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ABSTRACT

Large-scale overturning cells in the ocean typically combine an essentially horizontal surface branch and an

interior branch below, where the circulation spans both horizontal and vertical scales. The aim of this study is to

analyze the impact of this asymmetry between the two branches by ‘‘folding’’ a one-dimensional thermohaline

loop, such that its lower part remains vertical while its upper part is folded down into the horizontal plane. It is

found that both the transitory response and the distribution of thermohaline properties are modified signifi-

cantly when the loop is folded. In some cases, velocity oscillations are induced during the spinup that were not

seen in the unfolded case. This is because a circular loop allows for compensations between the density torques

produced above and below the heat forcing level, while such compensations are not possible in the folded loop

because of the horizontal direction of the surface circulation. Furthermore, the dynamical effects associated

with nonlinearities of the equation of state are significantly altered by the folding. Cabbeling tends to decelerate

the flow in the folded loop, instead of accelerating it as in the circular case, and can also act to dampen velocity

oscillations. Thermobaricity also alters the loop circulation, although comparatively less.

1. Introduction

Overturning cells of various shapes and sizes are a

pervasive feature of the global ocean, ranging from the

small eddy-induced circulations to the global-scale me-

ridional overturning circulation (MOC). Overturning

circulations are often analyzed in simplified frameworks

like the Stommel box model, which consists of two

connected, well-mixed reservoirs of different tempera-

ture and salinity and features different circulation

modes depending on the relative strength of the thermal

and haline forcings (Stommel 1961).

The thermohaline loop is a variation of the Stommel

box model in which properties can vary continuously

along a one-dimensional loop, allowing for a more re-

alistic representation of the advective-diffusive balance

(e.g., Welander 1967; Huang 1999; Wunsch 2005). It

does not only find application in physical oceanography

but in the form of the so-called thermosyphons also in

nuclear and solar energy engineering (e.g., Zvirin 1982;

Miljkovic and Wang 2011). Despite their simple setup,

thermohaline loops exhibit a variety of dynamical be-

haviors including instability and chaos (Malkus 1972;

Welander 1986; Yuan and Wunsch 2005).

Although it is unclear to what extent analogies be-

tween these conceptual representations and the real

ocean can be drawn, it has been argued that by capturing

the basic physics these idealized models can indeed

provide an intuitive understanding of more complex,

higher-dimensional processes (Bryan 1986; Ruddick and

Zhang 1996; Manabe and Stouffer 1999; Held 2005).
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Wunsch (2005) devised a circular loopmodel with point

sources and sinks of salinity and temperature applied on

either side of the loop, typically at an angle of 458 from the

loop’s top. The case of applying sources and sinks at the

same height is of particular interest for ocean studies, as it

represents the case of horizontal convection best (Hughes

and Griffiths 2008). This means that in theWunsch model

part of the circulation occurs at a level above the position

of sources and sinks. In the real ocean, however, the

thermohaline forcing (leaving aside geothermal heating)

is applied directly at the ocean surface, introducing an

asymmetry between an essentially horizontal surface flow

and a deeper, both horizontal and vertical, one in the in-

terior. We therefore propose a simple modification of the

Wunschmodel where the upper portion of the loop above

the level of source and sink is folded downuntil it becomes

purely horizontal (cf. Fig. 1).1

In this study, we investigate the dynamical modifica-

tions introduced when folding the loop, considering a

simplified nonlinear EOS similar to the one in Vallis

(2006, p. 34). In most idealized studies, including the one

by Wunsch (2005), a linear EOS is assumed. Yet, in the

real ocean, the EOS is nonlinearmainly through a strong

dependence of the seawater thermal expansion on

temperature and pressure, giving rise to cabbeling and

thermobaricity, respectively. Both effects induce verti-

cal advection through neutral surfaces (albeit only

downward in the case of cabbeling) and have been

shown to considerably affect the circulation and water

mass properties (e.g., McDougall 1987; Klocker and

McDougall 2010; Schanze and Schmitt 2013; Hieronymus

and Nycander 2013). One key aspect of this study is to

explore how the impact of these two nonlinear effects

changes when the loop is folded.

This paper is organized as follows: In section 2, we

describe the loop model, discuss it analytically, and

present the numerical implementation. We then de-

scribe the dynamics of the linear EOS scenario (section

3) before addressing the nonlinear case in section 4. An

extensive discussion of the results and their applicability

is given in section 5, and a brief summary is given in

section 6.

FIG. 1. (a) Schematic description of the fluid loop as proposed by Wunsch (2005) and (b) the

modified folded version. The loop coordinate is represented as l 5 aF, where the angle F is

measured clockwise from the top and a denotes the radius. Sources and sinks of temperature

and salinity are applied at l1 and l2, respectively, which are located at the same height Zf. The

azimuthal velocity w is constant around the loop for reasons of continuity. In the modified

version, the loop is folded at the level of source and sink until the part above is purely hori-

zontal. The steady-state temperature distribution is also shown; blue and red colors denote cold

and warm fluid, respectively, with dashed lines representing the strong temperature gradients

within the diffusive boundary layers.

1 Note that also the lowest portion of the loop could be folded

into the horizontal plane since many overturning cells feature

both a horizontal surface and a horizontal bottom branch. How-

ever, as the bulk of the buoyancy forcing is confined to the ocean’s

surface, little dynamical effect is expected from a folded lower

branch, which is why we restrict ourselves to folding the loop’s

upper part only.
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2. The loop model

a. Governing equations

The model consists of a closed fluid loop with an in-

finitesimal section area, so that radial velocities can be

neglected. The loop natural coordinate l is defined as the

distance along the circle from the top of the loop, in-

creasing clockwise. The total length of the loop is given

byL5 2pa, where a denotes the radius. The focus of this

study is on heat-induced horizontal convection, where

heating and cooling occur at the same height and no

salinity forcing is applied. Two geometries of the loop

will be considered (cf. Fig. 1):

1) The circular loop: Essentially the same model as in

Wunsch (2005). The loop coordinate is l5 aF, where

F is simply the angle from the top, which is defined

positive for clockwise turning. Height is thus given as

z(l) 5 a cos(l/a). Sinks and sources of temperature

and salinity are applied at positions l2 5 aF2 # L/2

and l1 5 aF1 5 L 2 l2, respectively, that is, at the

same height Zf.

2) The folded loop: The part above source and sink

(z $ Zf in the circular loop) is now folded down

horizontally. The loop coordinate is kept unchanged,

only the height function is modified, with z(l) 5
min[Zf, a cos(l/a)]. By analogy, an equivalent angle

F 5 l/a can still be defined, although it must be kept

in mind that it is now associated with two different

circular paths, one vertical for the interior flow and

one horizontal for the surface flow.

Loop equations are derived based on the seawater

Boussinesq approximation (e.g., Young 2010; Roquet

2013), which differs from the standard Boussinesq

approximation in its ability to use a nonlinear EOS.

The continuity equation simplifies to the constraint

that the loop velocity w(l) 5 Dl/Dt is constant around

the loop:

›w

›l
5 0, (1)

with an immediate consequence that the momentum

advection term is always null in this model.

The momentum equation is given by

›w

›t
52

1

r
o

›p

›l
1 gsP(l)2 «w1 t , (2)

where s 5 (r 2 ro)/ro represents the density anomaly

with respect to a reference value ro, g is the gravitational

acceleration, and p is the pressure. The quantity P(l) is

the so-called curvature term defined as

1) P(l) 5 sin(l/a) for the circular loop, and

2) P(l) 5 m(l) sin(l/a) for the folded loop,

with m(l) denoting a mask function, equal to 1 in the

lower branch of the loop (i.e., where z # Zf) and

0 elsewhere (i.e., in the horizontal, folded part). The

parameter « describes a constant Rayleigh friction co-

efficient, and t is an applied stress averaged along the

loop, representing the integrated effect of the wind.

Since velocity is constant, integrating Eq. (2) around

the loop produces a simplified formwithout the pressure

gradient term:

›w

›t
5 gsP2 «w1 t , (3)

where the overbar represents the loop mean:

T5 (1/L)
Ð
T dl. Whereas in the circular loop each point

around the loop contributes to the buoyancy term gsP,

the surface branch of the folded loop becomes irrelevant

to dynamics as it is completely horizontal.

Incidentally, the loop model’s pressure is a diagnostic

quantity and follows a nonhydrostatic balance:

›p

›z
52r

o
g

�
s2m

sP

sin(l/a)

�
, (4)

although the nonhydrostatic contribution is typically

negligible. Indeed, the ratio of hydrostatic to non-

hydrostatic vertical pressure variations, given by

sP/sP, is on the order of 1011 for a typical length scale

of 107m, a time scale of 600 yr, and a scale of 1023 for the

density anomaly s (a discussion of suitable scaling pa-

rameters for the ocean is provided in section 5 and

shown below in Table 3).

The EOS describes the density anomaly s as a func-

tion of temperature Q, salinity S, and, in the seawater

Boussinesq approximation, height z:

s5 ~s(Q, S, z) . (5)

The temperature variable Q represents Conservative

Temperature (McDougall 2003) and the salinity vari-

able S is Absolute Salinity (McDougall et al. 2009).

Trends in buoyancy are given by

D~s

Dt
52a

DQ

Dt
1b

DS

Dt
2 g

Dz

Dt
, (6)

whereD/DT5 ›/›t1w›/›l is the Lagrangian derivative.

The parameters a, b, and g describe the coefficients of

thermal expansion, haline contraction, and compress-

ibility, respectively. These are defined as

a52
›~s

›Q

����
S,z

, b5
›~s

›S

����
Q,z

and g52
›~s

›z

����
Q,S

. (7)
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Here, we assume the following nonlinear EOS based

on the formulation by Vallis (2006, p. 34), which cap-

tures the main nonlinear EOS effects:

~s52a
o

�
11

l

2
(Q2Q

o
)2mz

�
(Q2Q

o
)1b

o
(S2 S

o
) ,

(8)

where Qo, So, ao, bo, l, and m are constant values. The

cabbeling effect involves a quadratic term in tempera-

ture, whose strength is set by the parameter l. The

thermobaric effect, on the other hand, is related to the

dependence of the thermal expansion coefficient on

pressure, here represented as a depth–temperature prod-

uct term of magnitude m. Setting l 5 m 5 0 consequently

produces a linear EOS.

The tracer equations are given by

DQ

Dt
5k

›2Q

›l2
1h

Q
D
f
, and (9)

DS

Dt
5 k

›2S

›l2
1h

S
D
f
, (10)

where k represents eddy diffusivity assumed constant

around the loop and equal for salinity and temperature.

The terms hQ and hS control the magnitude of the heat

and salt forcing, respectively, whose distribution is given

by

D
f
5 2p[d(l2 l

1
)2 d(l2 l

2
)] , (11)

where d denotes theDirac delta function. Only fixed flux

forcings will be considered in this study; the case of re-

laxation forcing will be addressed in future work.

b. Nondimensionalization

Equations are nondimensionalized assuming that the

magnitudes of density anomalies are scaled by the thermal

source strength. Scaling constants are denoted by a su-

perscript s and the nondimensional quantities are denoted

by a primewithT5To1T0Ts, where reference values are

equal to zero except in the case of salinity and tempera-

ture. The scaling constants are set to

ls 5 a, ws 5
s sg

«
0 ts 5

ls

ws
5

a«

gs s
. (12)

From the equation of density [Eq. (6)], the scaling

constants for temperature and salinity can be

obtained:

Qs 5
s s

a
o

, Ss 5
s s

b
o

. (13)

As a result, the following scaling expression for density

is found:

hs
Q 5

Qs

ts
0s s 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a«a

0
hs
Q

g

s
. (14)

The nondimensional equations of motion then take

the form

F
›w0

›t
5s0P0 2w0 1 t0 , (15)

s0 52

�
11

l0

2
Q0 2m0z0

�
Q0 1 S0 , (16)

DQ0

Dt0
5R

›2Q0

›l02
1D

f
, and (17)

DS0

Dt0
5R

›2S0

›l02
1hD

f
, (18)

where D/Dt0 5 ›/›t0 1w0›/›l0.
Apart from geometrical parameters (i.e., circular vs

folded cases and the vertical position of forcings Zf),

several nondimensional parameters are defined in the

loop model:

1) the inverse Rayleigh number R5 k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«/(ga3a0h

s
Q)

p
,

which corresponds to the ratio of diffusive to advective

time scales and controls the sizeof thediffusiveboundary

layers near the source and sink (as will be shown later);

2) themomentum stress forcing t0 as a representation of
frictional forcing;

3) the Grashof number F5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ga0h

s
Q)/(a«

3)
p

, which

represents the ratio of frictional to advective time

scales. Assuming inertialess flow, that is, F / 0, is

equivalent to neglecting frictional oscillations. Equa-

tion (15) then simplifies to

w0 5s 0P0 1 t0 ; (19)

4) the salt forcing strength parameterh5 (boh
s
S)/(aoh

s
Q),

which scales the magnitude of the salinity forcing

relative to that of the temperature forcing; when it is

set to one, the temperature and salinity forcings

cancel exactly when a linear EOS is assumed. Note

that a circulation can be generated even if h5 1 if the

EOS is nonlinear. No salt forcing will be considered

in this paper, that is, h will be kept to zero; and

5) finally, the cabbeling and thermobaricity parameters

l0 and m0.

The only formal difference between the circular and

folded loop model concerns the buoyancy term, which is

masked in the folded loop case. Another, somewhat mi-

nor difference is that the definition of height is changed

with consequences for the thermobaric term in the EOS.
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In the rest of the paper, we will refer to non-

dimensionalized quantities only, and the primes will be

dropped for clarity.

c. The numerical model

Following the approach by Wunsch [2005, cf. his Eqs.

(11)–(14)], the system of equations—Eqs. (16)–(19), us-

ing the inertialess assumption—can be solved analytically

for the equilibrium velocityw if a linear EOS is assumed.

This procedure can be extended to nonlinear scenarios

including only thermobaricity; when adding the cabbeling

term or folding the loop, however, the ability to

compute a simple analytical solution is lost. Therefore, a

numerical investigation of loop dynamics is required.

The loop model is implemented in Fortran90, using a

forward differencing scheme for the diffusive part and a

leapfrog scheme for the advection and forcing terms.

With a time increment of Dt 5 1024 and 360 grid points

around the loop (i.e., DF 5 18), the diffusion scheme is

stable for R , 0.4. Since the velocity overshoot is typi-

cally below w 5 2, the Courant–Friedrich–Levy crite-

rion w # DF/Dt ’ 175 is easily fulfilled.

Our standard parameter settings are R 5 0.1 (weak

diffusion), t 5 0 (no wind stress forcing), and h 5 0 (no

salinity forcing). The simulations are started at rest (w5
0) with temperatures set to zero everywhere. The ther-

mal forcing, applied at the same height (i.e.,

F1 1 F2 5 2p), is switched on at t5 0. Our main focus

is on the scenario Zf 5 0.5 (i.e., F2 5 p/3; cf. Fig. 1).

With these settings, equilibrium is typically reached at

t ’ 15 in the circular loop model and at t ’ 20 in the

folded loop model. Unless otherwise noted, the simu-

lations involve 106 iterations (i.e., tend5 100), which take

less than a minute to perform on a standard computer.

The numerical model is validated based on scenarios

that allow for the computation of an analytical solution

for w. We find that for our standard parameter settings,

the difference between numerical and analytical solu-

tions is several orders of magnitude smaller than the

respective analytical velocity. The remaining in-

accuracies are therefore considered too small to influ-

ence the conclusions drawn here.

3. Loop dynamics with a linear EOS

Considering a linear EOS, density2 is given by

s 5 2Q, and velocity is given by w52QP (again, we

focus on a thermally driven circulation, i.e., h 5 t 5 0).

The curvature term P weights various parts of the loop

differently as to their influence on velocity; changes in

density around z 5 0, where sin(F) is maximum, have

the greatest impact, while events at the loop’s top or

bottom are irrelevant for velocity. Since the sine func-

tion is antisymmetric with respect to the vertical axis, its

product with any symmetric function integrates to zero

around the loop—a property that is preserved when

folding the loop. This has important consequences for

the buoyancy term sP, as density can be decomposed

into the symmetric horizontal mean sm and the anti-

symmetric horizontal anomaly sa:

sm 5
s(F)1s(2F)

2
,

sa 5
s(F)2s(2F)

2
, (20)

with sm(F) 5 sm(2F) and sa(2F) 5 2sa(F). As a

consequence, only the distribution of the horizontal

density anomaly sa can affect the loop velocity:

sP5saP . (21)

Note that the vertical integral of the density anomaly

as a function of height is simply equal to half of the in-

stantaneous velocity:

w5 2

ð1
21

sa(z) dz . (22)

This means that positive values tend to accelerate the

flow (and vice versa), and compensations can arise when

both negative and positive density anomalies are ob-

served simultaneously.

a. The transitory regime

The simulations are started from a state of rest with

temperatures set to zero everywhere. When the thermal

forcing is turned on at t5 0, temperature anomalies are

generated at the source and sink (cf. Fig. 2) that induce

horizontal density anomalies and thus a nonzero veloc-

ity. This will in turn advect the temperature anomalies

away from the forcing region and further modify ve-

locity. Because of the influence of the curvature term,

the highest velocities can be obtained when source and

sink are applied at Zf 5 0, where sin(F) 5 1. The cir-

culation reaches its maximum speedwhen the horizontal

density anomaly, integrated around the loop, is largest in

accordance with Eq. (19). For example, when source and

sink are applied atZf5 0 in the circular loop model, this

is given when the warm front reaches the top and the

cold front reaches the bottom of the loop. As velocity

2 Note that from here on we refer to the nondimensional density

and mass anomalies simply as density and mass for the sake of

brevity. This is the reason why ‘‘negative densities’’ are sometimes

obtained.
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decreases, the fluid is advected more slowly past the

source and sink, which increases their efficiency and

leads to higher temperature amplitudes (and vice versa).

There are further oscillations in temperature (cf. Figs. 2

and 3) that are associated with the arrival of warm (cold)

temperature anomalies at the sink (source) and whose

amplitudes are steadily decreased by diffusion. Yet,

those temperature oscillations do not yield velocity

oscillations because they tend to compensate almost

exactly upon integration around the loop.

When the loop is folded, significant differences in

magnitude are observed. The velocity is generally re-

duced as expected, and it takes longer for the system to

reach a steady state (cf. Fig. 3). Also, the temporal

variations of velocity and temperature are modified

substantially. For example, in the circular loop the

FIG. 2. Initial evolution of temperature as a function of time and position for the circular and the folded loop

model. (a),(c) When source and sink are applied at Zf 5 0, the temperature amplitudes are the same at source and

sink. (b),(d) Shifting the source and sink up or down, for example, with Zf 5 0.5, leads to an asymmetric tem-

perature distribution. (e),(f) When the loop is folded, the temperature distribution is similar but exhibits higher

amplitudes because of the significant velocity decrease, which is underlined by the temperature difference DQ 5
Q(full) 2 Q(folded). Contour lines are placed at intervals of 1 in (a)–(d) or 0.5 in (e) and (f).
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maximum velocity overshoot is obtained for the case

Zf 5 0 (Fig. 3a, red curve), while in the folded loop the

velocity maximum is highest for the setting Zf 5 0.5

(Fig. 3b, green curve). Moreover, in the latter case os-

cillations in velocity are observed that do not exist in the

circular loop case. This is because once the loop is

folded, buoyancy anomalies produced in the upper part

of the loop can no longer compensate anomalies in its

lower part (see Fig. 3).

b. Steady-state properties

The steady state is reached when a diffusive-advective

temperature balance is achieved everywhere around the

loop. Then, temperatures are negative in most of the

lower loop between the sink and source and positive in

most of the upper loop between source and sink (cf.

Figs. 1 and 2). Because of diffusion, however, the tem-

perature changes sign slightly above the sink and slightly

below the source, which gives rise to a small region

around Zf where Q and thus s change sign horizontally.

This region is pivotal for maintaining the circulation in

equilibrium; if the temperature and hence the density

distribution were exactly symmetrical around the verti-

cal axis, the horizontal density anomaly would be zero

everywhere and there could be no circulation.

Simple scaling laws can be derived for the size of these

diffusive boundary layers and the observed amplitude of

temperature anomalies. Except at the point of source

and sink, the source balance in equilibrium is given by

w
›Q

›l
5R

›2Q

›l2
, (23)

FIG. 3. Variation of velocity and temperature at the source and sink with time in the linear EOS scenario for the

(a) circular loop and the (b) folded loop model. The highest equilibrium velocities are obtained when source and

sink are applied at Zf 5 0, where the curvature term P is maximum. The corresponding temperature variation

demonstrates that faster advection results in lower temperature amplitudes. Significant changes in the variability of

the transitory regime are observed when the loop is folded down.
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which describes an exponential variation of temperature

above the sink and below the source. The thickness of

the boundary layers dBL thus scales as dBL } R/w, which

implies that their size is increased when diffusion is

stronger and decreased when the circulation is faster.

Assuming thin boundary layers allows for another

approximation: Based on the constraint of heat conser-

vation, temperature anomalies have to cancel around

the loop in equilibrium. When diffusion is weak, the

temperature is nearly constant in both the warm and

cold branch, and that constraint can be expressed as

L1DT1 1L2DT2 ffi 0, (24)

where L1 denotes the length of the warm upper path,

L2 is that of the cold path belowZf (L
11L25L), and

DT1 and DT2 are their respective temperatures. Note

that if diffusion is strong (i.e., R ’ 1 or more), the

boundary layers cannot be neglected and the tempera-

ture distribution within each path can no longer be ap-

proximated by a constant.

Equation (24) indicates that the relative length of the

warm path determines its temperature amplitude, that

is, the temperature amplitude at the source, relative to

that at the sink. In the symmetric case with Zf 5 0, the

warm path is as long as the cold path (L1 5 L2), and

consequently, DT1 5 2DT2. Positioning source and

sink atZf5 0.5, on the other hand, means that the warm

branch is half as long as the cold branch, which requires

DT1 5 22DT2 in equilibrium.

The heat budget of a section of the loop including the

source and the associated boundary layer, but not the

sink, is given by

2p1wDT2 2wDT1 5 0. (25)

Combining Eqs. (24) and (25), we obtain

DT1 5
L2

w
. (26)

This relation is confirmed in numerical experiments for

both model versions when the standard parameter set-

tings are applied (cf. Table 1).

The diffusive boundary layer of the loop’s right

branch is situated above the sink, which in the folded

loop model lies within the folded part that does not

contribute to the buoyancy torque. In the dynamically

relevant part of the folded loop, the section where hor-

izontal temperature anomalies are high is then approx-

imately half as large as in the circular model (cf. Fig. 1).

This partly explains the observed reduction in velocity

compared to the circular model (Dw5218.3% for Zf5
0.5 andDw5222.4% forZf5 0). However, the velocity

decrease is somewhat smaller than expected considering

the length of loop that is folded (30% and 50%, re-

spectively). This is because the lower velocity induces, in

turn, a distinct rise in temperature amplitudes as pre-

dicted by Eq. (26), leading to a compensation through

slightly increased horizontal density gradients.

c. Sensitivity to the forcing position Zf

In the circular loop, the effect of vertically shifting the

level of source and sink is symmetric about z5 0, that is,

at any time, the same loop velocity is obtained for Zf

and 2Zf (cf. Table 1). Choosing Zf 5 20.5 instead of

Zf 5 0.5, for example, means that the cold path is half

instead of twice as long as the warm path. The relative

length of upper and lower paths, however, is not affected;

in consequence, the temperature distribution is the same

but of opposite sign, and the velocity remains unaffected.

This symmetry is broken in the folded loop model; since

the loop is always folded at the level of source and sink,

the size of the dynamically important part of the loop is

varied when source and sink are shifted vertically.

An asymmetric positioning of source and sink (i.e.,

Zf 6¼ 0) has important consequences for dynamics: First,

the timing of the various dynamical events becomes

asynchronous, as the warm front reaches the top or the

sink earlier/later than the cold front reaches the bottom

or the source (cf. Fig. 2b). Second, because of their dif-

ferent amplitudes, the warm or cold temperature

anomalies no longer compensate (the asymmetric tem-

perature distribution begins to be established at t ’ 0.6

for Zf 5 0.5). This causes oscillations and even sign

changes in the horizontal density anomaly (cf. Fig. 4),

which approaches its equilibrium distribution smoothly

in both model setups when Zf 5 0 (not shown).

4. Cabbeling and thermobaricity

Introducing cabbeling only, the EOS assumes the

form s5 slin 1 scabb. Unlike the linear term slin 52Q,

TABLE 1. Steady-state velocity and temperature values for dif-

ferent positions of source and sink in the circular and the folded

loop model.

Model Zf F2 w Q(F1) Q(F2)

Circular loop 0.87 p/6 0.46 11.34 22.29

0.5 p/3 0.55 7.60 23.80

0 p/2 0.58 5.42 25.42

20.5 2/3 p 0.55 3.80 27.60

20.87 5/6 p 0.46 2.29 211.34

Folded loop 0.87 p/6 0.40 12.81 22.61

0.5 p/3 0.45 9.36 24.68

0 p/2 0.45 6.97 26.97

20.5 2/3 p 0.41 5.16 210.31

20.87 5/6 p 0.26 3.95 218.28
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the nonlinear contribution scabb 5 20.5lQ2 has the

same sign everywhere, leading to a buoyancy gain

throughout the dynamically relevant part of the loop.

Including only thermobaricity in the EOS leads to the

form s5 slin1 stherm, where the nonlinear contribution

stherm 5 mzQ changes sign both with height and tem-

perature. Consequently, cabbeling and thermobaricity

are expected to induce different dynamical modifica-

tions compared to the linear scenario.

a. Effect on the steady state

As illustrated in Fig. 4, the region around source and

sink is pivotal for loop dynamics; the impact of the non-

linear effects at that level will therefore determine how

they affect the steady-state velocity of the circular loop.

Wewill first discuss the case of introducing cabbeling only.

At the source, density is negative and reduced even

further due to cabbeling (assuming l. 0). This leads to

an increased tendency to rise and hence a faster circu-

lation (represented by the longer red arrow in the

schematic of the circular loop model in Fig. 5a). At

the sink, on the other hand, density is positive, so that

the nonlinear buoyancy gain due to cabbeling di-

minishes the fluid’s tendency to sink (represented by the

shorter blue arrow in Fig. 5a). This causes a deceleration

of the flow. With a completely symmetric geometry,

where source and sink are applied at z5 0, the buoyancy

increase by cabbeling is equally strong in the warm and

the cold branch. In consequence, the effects at source

and sink compensate exactly, and cabbeling does not

influence the steady-state velocity in the circular loop

model, which is indeed observed and can even be shown

analytically.

For Zf 6¼ 0, the temperature distribution determines

which of the opposing effects of cabbeling at source and

sink ultimately dominates; with an asymmetric position

of source and sink, temperature amplitudes in the warm

branch differ from those in the cold branch. Because

cabbeling is a quadratic function of temperature, it has

the highest effect at the source and within the warm

branch for the standard setting of Zf 5 0.5, for which it

induces a velocity increase (cf. the schematic illustration

in Fig. 5a). This is underlined by the variation of steady-

state velocity with l (cf. Fig. 6a): a positive cabbeling

parameter leads to an acceleration of the flow, while

l , 0 decelerates the circulation. In the former case,

cabbeling induces a decrease in mass s, and in the latter,

cabbeling induces an increase (cf. Fig. 6a); with a linear

EOS, that is, s 5 2Q, the total mass is zero for reasons

of heat conservation.

This compensation between these opposite effects is

also illustrated in the difference in the horizontal density

anomaly with respect to the linear scenario [cf. Fig. 7a

for the circular loop model with l5 0.1 and F 2 (0, p)]:

in the upper loop, where temperatures are positive,

cabbeling acts to increase the horizontal density anom-

aly of the right branch, while in the lower right branch,

Dsa assumes negative values, indicating a reduced

density anomaly due to cabbeling. The higher ampli-

tudes in the warm section then lead to a stronger effect

of cabbeling in the upper than in the lower loop, re-

sulting in the observed velocity increase.

FIG. 4. Time evolution of the horizontal density anomaly sa as a function of height in the (a) full circular loop and

the (b) folded loopmodel forZf5 0.5 andF2 (0,p). Contour lines are placed at intervals of 1. Note that the vertical

integral of sa is equal to half the loop velocity.
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When the loop is folded, cabbeling (and thermo-

baricity) can influence the steady-state velocity even

when Zf 5 0, since a perfect cancellation between warm

and cold loop parts is no longer possible. For better

comparison, however, source and sink are applied at z5
0.5 like in the circular loop.Moreover, we again focus on

the scenario l 5 0.1, which allows for linear effects to

dominate loop dynamics, while the influence of cabbeling

is expected to be sufficiently strong to be discernible. In

that case, cabbeling induces a 5% deceleration of the

circulation in contrast to the 4.6% increase in velocity in

the circular loop model (cf. Table 2 and Fig. 5a for a

schematic description of how cabbeling affects dynamics

in the folded loop model). The variation of velocity with

l (cf. Fig. 6b) underlines that the influence of cabbeling

is reversed compared to the circular loop model. This is

because the upper, warm branch is no longer relevant

for velocity. The horizontal density anomaly difference

to the linear EOS case (cf. Fig. 7b) illustrates that in

most of the dynamically important part of the loop a

decrease in sa is induced when cabbeling is included in

the EOS. There, temperatures are mostly negative, and

the nonlinear buoyancy gain acts to retard the flow,

which causes the observed velocity decrease. However,

the downward diffusion of heat from the source leads

to a small section where temperatures are positive and

cabbeling acts to accelerate the flow (Dsa . 0); hence

even in the folded loop a compensation between the

retarding and the accelerating effect of cabbeling is

observed.

The velocity decrease due to cabbeling results in

higher temperature amplitudes (cf. Table 2), which is

also why mass is affected more strongly than in the cir-

cular loop (cf. Fig. 6b). In consequence, the amplitude of

the horizontal density anomaly difference between the

nonlinear and the linear scenario is also higher than in

the circular loop (cf. Fig. 7).

In both model setups, an oscillatory instability can be

provoked when the cabbeling parameter is sufficiently

large or in the circular loop for any choice of l when the

linear density forcings by salinity and temperature can-

cel (h5 1). Critical values are l,20.385 and l. 0.951

FIG. 5. Schematic description of the effect of (a) cabbeling and (b) thermobaricity in both

model versions with Zf 5 0.5. Full arrows represent the linear scenario, while dashed arrows

denote the nonlinear contribution. Blue and red colors describe cold and warm fluid, re-

spectively. The effect on steady-state velocity is illustrated in black.
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for h 5 0 in the circular loop model, which might vary

slightly when the simulations are run arbitrarily long

(here, tend 5 500). Nevertheless, they suggest that sta-

bility is affected differently when the nonlinear and

linear contributions to density do not act in the same

way (l, 0) andwhen they do (l. 0). In the folded loop,

different parameter settings induce this instability. A

detailed analysis of this phenomenon will be deferred to

future work.

Considering only thermobaricity in the EOS, the

nonlinear contribution stherm 5 mzQ varies both with

temperature and height. Throughoutmost of the loop,Q
and z have the same sign, so that the thermobaric term is

positive for m , 0. In that case, thermobaricity induces

an increase in mass, which is illustrated in Fig. 6a. At the

source, where Q . 0, the thermobaric term is positive if

m. 0 in the standard scenario withZf5 0.5, which leads

to a denser fluid and thus a reduced tendency to rise. At

the sink, where Q , 0, the thermobaric term is negative

and acts to increase buoyancy. Both processes lead to a

velocity decrease, which is shown schematically in

Fig. 5b. When m , 0, the opposite effect is obtained, as

the variations of mass and velocity with m (cf.

Fig. 6a) show.

When source and sink are not applied at the loop’s

equator, the thermobaric term changes sign twice in the

circular loop model. With m. 0 and Zf 5 0.5, it causes a

deceleration in the upper part of the loop (z. 0) and an

acceleration for z , 0. The overall impact of thermo-

baricity on steady-state velocity is governed by its effect

at source and sink and in that part of the loop with the

highest temperature amplitudes; for m 5 0.1 and the

standard parameter settings, velocity is decreased by

1.6% in the circular loop model. When the loop is

folded, there still is a compensation between the coun-

teracting effects of thermobaricity in the upper and

lower part of the loop, but the total impact on steady-

state velocity is reduced: the deceleration observed in

the circular loop for z . Zf 5 0.5 is irrelevant for dy-

namics in the folded loop model. In consequence, the

FIG. 6. Velocity andmass as a function ofm and l. The linear reference value is shown in red.When the amplitude

of the cabbeling parameter l is too large, an oscillatory instability is induced, which is why the full range between

21 # l # 1 is not depicted for the circular loop model. In the folded loop model, higher values of l lead to ever

lower velocities; the different behavior for l$ 0.3 is related to the shift from an advection- to a diffusion-dominated

regime. In that regime, the circulation is very slow, which results in very high, negative values for mass.
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accelerating effect of thermobaricity below z 5 0 be-

comes more important, leading to a velocity change of

Dw520.9% compared to the linear case (illustrated in

Fig. 5b). Contrary to the cabbeling scenario, the region

around Zf still determines the effect of thermobaricity

on equilibrium velocity in the folded loop—the section

where Dsa , 0 extends from z 5 0.5 to z 5 0.2 (cf.

Fig. 8b), while for cabbeling Dsa changes sign already at

z 5 0.4 (cf. Fig. 7b).

When source and sink are applied below z 5 0, the

effect of thermobaricity on velocity is reversed in both

model versions (cf. the positive horizontal density dif-

ference below z 5 0 shown in Fig. 8): the dynamically

important region, where temperatures change sign

horizontally (i.e., within the boundary layers around the

level of source and sink), as well as that part of the loop

where temperature amplitudes are highest are then as-

sociated with a negative value of z.

The final results for velocity, temperature, and mass

enlisted in Table 2 show that in both model geometries

the effects of cabbeling and thermobaricity are super-

imposed almost linearly in a combined scenario with

l5 m5 0.1. For example, velocity is increased by 4.6%

due to cabbeling in the circular loop, decreased by 1.6%

due to thermobaricity, and increased by 3.2% in a

combined scenario. In the folded loop, on the other

hand, both effects add up with respect to their influence

in velocity, leading to a deceleration by 6.0% for

l 5 m 5 0.1. Mass on the other hand is still altered op-

positely by the two nonlinear processes, which have a

stronger effect than in the circular loop model because

of the higher temperature amplitudes caused by the

folding and the resultant velocity decrease.

In the parameter ranges discussed here, cabbeling

has a somewhat stronger effect on dynamics and

steady-state properties in both model versions. This is

because the thermobaric term is only a linear, not a

quadratic, function of temperature and because z is

maximum where the curvature termP is minimum and

vice versa. Yet, for other parameter choices the influ-

ence of thermobaricity and cabbeling could be com-

parable, or their relative importance might even be

reversed. Note, too, that with respect to mass both

nonlinear effects have a significant influence—when a

linear EOS is used, mass is zero in equilibrium for

reasons of heat conservation.

FIG. 7. Difference in the horizontal density anomaly sa between the case with l 5 0.1 and the one based on

a linear EOS (l5 0, depicted in Fig. 4) for the (a) circular loop and the (b) folded loop withZf5 0.5. In the circular

loop, the largest differences are observed in the upper part, where temperature amplitudes are highest, especially at

the level Zf 5 0.5. When the loop is folded, the largest differences are found at and slightly below Zf 5 0.5, that is,

where the diffusive boundary layer of the left branch is located. Contour lines are placed at intervals of 0.4, and

again only F 2 (0, p) is considered in the computation of sa.

TABLE 2. Final results for velocity, mass, temperature, and

density at the source in the folded and the circular loop model for

various forms of the EOS.

Model l m w Mass Q(F1) s(F1)

Circular loop 0 0 0.55 0 7.60 27.60

0.1 0 0.58 21.15 7.26 29.90

0 0.1 0.54 0.31 7.72 27.33

0.1 0.1 0.57 20.89 7.36 29.70

Folded loop 0 0 0.45 0 9.36 29.36

0.1 0 0.43 22.02 9.84 214.69

0 0.1 0.44 0.28 9.44 28.97

0.1 0.1 0.42 21.77 9.95 214.41
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b. Effects on the mass distribution

As stated in section 1, cabbeling is associated with a

densification of water masses. In both model setups,

however, we observe a decrease in mass when cabbeling

is included (cf. Table 2). This apparent contradiction can

be explained in the following manner: Adding the

cabbeling term to the EOS implies that the thermal

expansion coefficient is no longer constant:

a52
›s

›Q

����
S,z

5 11 lQ . (27)

Buoyancy trends [cf. Eqs. (6) and (9)] are then given by

Ds

Dt
52(11 lQ)

�
R
›2Q

›l2
1D

f

�
. (28)

The term related to temperature diffusion can be re-

written as

2aR
›2Q

›l2
52

›

›l

�
aR

›Q

›l

�
1 l

�
›Q

›l

�2

, (29)

where the first term can be interpreted as a diffusive

density flux. The second term only depends on the sign

of l and hence constitutes a density source in our

standard case of l 5 0.1. It is proportional to the

temperature gradient and thus strongest where mixing

is significant (i.e., in the boundary layers). This

mixing-related density source is balanced by the

density sink associated with the nonlinear density

forcing at source and sink (density diffusion and ad-

vection integrate to zero in equilibrium). Integrating

the second term in Eq. (28) around the loop gives the

total density forcing:

2aD
f
52

ð2p
0

(11 lQ)[d(l2 l
1
)2 d(l2 l

2
)] dl

52l[Q(l
1
)2Q(l

2
)] . (30)

This shows that the linear contribution to the density

forcing integrates to zero, while the nonlinear one due to

cabbeling is negative for l. 0 and thus constitutes a net

sink of density. The variation of mass with time (cf.

Fig. 9) underlines that this buoyancy source is the dom-

inant mechanism during the first time steps, when the

final temperature distribution with the strong gradients

in the diffusive boundary layers is not yet established and

the mixing-induced buoyancy sink is weaker. That non-

linear buoyancy source also determines the final mass of

the fluid since the densification due to cabbeling is con-

fined to a small section of the loop. The same holds true

for the folded loop, with the only difference being that

mass oscillates more strongly and is affected to a larger

degree because of the higher temperature amplitudes

and the asymmetry introduced by the folding.

With a nonlinear EOS including only thermobaricity,

wherea5 12 mmin[Zf, cos(l)] and g52mQ [cf. Eq. (7)],

trends in buoyancy [cf. Eqs. (6) and (9)] are given by

Ds

Dt
52a

�
R
›2Q

›l2
1D

f

�
1Pwg . (31)

In the same manner as for cabbeling, the temperature

diffusion term can be rewritten as a diffusive density flux

and a nonlinear source or sink of density:

FIG. 8. As in Fig. 7, but varying the thermobaricity parameterm instead of the cabbeling parameter l. Differences

are shown between the case wherem5 0.1 and the linear casem5 0 (depicted in Fig. 4) and contour lines are placed

at intervals of 0.05.
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The second term depends not only on the sign of the

thermobaric parameter but also on the temperature gra-

dient and the sine function. It can thus constitute either a

source or sink of density, which is also why both upward

and downward motion through neutral surfaces are asso-

ciatedwith thermobaricity as described in the introduction.

The nonlinear density forcing due to thermobaricity,

however, vanishes when source and sink are applied at

the same height:

2aD
f
52

ð ​2p
0

a[d(l2 l
1
)2 d(l2 l

2
)]dl

5m[cos(l
1
)2 cos(l

2
)]5 0. (33)

Consequently, the mixing-related buoyancy source or

sink described in Eq. (32) is in equilibrium balanced only

by the compressibility term [the last term in Eq. (31)].

Through most of the loop, the fluid is denser than in the

linear case when m 5 0.1, concordant with the mass in-

crease observed for t . 0 (cf. Fig. 9); locally, however,

lower density values can be obtained since height and

temperature change sign at different levels in the sce-

nario with Zf 5 0.5.

c. The transitory regime

To assess the influence of the nonlinear effects during

the transient regime, the difference in the horizontal

density anomaly with respect to the linear reference case

is analyzed. As in the previous subsection, we first ana-

lyze the scenario with l5 0.1 (cf. Fig. 7 for the difference

FIG. 9. Variation of velocity, temperature, and mass with time in the (a) circular loop and the (b) folded loop

model for different versions of the EOS with Zf 5 0.5. For clarity, we show the scenario m 5 0.5; the behavior is

qualitatively the same as in the case with m5 0.1, which can hardly be distinguished from the scenario with a linear

EOS. The amplitudes of the steady-state velocity (temperature) are decreased (increased) by less than 10%, and

the final mass is increased by a factor of 5 when considering m 5 0.5 instead of m 5 0.1.
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in sa usingZf5 0.5). In bothmodel versions, oscillations

between positive and negative Dsa can be observed for

t , 10, indicating that cabbeling intensifies or weakens

certain dynamical events. For example, when the cold

front propagates down the right branch right after the

onset of the forcing, the buoyancy gain due to cabbeling

leads to a lighter right side and hence a reduced hori-

zontal density difference compared to the linear case.

When the warm front arrives at the sink and travels

down the right branch for t. 1.1, the right side becomes

lighter; this is intensified by cabbeling so that the hori-

zontal density anomaly is higher than when a linear EOS

is considered. These modifications of the horizontal

density anomaly are the main reason for the different

variation of velocity with time shown in Fig. 9. The

magnitude of the changes brought about by cabbeling

differs in the full and folded loops because the latter

exhibits higher temperature amplitudes as a conse-

quence of the folding.

This effect of cabbeling on buoyancy has interesting

consequences in the folded loop model, where velocity

oscillations can be observed in the linear case when an

asymmetric positioning of source and sink is chosen (cf.

Fig. 9 for the scenario with Zf 5 0.5). These oscillations,

however, are dampenedwhen cabbeling is accounted for

in the EOS: the velocity increase for t $ 3.8 is brought

about by the arrival of the warm minimum at the sink,

causing anomalously cold and thus dense fluid, which

increases the horizontal density anomaly and hence ac-

celerates the flow. In the presence of cabbeling, this

densification is counteracted by the nonlinear buoyancy

gain. In consequence, sa is not increased as much as

when a linear EOS is considered, and the acceleration is

weaker. This is confirmed by the negative density

anomaly difference observed in the lower loop for t $

3.8 (cf. Fig. 7).

Considering now the variation of the horizontal den-

sity anomaly difference between the nonlinear scenario

with m 5 0.1 and the linear one (cf. Fig. 8), we see that,

like cabbeling, the thermobaric effect intensifies and

weakens the various dynamical events. Especially dur-

ing the first time steps, the additional dependence on

height is imminent; once the cold front propagating

down the right branch for t . 0 passes below z 5 0, the

thermobaric term becomes positive, resulting in a densi-

fication of the fluid and therefore an increase in Dsa and

velocity compared to the linear case.

d. Effect of salinity and wind stress forcing

We now briefly discuss the influence of introducing

salinity or wind stress forcing. Figure 10 shows the var-

iation of velocity, temperature, and mass for h 5 0.5,

that is, with a linear temperature forcing twice as strong

as the linear salinity forcing, which effectively halves the

net linear density forcing compared to the standard case

(h 5 0). Significant changes in the transient behavior

can be observed compared to the purely thermally

driven circulation (cf. Fig. 9). There also is a noticeable

effect on the equilibrium properties; for the settings

l 5 m 5 0.1, the final velocity is increased by 7.6% rel-

ative to the linear scenario in the full loop (compared to

3.2% for h 5 0) and decreased by 16.8% in the folded

loop (compared to 6.0% for h 5 0). This stronger in-

fluence of cabbeling and thermobaricity is expected

because when the linear contributions of salinity and

temperature to the buoyancy torque are opposed, the

relative importance of nonlinear effects is naturally

increased.

The influence of the wind stress forcing t on the sys-

tem’s behavior and stability properties is discussed in

detail by Wunsch (2005) and Yuan and Wunsch (2005)

for a linear equation of state. Taking l 5 m 5 0.1 and

setting for example t5 h5 0.5 induces a circulation that

is 60.8% faster than in the linear scenario without sa-

linity or wind stress forcing in the full loop and 65.7%

faster in the folded loop. A detailed investigation of the

impact of wind and salinity forcing or their interaction,

however, is beyond the scope of the present paper and

will be deferred to future work.

5. Discussion

Either folded or not, the loop model is without doubt a

simplified description of large-scale oceanic overturning

cells such as the three-dimensional, temporally varying

meridional overturning circulation. It features the sim-

plest dynamics one could think of, consisting in a single

time-dependent scalar for velocity and consequently no

net momentum advection. Yet, it can potentially embed

the full richness and complexity of ocean thermody-

namics, through the ability to use any equation of state,

and also allows the study of more exotic fluid thermo-

dynamics. Apart from being interesting in its own right,

the loop model thus has great educational value when it

comes to the analysis of overturning flow behavior or the

demonstration of the Sandström theorem (Wunsch 2005).

A natural classification of overturning models can be

obtained based on the number of dimensions used to

describe the tracer fields. The Stommel box model, in-

volving only a scalar to represent a tracer field in each

box, is essentially a zero-dimensional model, while the

thermohaline loop is the one-dimensional equivalent.

Two-dimensional overturning models are often used in

the study of horizontal convection, either in numerical

simulations or laboratory experiments (Hughes and

Griffiths 2008), and, finally, three-dimensional models
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simply correspond to the real ocean simulated with

general circulation models. In this perspective, it comes

as evidence that the thermohaline loop features a wider

(and somewhat more realistic) range of dynamical be-

haviors than the Stommel box model. In particular, it

allows for a more transparent investigation of loop dy-

namics insofar as the loop does not feature discontinu-

ous, infinitely large, or zero Rayleigh numbers (Dewar

and Huang 1996; Wunsch 2005). Importantly, this also

implies that the Stommel box model is a limit case of the

thermohaline loop (in practice, when the inverse Ray-

leigh number tends toward zero), indicating that steady

states observed in a box model can be reproduced with a

thermohaline loop but not necessarily vice versa.

The possibility of three-dimensional analogs of the

thermohaline loop is discussed by Wunsch (2005, cf. his

section 7 and the references given therein), who under-

lines that the great parameter sensitivity and the signifi-

cantly fewer degrees of freedom of the one-dimensional

system might make its stability characteristics, time his-

tories, and responses to external disturbances very dif-

ferent from higher-dimensional models. Without a

careful investigation of the connection between three-

dimensional circulations and the flow in one-dimensional

loops (which is beyond the scope of the present paper),

quantitative conclusions about the real ocean cannot be

drawn based on the findings of this study. However, in-

terpreting the thermohaline loop as a ‘‘metaphor for the

circulation instead of the circulation itself’’ (Wunsch

2005, p. 97), some basic understanding about the circu-

lation’s fundamental properties can indeed be gained. In

the present case, the asymmetry between the interior and

FIG. 10. As in Fig. 9, but for h5 0.5; that is, the linear forcing by salinity is half as strong as that by temperature.

Since temperature and salinity influence density in a counteracting way, the relative importance of nonlinear effects

is enhanced, which is clearly visible in the larger differences between linear and nonlinear scenarios compared to

the purely thermally driven case shown in Fig. 9, especially during the transient response.
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the surface flow was shown to considerably affect loop

dynamics and properties, especially with respect to the

influence of the nonlinear effects of cabbeling and

thermobaricity.

The relevance of this result can be tested by com-

paring our standard parameter settings to observations.

Because of the highly idealized nature of the loop

model, it could symbolize various kinds of overturning

cells. We will here focus on the Atlantic meridional

overturning circulation but propose similar scalings for

Labrador Sea convective plumes and the wind-driven

shallow overturning circulation of the subtropical At-

lantic in Table 3.

In the North Atlantic, the mean thermocline tem-

perature is typically about Qo 5 108C, and we estimate

208C for the temperature in the upper thermocline (i.e.,

Q 5 Qo 1 108C) and 58C below the thermocline (i.e.,

Q 5 Qo 2 58C). This roughly corresponds to the tem-

perature distribution in the loop model when the warm

section is half as long as the cold section, a case achieved

when Zf 5 0.5, using the nondimensionalization

Q 5 Qo 1 Q0 3 18C. With a circulation time scale of

600 yr (Toggweiler and Key 2003) and 100–200 days as

commonly accepted values for the frictional decay time

scale of the deep ocean, the Grashof number is on the

order of F ; 1023. The inertialess assumption thus ap-

pears reasonable.

Using a circulation time scale of 600 yr and a vertical

length scale of ay; 103m, we obtain a vertical diffusivity

of ky ; 1025m2 s21 for R 5 0.1, a number in general

agreement with observations (Toole et al. 1994).

Choosing instead a length scale that corresponds to the

global overturning’s horizontal length scale ah ; 107m

produces an equivalent horizontal diffusivity of kh ;
103m2 s21 for R 5 0.1. Hence, it is arguably a reason-

able zero-order approximation to use a single non-

dimensional number for representing horizontal and

vertical diffusivities. We hypothesize that it may be

possible to slightly modify the loop model using an el-

liptic rather than a circular shape to represent the large

aspect ratio characterizing large-scale ocean over-

turning cells; however, we do not attempt to develop

such a model extension here. Our hypothesis is com-

forted by the fact that we find similar inverse Rayleigh

numbers for the horizontal and vertical components of

the overturning circulations under consideration (cf.

Table 3). In a generalized loop model, it would be useful

to be able to apply different Rayleigh numbers for

horizontal and vertical circulations, similar to the ap-

proach by Hazewinkel et al. (2012) in the context of

stressed horizontal convection. On the other hand, even

the discrimination between (fixed) horizontal and ver-

tical diffusivities would only yield a poor description of

oceanic turbulence, which is inhomogeneous in both

space and time (Polzin et al. 1997; Whalen et al. 2012).

By mixing density in the vertical, this turbulence is an

important contributor to driving the global overturning

circulation (e.g., Munk andWunsch 1998; Visbeck 2007;

Talley 2013), and in the past years, efforts have been

made to developmore elaborate parameterizations that,

for example, involve the sources of this mixing [e.g.,

breaking internal gravity waves, as in Müller and

Natarov (2003) and Olbers and Eden (2013)].

The cabbeling parameter l5 (1/a)(›a/›Q) and the

thermobaricity parameter m5 (1/a)(›a/›z) are here

approximated by their particular values at S5 35 gkg21,

Q 5 108C, and p 5 0dbar, based on the International

Thermodynamic Equation Of Seawater—2010 (TEOS-

10) values (IOC et al. 2010) and using the approximate

equivalence z5 p3 1mdbar21. In this case, the cabbeling

parameter is approximately l 5 6 3 1022K21, and the

thermobaric parameter m 5 1.2 3 1024m21. For a

temperature scaling factor of Qs 5 18C, the non-

dimensional cabbeling parameter can then be specified

as l0 5 lQs ’ 0.1, and the nondimensional thermobaric

parameter, setting the length scale to a ; 103m, can be

specified as m ’ 0.1. Note that both the cabbeling and

thermobaricity parameter are to the first order inversely

proportional to the thermal expansion, which itself

increases with temperature. Hence, nonlinear EOS

effects are expected to be more important for colder

TABLE 3. Suitable parameter settings for application of the

thermohaline loop to Labrador Sea convective plumes (Phenom-

enon 1) and the shallow overturning circulation of the subtropical

Atlantic (Phenomenon 2). Refer, for example, to Klinger et al.

(1996) and Marshall and Schott (1999) for characteristics of con-

vective plumes and to Schott et al. (2004) and Boccaletti (2005) for

those of the North Atlantic subtropical shallow overturning cells.

The notation is as in the main text; we furthermore introduce to for

the overturning time scale,Q1 for the temperature estimate of the

upper, and Q2 for that of the lower branch of the cell.

Phenomenon

1 2

S (g kg21) 35.00 37.17

Q0 (8C) 3.4 23.0

Q1 (8C) 6.0 26.0

Q2 (8C) 2.7 20.0

to 4 weeks 10 yr

ah (km) 1.5 2000.0

ay (km) 1.5 0.2

Zf 0.8 0.5

l0 0.14 0.03

m0 0.30 0.01

kh (m
2 s21) 10 103

ky (m
2 s21) 10 1025

Rh 11 0.1

Ry 11 0.1
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circulations; for example, when studying convective

plumes in the Labrador Sea, where the average tem-

perature is a few degrees only, the cabbeling parameter

would have to be increased by a factor of 1.5 and the

thermobaric parameter by a factor of 3 compared to our

standard values (cf. Table 3). As depicted in Fig. 10, they

are also more important when a salinity forcing is ap-

plied, too, because the linear contributions by temper-

ature and salinity to the density forcing counteract. The

implications of neglecting salinity for the cabbeling term

itself, however, are minor for our standard parameter

settings: the ‘‘densification upon mixing’’ (cabbeling) is

here solely attributed to the variance of temperature [cf.

McDougall and Garrett (1992), for the discussion of

cabbeling in a system where density is a function of

temperature alone], which is a reasonable approxima-

tion of conditions in the real ocean, where the nonlinear

contraction due to salinity mixing is approximately an

order of magnitude smaller than that due to the mixing

of heat (McDougall and Garrett 1992; Schanze and

Schmitt 2013).

6. Summary and outlook

The asymmetry between the essentially horizontal sur-

face flow and the interior circulation, which spans both

horizontal and vertical scales, is a fundamental charac-

teristic of many oceanic overturning cells. In this study, we

have investigated the effect of this asymmetry on dy-

namics and fluid properties in the context of a thermoha-

line loop. To that end, we have introduced a simple

modification of the loopmodel devised byWunsch (2005):

by folding the loop at the level where the point sources and

sinks of temperature and salinity are applied, until the

upper part is purely horizontal, this asymmetry can be

accounted for in a simpleway. In such a setting, the forcing

is concentrated at the uppermost level of the loop, which is

in good agreement with the observation that in reality the

buoyancy fluxes mainly occur at the ocean’s surface.

In our analysis, we focused on weak diffusion (small

values of the inverse Rayleigh number R) and a weakly

nonlinear equation of state (relatively small nonlinear

parameters). The circulation was purely thermally

driven (no salinity or wind stress forcing applied), with

the source and sink of heat located at the same level to

best represent the case of horizontal convection. Folding

the loop led to significant changes in the transitory be-

havior and steady-state properties, including velocity

oscillations and considerably higher temperature am-

plitudes associated with a slower circulation.

The influence of the two nonlinear EOS effects of

cabbeling and thermobaricity on loop dynamics and

steady-state properties differed significantly in the two

model versions; for example, cabbeling was found to

dampen the velocity oscillations observed in the folded

loop, and its effect on the equilibrium velocity was re-

versed compared to the circular loop. This is because in

the folded loop there is no compensation between den-

sity torques arising above and below the level of the heat

forcing—an unrealistic property of the symmetric, cir-

cular loop model since the surface flow is basically

horizontal in the real ocean. Folding the loop also

induced a modification of the system’s stability proper-

ties, with dramatically different dynamic responses

when large cabbeling parameters were used (cf. Fig. 6b).

A detailed investigation of these differences will be the

subject of future work, as the focus here was on weakly

nonlinear forms of the EOS.

From the study of the one-dimensional fluid loop,

only a basic, qualitative understanding of real ocean

dynamics can be gained. Because of the wide range of

parameter choices, different interpretations are possi-

ble; a useful analogy with the MOC, however, is en-

couraged by the observation of the following features in

the folded loop model:

1) a thermocline just below the warm source, with a

typical thickness of a few hundred of meters, below

which cold waters are sitting;

2) a deep-reaching, cold vertical column, homogeneous

almost to the bottom, below the cold source, reminis-

cent of the cold weakly stratified polar regions; and

3) a surface region where the temperature is gradually

decreasing poleward in a transition zone between a

large body of warm surface waters and the region of

deep convection.

Nevertheless, several essential aspects of the global

overturning circulation are missing from this picture.

We have only briefly addressed the influence of salinity

and wind stress forcing, which were seen to strongly

affect the transient behavior and steady-state properties.

In particular, the relative importance of nonlinear ef-

fects was enhanced when a salinity forcing was accoun-

ted for because the linear temperature and salinity

forcings counteract. Moreover, the real MOC can be

regarded as a superposition of various overturning cells

with different aspect ratios rather than a single cell

(Talley 2003), suggesting the implementation of a more

complex geometry, for example, with an additional loop

representing the Antarctic Bottom Water cell. Fur-

thermore, boundary conditions that combine tempera-

ture relaxation with a fixed flux of salinity are generally

considered more realistic than the fixed flux conditions

for both temperature and salinity applied in this study

(Dewar and Huang 1996; Arzel et al. 2006). The dif-

ferent forcing types for salinity and temperature are
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regarded as pivotal for the emergence of multiple

equilibria in the Stommel box model (Marotzke 2000),

and it would be interesting to test whether such multiple

equilibrium states can be found with the thermohaline

loop, and if so, how these are affected by nonlinear EOS

effects or the folding of the loop.
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