1700 m/s acoustic velocity in sediment) that we interpret as the 263 

sand/limestone contact (Figure 10).  A maximum bedform thickness of ~1.3 ms (~1 m) was 264 

measured.  Figure 11 displays the interpreted sand isopach values overlain on the side-scan sonar 265 

backscatter map.  As expected, there is a very strong correspondence between where the sand 266 

reflector was imaged and where the low backscatter regions are.  Not every sand bedform could 267 

be imaged by the CHIRP data, indicating that many accumulations of sand are below the 268 

threshold of ~13 cm in thickness required to be imaged.  The thickest sands are in the SW sector 269 

of the survey area.   270 

 With ~1 m vertical resolution, surface tow boomer reflection data were unable to resolve the 271 

sand/limestone contact.  We were, however, able to image a subsurface reflector, assumed to be 272 

a layer within the limestone, ~1-3 m below the seafloor, and dipping slightly north (Figure 12).  273 
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This reflector did not otherwise display significant variability in depth throughout the entire 274 

study area.  In particular, we find no evidence of any significant disruption of the reflector that 275 

could be construed as a large karstic collapse structure, such as a cenote, which are common on 276 

the Yucatán Peninsula (Connors et al., 1996).   277 

 278 

4.0 Discussion 279 

4.1 Karst Development 280 

 By their similarity of morphology, and for lack of any plausible alternative explanation, we 281 

interpret the bedrock depressions observed on the seafloor in our study as solution pans.  282 

However, the formation of solution pans requires a critical condition: that bedrock be subaerially 283 

exposed so that rainwater can pool in depressions and dissolve rock downward and outward 284 

(Ford and Williams, 2007; Cucchi, 2009).  The bedrock cannot be covered with seawater; 285 

Campeche Bank solution pans must have formed when the shelf was exposed by lowered sea 286 

level.  Regionally-proximal sea level curves indicate that, at ~17 m water depth, the survey area 287 

was exposed prior to ~9-9.5 ka (Toscano et al., 2011) or ~10 ka (Simms et al., 2007), while 288 

global sea level models suggest an age closer to 8.2 ka (Simms et al., 2007).  This time frame 289 

corresponds to an abrupt sea level rise associated with release of Lake Agasiz waters into the 290 

northern Atlantic (Tornqvist and Hijma, 2012).  Global sea level curves (e.g., Waelbroek et al., 291 

2002; Siddall et al., 2007) indicate that subaerial exposure at the survey depths extended at least 292 

as far back as oxygen isotope stage (OIS) 5.1, ~80 ka, and more likely as far back as OIS 5.5, 293 

~120 ka.   294 

 The solution pans observed in this study are extraordinarily large, with single, unmerged 295 

examples often reaching sizes of 8 m in width, and occasionally 10-15 m (Figure 5).  In contrast, 296 
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solution pans observed on land have not been observed to exceed 6 m in width (Cucci, 2009).  297 

Even with > 100 kyr in exposure time, it is debatable as to whether this duration represents 298 

sufficient time to form such large solution pans, due to the low weathering rates of limestone by 299 

rainwater dissolution (typically 100ths to 1000ths of a mm/yr (e.g., Smith et al., 1995)).  300 

Information on growth rates for solution pans in particular, however, is extremely limited.  301 

Cucchi (2009) reports measurements of 0.02-0.03 mm/yr for the lowering rate of solution pans.  302 

However, for such extraordinarily large solution pans, the widening rate will be more important 303 

than the lowering rate as the base of pan becomes inured to lowering by the detritus that collects 304 

within.  Rose and Vincent (1986) estimated that a 10 cm deep and 20 cm wide solution pan 305 

would require 3260 years to form, which would suggest a widening rate of ~0.06 mm/yr.   306 

 Even if we assume a more generous rate of 0.1 mm/yr for outward growth of the Campeche 307 

Bank solution pans, an 8 m-wide pan would require 80 kyr years to form, and a 15 m-wide pan 308 

would require 150 kyr.  It is possible that the larger solution pans could have their origins prior 309 

to the OIS 5E highstand ~120 ka.  Alternatively, we might postulate, although without any 310 

evidence to support it, that solution pans may continue their growth in a marine setting, perhaps 311 

by mechanical or biological weathering.  In particular, the coarse-grained sediments that 312 

evidently reside within the pans could become agitated during storm events, thereby abrading 313 

and enlarging the perimeter of the pans.  314 

 Solution pan development also requires that bedrock not be covered by soil and vegetation.  315 

For such large pans, this implies that the Campeche Bank did not experience significant soil 316 

development over a span of 10’s of thousands of years while sea level was lowered.  Soil 317 

development on carbonate substrate is strongly dependent on climate (Isphording, 1978; Bautista 318 

et al., 2011).  On the Yucatán Peninsula today, strong variations in average rainfall correlate to 319 
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variations in soil thickness (Isphording, 1978; Bautista et al., 2011).  In particular, the northwest 320 

coastal plain, directly inshore of the survey area, experiences the driest conditions on the 321 

Peninsula (60-100 cm annually), has the thinnest soils (< 50 cm), and bedrock is exposed over 322 

40-60% of the area (Isphording, 1978).  Despite the bedrock exposure, solution pans have not, to 323 

our knowledge, been reported on land in this region, suggesting that even this amount of soil is 324 

sufficient to accumulate in any depression and prevent solution pan evolution.  We therefore 325 

hypothesize that lowstand climate on the Yucatán Peninsula was more arid than it is today.  326 

Possible support for this hypothesis is found in a paleoclimatology study of lacustrine sediments 327 

in Lake Quexil, Guatemala (Leyden et al., 1994).  Leyden et al. (1994) report that extremely arid 328 

conditions existed at that location throughout the last glaciation. 329 

 The NW sector of the survey area exhibits a more complex morphology than the alternating 330 

ribbon/bare rock morphology elsewhere, including scarps (up to ~1 m relief), deeper pitting (up 331 

to ~1 m relief), and sinuous, dendritic channeling (up to ~2 m relief).  These observations 332 

indicate that a diverse karstic morphology is present on the Campeche Bank, with the weathering 333 

effects of both flowing and standing water present.  Flowing water could indicate that a period 334 

wetter climate also existed sometime during the ~100 ky of subaerial exposure since OIS 5E.  335 

Alternatively, it is possible that channel-cutting weathering/erosion of bedrock by surface flow 336 

occurred during arid conditions.  Examples of such morphology are numerous; they can be 337 

driven either by steady spring-fed flows or punctuated floods (e.g., Laity, 2008).  A better 338 

understanding of this channel system would require a more extensive surface mapping effort to 339 

determine form, extent and origin. 340 

 341 
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4.2 Sand Bedforms 342 

 Linear sand bedforms oriented NE-SW, 10’s to 100’s of meters wide, and <1 m thick, are 343 

observed throughout the study area (Figure 2).  Within the larger sand bedforms, we observe 344 

asymmetric secondary bedforms (~20-100 m wavelengths and relief of ~0.2-0.6 m) with steeper 345 

sides facing to the NE (Figure 9b).  The bedforms bear a strong morphological similarity to “type 346 

C sand ribbons,” in size, shape and sand thickness, as described by Kenyon (1970) in a study of 347 

bedforms in the North Sea.  Sand ribbons are longitudinal bedforms indicative of relatively 348 

strong current velocities (Stow et al., 2009).  The secondary bedforms indicate that the flow that 349 

formed the ribbons was directed to the NE.   350 

 Ambient flow directions on the Campeche Bank are westerly at all times of the year (Zavala-351 

Hidalgo et al. 2003), inconsistent with the indicated NE flow direction.  We hypothesize that the 352 

bedforms are formed during strong flow events, and that ambient current conditions are 353 

insufficiently vigorous to remobilize the sand.  Some support for this hypothesis is provided by 354 

boundary-layer flow measurements on the Campeche Bank by Sternberg (1976).  At three 355 

locations at 35-46 m water depth on the northern and eastern sides of the Bank, he measured 356 

ambient current speeds of 5-18.5 cm/sec at 1 m above the seafloor.  Such current speeds are well 357 

below the threshold required to transport fine sand (~60-80 cm/sec; Miller et al., 1977).  The 358 

numerous tropical cyclones that have historically impacted the Campeche Bank (Boose et al., 359 

2003) provide an obvious candidate for such events.  For example, a linear string of transverse 360 

bedforms, similar to our observations, was documented by Kennedy et al. (2008) to have formed 361 

in response to Hurricane Dennis offshore of Panama City, Florida.  Tropical storm Dolly 362 

(http://www.nhc.noaa.gov/data/tcr/AL042008_Dolly.pdf) is a recent candidate for impacting the 363 

survey area.  Dolly’s track crossed the northern coast of the Yucatán Peninsula in 2008 on a 364 

http://www.nhc.noaa.gov/data/tcr/AL042008_Dolly.pdf
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WNW track; the storm eventually strengthening to a hurricane over the Gulf of Mexico before 365 

making landfall again at Brownsville, Texas.  As Dolly exited the Campeche Bank region, the 366 

survey area would have been in the SE quadrant of the storm, with wind-driven currents from the 367 

counterclockwise-rotating cyclone directed to NE.  Hurricane Gilbert (Brown et al., 2014), which 368 

followed a similar path in 1988, is also a possible candidate. 369 

 370 

5.0 Conclusions 371 

 The Campeche Bank, on the northern edge of the Yucatán Peninsula, Mexico, is a vast and 372 

largely unexplored terrain.  It is not, however, featureless.  Having been exposed continuously 373 

for many tens of thousands of years since the last sea level high-stand, the carbonate platform 374 

has experienced substantial karstic weathering that was preserved after inundation by rising sea 375 

level, and kept exposed at the seafloor by non-depositional conditions.  Solution pans in 376 

particular are observed nearly everywhere in our survey area not covered by sand.  Most 377 

individual solutions pans observed in our study area are 1-8 m in width, but a few are as large as 378 

15 m in width and, where multiple pans have merged together, the aggregated depressions can 379 

reach 50 m in width.  The great size of these solutions pans implies that the Campeche Bank was 380 

subaerially exposed with soil free conditions for a very long time.  The larger solution pans are 381 

likely to have been in development for many 10’s of thousands of years, and possibly well over 382 

100 kyr.  The lack of soil development over such a long time frame suggests very arid 383 

paleoclimatological conditions on the Yucatán Peninsula during glacial periods. 384 

 Additional bedrock morphology observed in our study area includes flow channels up to 2 m 385 

deep, and scarps up to 1 m tall.  These features suggest a rich diversity of karstic landforms on 386 
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the Campeche Bank that will require additional survey work to explore and investigate origins 387 

and timing. 388 

 A thin (< 1 m) cover of fine carbonate sands is also observed in the survey area.  These sands 389 

are organized into highly linear bedforms oriented NE-SW, 10’s to 100’s of meters wide, and 390 

kilometers long (the length scale exceeds the survey extent), with exposed bedrock between the 391 

sand bedforms.  Within the larger bedforms we observe secondary bedforms with a scalloped 392 

plan view and asymmetric cross section, with steeper slopes facing the NE.  This morphology is 393 

indicative of sand ribbons formed under a NE-directed flow regime.  In contrast, the ambient, 394 

year-round current direction in the vicinity of the survey region is westward; we suggest instead 395 

that the sand ribbons formed during a cyclonic storm.   396 

 397 
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Figure Captions 490 

Figure 1.  Location of survey area, overlain on regional bathymetry (derived from ETOPO5 491 

(http://www.ngdc.noaa.gov/mgg/global/etopo5.html).  Depth contours are in meters.  The dock at 492 

Puerto Progreso, Mexico, is indicated by heavy line in the lower right of the image; it is ~20 nm 493 

from the survey box.  Inset shows location of map on the northwest coast of the Yucatán 494 

Peninsula, in the Gulf of Mexico. 495 

 496 

Figure 2.  Side-scan sonar backscatter map generated from east-looking illumination direction 497 

only, gridded at 0.00001 by 0.00001 degrees (approximately 1 m).  Lighter shades indicate 498 

higher backscatter intensities.  Grab sample locations G1-G10 are identified, as well as locations 499 

for Figures 4, 5 and 10. A notable offset in the middle of the survey area corresponds to the 500 

boundary between northward (right) and southward (left) run lines, and thus likely indicates a 501 

small error in the estimated layback value.   502 

 503 

Figure 3.  Grain size histograms estimated for the selected grab sample sediments, one from a 504 

low-backscatter region (Grab 3) and the other from a high-backscatter region (Grab 5).  505 

Locations shown on Figure 2. 506 

 507 

Figure 4.  Full-resolution (0.1 m grid spacing) side-scan sonar mosaic images of selected regions, 508 

showing strong contrast regions of low backscatter intensities, which are found to be sand 509 

accumulations, and areas of higher backscatter intensity, which indicate regions of exposed rock.  510 

Also identified are a scarp and a channel (a) that are observed in the bathymetry (see also Figure 511 

8a).  Location shown on Figure 2. 512 
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 513 

Figure 5.  Selected raw side-scan images, displaying pitted morphology otherwise poorly imaged 514 

after the mosaicking process.  The scale bar is accurate for the horizontal (cross-swath) direction.  515 

The along-track direction is originally specified in time.  However, by comparison with the 516 

mosaic (Figure 2), we have rescaled the image so that the vertical spatial scale is approximately 517 

that of the horizontal scale. (a) Shallow, flat-bottomed, semicircular depressions.  A linear sand 518 

bedform is observed at the bottom of the image.  (b) Some of the largest single depressions, up to 519 

15 m wide. At least two depressions have been partially filled by mobilized sediments 520 

highlighted by lower backscatter intensities.  (c)  Merged depressions.  Ripples are also observed 521 

in the depression bottoms, indicating the presence of loose, coarse sediment rather than exposed 522 

rock. Locations shown in Figure 2.   523 

 524 

Figure 6. Photograph of a solution pan within limestone outcrop of the Qatar desert (Hassiba et 525 

al., 2012).  Based on the people for scale, we estimate the feature is ~3 m wide and 20-30 cm 526 

deep, with vertical sides.  The size and shape are similar to many of the depressions imaged in 527 

Figure 5. 528 

 529 

Figure 7.  Color-contoured multibeam bathymetry, artificially illuminated from the north, 530 

gridded at 0.00001 by 0.00001 degrees (~1 m).  Locations for Figures 8, 9 and 12 are indicated. 531 

 532 

Figure 8.  Detailed multibeam bathymetry examples of selected regions.  Conspicuous features 533 

identified include (a) a number of scarps and a channel that are also observed in the side-scan 534 
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mosaic (compare Figure 4a), and (b) longitudinal sediment bedforms and pitted morphology 535 

(compare Figure 4b). Locations shown on Figure 7. 536 

 537 

Figure 9.  Topographic profiles through (a) sand bedforms and (b) pitted morphology.  The sand 538 

bedform profile (a) exhibits ~20-50 cm-tall, asymmetric bedforms, with steeper sides to the NE.  539 

Relief of the depressions ranges from ~10-50 cm. Locations shown in Figure 7.   540 

 541 

Figure 10.  Uninterpreted (top) and interpreted (bottom) CHIRP profile through a sand bedform.  542 

The base of the sand bedform is observed as a reflection ~0.3-0.6 ms (~25-50 cm, assuming 1700 543 

m/s speed of sound in sediment) below the seafloor. Location is shown in Figures 2 and 11.   544 

 545 

Figure 11.  Sand isopach data overlain on side-scan sonar backscatter data.  Location of Figure 546 

10 is indicated. 547 

 548 

Figure 12.  Examples of heave-compensated surface tow boomer reflection data with 549 

penetrations up to a few meters subsurface.  The upper unit between the seafloor and first 550 

reflector is 1-3 m thick (assuming an acoustic velocity of 2000 m/s speed of sound in bedrock). 551 

The ~2 m-deep channel feature located on (b) lacks any underlying deeper root. Locations shown 552 

in Figure 2. 553 

 554 
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