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Abstract
Aggregations of young animals are common in a range of endothermic and ectothermic

species, yet the adaptive behavior may depend on social circumstance and local condi-

tions. In penguins, many species form aggregations (aka. crèches) for a variety of purposes,

whilst others have never been observed exhibiting this behavior. Those that do form aggre-

gations do so for three known benefits: 1) reduced thermoregulatory requirements, 2) avoid-

ance of unrelated-adult aggression, and 3) lower predation risk. In gentoo penguins,

Pygoscelis papua, chick aggregations are known to form during the post-guard period, yet

the cause of these aggregations is poorly understood. Here, for the first time, we study

aggregation behavior in gentoo penguins, examining four study sites along a latitudinal gra-

dient using time-lapse cameras to examine the adaptive benefit of aggregations to chicks.

Our results support the idea that aggregations of gentoo chicks decrease an individual’s

energetic expenditure when wet, cold conditions are present. However, we found significant

differences in aggregation behavior between the lowest latitude site, Maiviken, South Geor-

gia, and two of the higher latitude sites on the Antarctic Peninsula, suggesting this behavior

may be colony specific. We provide strong evidence that more chicks aggregate and a

larger number of aggregations occur on South Georgia, while the opposite occurs at Peter-

mann Island in Antarctica. Future studies should evaluate multiple seabird colonies within

one species before generalizing behaviors based on one location, and past studies may

need to be re-evaluated to determine whether chick aggregation and other behaviors are in

fact exhibited species-wide.

Introduction
Aggregations of young animals are common in a range of endothermic and ectothermic
species, yet the behavior’s adaptive purposes depend on a species’ social behaviors and local
conditions. In avian species, crèching or aggregations of chicks may stem from ecological,
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morphological, or social adaptations [1]. Ecologically, adverse weather conditions and lower
than average ambient temperatures can cause chicks to aggregate more frequently or in more
dense groups, for example in the common bushtit, Psaltriparus minimus [2], white pelican,
Pelecanus erythrorhynchos [3], and house sparrow, Passer domesticus [4]. Additionally, mor-
phological restrictions, including poor insulation, may cause chicks of smaller species, or those
with altricial young, to aggregate [1]. Furthermore, sociality may contribute to the formation of
chick aggregations in birds of the same or, rarely, different species (tree swallow, Iridoprocne
bicolour, barn swallow, Hirundo rustica, and cliff swallow, Petrochelidon pyrrhonota [5]),
although little research exists on this topic. Of all the bird families, penguins (Spheniscidae) are
well known to exhibit aggregation behaviors during both the winter and summer months [6],
and the purpose of aggregations is highly dependent on the species.

Many species of penguins form aggregations (e.g. emperor, Aptenodytes forsteri [7]; king, A.
patagonicus [8, 9]; chinstrap, Pygoscelis antarcticus [10, 11]; Adélie, P. adeliae [12–14]; African,
Spheniscus demersus [15, 16]), while others have never been observed exhibiting this behavior
(e.g. little, Eudyptula minor, yellow-eyedMegadyptes antipodes, Magellanic, Spheniscus magel-
lanicus, Galapagos, Spheniscus mendiculus, and Humboldt penguins, S. humboldti [6]). Those
that do form aggregations (formally called ‘créches’; see [6] for nomenclature) do so for three
known benefits: 1) reduced thermoregulatory requirements, 2) avoidance of aggression from
unrelated adults and 3) lower predation risk. Firstly, reduced energy requirements for thermo-
regulation may serve as the primary function of chick aggregations: in other words, that which
served as the first evolutionary adaptation [6]. In king and Adélie penguins, aggregations have
increased either in size and compactness [9] or have only occurred when colder, harsher
weather conditions are present [14]; while in other species, such as the African penguin, aggre-
gations have been observed even during warm temperature conditions [16]. Therefore the
necessity of forming aggregations for thermoregulatory purposes is dependent on the species
and potentially the specific colony, although, to our knowledge, this has not yet been studied.

Secondly, chicks may form aggregations as a result of aggression from unrelated adults,
where chicks are often corralled into one location by “floater” or nesting adults [16, 17]. Chicks
in aggregations are less disturbed by adults than individuals outside of aggregations [16]. This
behavior is exhibited by chinstrap, rockhopper, Adélie, and African penguin species [10, 12,
16–18] and serves as another explanation of chick aggregations.

Thirdly, in a classic example of both the group vigilance hypothesis and the predator dilu-
tion effect, chick aggregations may reduce predation risk by increasing the detection of preda-
tors while decreasing the chance of individual predation [19]. In Adélie penguins, fewer chicks
are killed by predators when aggregating in large numbers compared with those in smaller
aggregations [13], while in other species (e.g. Adélie penguins, Rockhopper penguins, chinstrap
penguins), predation events only occur when individuals are not part of an aggregation [10, 13,
18]. There also may be an unexplained social benefit to aggregating as a chick, although no
studies have yet provided evidence of sociality as a potential driver of aggregation.

In gentoo penguins, Pygoscelis papua, chick aggregations are known to form during the
post-guard period, yet the cause of these aggregations is poorly understood [6]. As a species
which has a large spatial range, colonizing sub-Antarctic islands and areas along the Antarctic
Peninsula, it is possible that chick aggregation behavior may stem from any of the three main
drivers–thermoregulation, predation, or adult aggression–for different adaptive purposes. In
addition, the principal driver may vary latitudinally with colony location. Because gentoo pen-
guins are well known for their asynchronous breeding, dependent on the colony location [20],
and the growth rate within colonies and post-guard period varies depending on breeding site
[21], there will likely be large differences in the timing of the post-guard phase between colo-
nies and therefore the timing of aggregations. Here, for the first time, we examine the adaptive
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benefit of chick aggregation behavior in gentoo penguins, using time-lapse cameras to measure
the behavior. To the best of our knowledge, we are the first to compare any chick aggregation
behavior at more than one colony, enabling us to examine whether this behavior is generaliz-
able within a species. To understand this behavior in gentoo chicks, we formulated a priori
hypotheses based on the three previously observed mechanisms behind chick aggregation
behavior in other penguin species:

1. If gentoo chicks form aggregations to reduce thermoregulatory need, chicks will aggregate
more 1) during cold, wet conditions, 2) when chicks are younger in age, and 3) the number
of chick aggregations will change along a latitudinal gradient; colonies located farther north
will form fewer aggregations due to decreased thermoregulatory output, while those located
farther south will aggregate more often during harsher, colder conditions.

2. If chicks form aggregations due to aggressive advances from unrelated adults, then aggrega-
tions will occur more often 1) when more adults are present, and the adult to chick ratio is
therefore higher, and 2) when fewer chicks are guarded by their parents.

3. Younger chicks will form larger aggregations and a higher proportion of chicks will aggre-
gate when predators are present, as a means of predator avoidance.

Methods

Study sites
Work on South Georgia was permitted by the Government of South Georgia and the South
Sandwich Islands (GSGSSI) Permits for Antarctica were issued by the UK Foreign and Com-
monwealth Office under the Antarctic Treaty system. Each of these permits was issued follow-
ing independent ethical review of the sampling and the study received ethical approval from
the University of Oxford and the Zoological Society of London.

We deployed cameras at four study sites to study chick aggregations in gentoo penguins
based on a latitudinal gradient: 1) Maiviken (-36.506, -54.246) on South Georgia, 2) Georges
Point (-62.670, -64.669) on Ronge Island along the Western Antarctic Peninsula (WAP), 3)
Port Lockroy (-63.484, -64.823) also along the WAP, and 4) Petermann Island (-64.142,
-65.172,) along the WAP (Fig 1). Petermann Island represents the southern breeding limit for
gentoo penguins, located less than 11 km from the southernmost colony (Cape Tuxen [22–
24]). Maiviken serves as a representation of gentoo penguins towards the more northern edge
of their range (northern range ends on Crozet Island at a longitude of -45.83° [25]) and is infre-
quently studied. Port Lockroy, in the well-studied Palmer Archipelago, consists of a gentoo col-
ony, which is heavily visited by tourists and has thus been studied to define tourism related
impacts on the species [26]. The Georges Point colony has been studied in the past [27–29];
however, the phenology of the colony is not well defined.

Considering our three hypotheses, we must note that human visitation may affect our third
hypothesis that a higher proportion of chicks will aggregate when predators are present, as a
means of predator avoidance. At highly visited tourist sites (specifically Port Lockroy and
Petermann Island), gentoos are habituated to human presence [26], which may influence
behaviors, including the likelihood of forming aggregations. In particular, gentoos at sites fre-
quently visited by tourists may respond differently to predators than those at sites rarely vis-
ited, due to their acclimation to humans, which in turn may influence aggregation behavior.
However, the sub-colonies studied, including that at Port Lockroy and Petermann Island, are
located away from tourist congregations and therefore less disturbed than other sub-colonies
at the same sites, although gentoo chicks are mobile during the post-guard phase.
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Camera system
One camera was deployed at each of our four gentoo colony study sites; each camera was
installed roughly 10 meters from the perimeter of nesting sub-colonies. Cameras were installed
using techniques similar to those described by [30], with minor adjustments to the camera sys-
tem. At each site, a Reconyx HC500 Hyperfire trail camera (Reconyx, Inc., Holmen, WI, USA)
was mounted to a scaffold pole and anchored using a rock basket. The cameras were pro-
grammed in time-lapse mode to take nine photographs daily, beginning at 9:00 and ending at
17:00 (GMT-2). Each camera captured images of 14–49 nests for the full 2012–2013 breeding
season (September 1- March 31, S1 Fig).

Fig 1. Map of studied gentoo penguin colony locations along a latitudinal gradient ranging from 1) Maiviken, South Georgia to 2) Georges Point, 3)
Port Lockroy, and 4) Petermann Island on the Antarctic Peninsula.

doi:10.1371/journal.pone.0145676.g001
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Annotations
Overall, the study period was defined as the post-guard period within a chick’s annual cycle.
Each site differed in the timing of this period (Fig 2), therefore, the commencement of the
post-guard period was defined as the first image in which a chick was seen unguarded (see
Guarded and unguarded chicks in Methods), and the period was defined as terminated when
either all chicks had molted to their fledgling feathers or, in cases where chicks departed the
colony before the end of moult, all chicks had left the sub-colony site in view. Specifically, in
the 2012–2013 breeding season, the post-guard period occurred during the following dates:
Maiviken (December 16- January 12), 2) Georges Point (February 1- March 1), 3) Port Lockroy
(February 5- March 17), and 4) Petermann Island (January 22- March 3; S1 Table).

Image analysis
Counts of individuals were extracted from each image using software developed by [31]. In
each image, a circle was centered over each visible individual to avoid counting individuals

Fig 2. Time series demonstrating difference in the timing of the post-guard period and the number of aggregations over time at four sites: 1)
Maiviken, 2) Georges Point, 3) Port Lockroy, and 4) Petermann Island.

doi:10.1371/journal.pone.0145676.g002
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twice. The number of circles in each image was then extracted to determine counts. This pro-
cess was used for counting both adults and chicks separately at each site in each image and all
individuals at the edge of the image frame were included in our analysis. The adult to chick
ratio was then determined for each image based on the counts of adults and chicks present
within the camera frame.

Chick aggregations
Although many definitions exist for a chick aggregation in penguins [6], we chose to use the
definition used for Adélie penguins in [13]. We defined a chick aggregation as a minimum of
three chicks in close association, where the distance between individuals was less than 35 cm,
approximately half the distance between nests, consistent with pecking distance. For each
image, the total number of aggregations and the number of chicks in each aggregation was
determined. Using these data we calculated: mean aggregation size, standard deviation in
aggregation size, total number of chicks in aggregations, and ratio of aggregating chicks to total
chicks, for each image.

Guarded and unguarded chicks
Guarded chicks were defined as being in close association with an adult and located one flipper
length (~25 cm) or less from the brood patch of the nearby adult. In addition, any chicks
involved in provisioning interactions or located directly on the nest with an adult were defined
as guarded (aka. attended). All other chicks were counted as unattended. From this data, a
ratio of guarded chicks to unguarded chicks was determined.

Weather conditions
Images were annotated for the presence or absence of wet conditions, defined as either snow
cover, precipitation in the form of snow or rain, or conditions in which chick down feathers
were noticeably wet. All weather conditions are presented here as binary data. In addition,
ambient temperatures were extracted from an internal thermometer in the camera housing.
Wind was not measured here, although it has been linked with aggregation behavior in king
penguins [9].

Predators present
The presence of any pinnipeds or predatory birds was noted for each image and the species
was determined using an identification guide [32]. Using this data, the number of predators
and scavengers was determined for each image.

Age of chicks
Because we were unable to determine the exact age of individuals and unable to differentiate
between individuals from specific nests during the post-guard phase studied, we instead used
the days from the start of the post-guard period (day 1 = 1, day 2 = 2, etc.) as a method to evalu-
ate the effect of chicks aging, at a sub-colony level, in our analysis of aggregation behavior.

Statistical analysis
All analyses were conducted in R (3.0.3 [33]) using the stats andMASS packages [34]. To
account for the known differences between the angle and view within each camera frame,
which likely affect the explanatory variables, we counted the total number of nests on the first
day of the post-guard period at each study site and used these nest counts as an offset term
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(-log(x)) in each of our models (offset function, stats package). To determine the relationship
between each of our explanatory variables (Table 1) and the counts of the total number of
aggregations in each image, we used a generalized linear model (GLM) with a Poisson error
structure. We simplified this model by omitting insignificant coefficients, including time of
day, the adult-to-chick ratio (square-root transformed), and temperature (ANOVA, p = 0.02).
Ultimately, for this first model, the GLM coefficients included an interaction between location
and wet conditions, the ratio of guarded to unguarded chicks (log transformed), and the day
within the post-guard period (residual deviance: 232.61 on 426 degrees of freedom).

Due to overdispersion in both Poisson and quasi-Poisson GLMs, we used a negative bino-
mial GLM (glm.nb function,MASS package) to determine interactions between each of the
coefficients and the counts of aggregating chicks in each image. We also simplified our negative
binomial GLM by omitting the time of day and the adult-to-chick ratio (square-root trans-
formed; ANOVA, p = 0.07). Our final model included the following coefficients: 1) interactions
between location, temperature, and wet conditions, 2) the ratio of guarded to unguarded chicks
(log transformed), and 3) the day within the post-guard period (residual deviance: 239.29 on
421 degrees of freedom). By examining both models with and without a correlation structure
and the auto-correlation in the observed residuals (acf function, stats package), we determined
that temporal autocorrelation did not occur in our data set and a correlation structure was
therefore omitted from the model. We must note that our sample size for the number of

Table 1. Results from a negative binomial GLM on the number of gentoo penguin chicks aggregating (residual deviance: 239.29 on 421 degrees of
freedom) and a Poisson GLM on the number of aggregations per nest unit (residual deviance: 232.61 on 426 degrees of freedom) for each coeffi-
cient included in the models.

Response variable Coefficient Estimate SE Z P

Number of chicks aggregating Location Maiviken 4.81 0.348 13.835 <0.001**

Georges Pt. -4.07 8.574 -4.743 <0.001**

Port Lockroy -0.35 <0.001 <0.001 0.999

Petermann Isl. -5.06 1.460 -3.466 <0.001**

Location: wet Maiviken: wet 0.96 0.864 1.116 0.264

Georges Pt.: wet 1.10 1.171 0.936 0.349

Port Lockroy: wet 0.33 <0.001 <0.001 0.999

Petermann Isl.: wet 4.92 2.097 2.344 0.019*

Temperature: wet -0.31 0.123 -2.523 0.012*

Post-guard day -0.05 0.025 -2.026 0.043*

log(guarded chicks: unguarded chicks) -0.61 0.116 -5.256 <0.001**

Number of aggregations Location Maiviken 1.83 0.176 10.377 <0.001**

Georges Pt. -1.71 0.462 -3.696 <0.001**

Port Lockroy -18.58 825.6 -0023 0.982

Petermann Isl. -4.60 1.016 -4.507 <0.001**

Location: wet Maiviken: wet -0.005 0.512 -0.010 0.992

Georges Pt.: wet 0.29 0.702 0.412 0.681

Port Lockroy: wet 14.63 825.6 0.018 0.986

Petermann Isl.: wet 4.97 1.503 3.303 <0.001**

Post-guard day -0.07 0.017 -4.354 <0.001**

log(guarded chicks: unguarded chicks) -0.42 0.084 -4.955 <0.001**

p *<0.05

p **<0.001.

doi:10.1371/journal.pone.0145676.t001
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predators present was small across the four sites (n = 8) and was therefore not included in
either model. Lastly, to understand relationships between coefficients, we examined contrasts
by reordering the levels of factors (relevel function, stats package).

Results
We found significant relationships between location, wet conditions, the ratio of guarded to
unguarded chicks, and the age of chicks and each of our response variables: 1) the number of
aggregations and 2) the number of chicks aggregating (Table 1). Because nest counts were used
to offset the data to account for the differences in the camera view and angle between each of
our study sites, the following results indicate the relationship between each coefficient and our
measures of aggregation behavior per nest unit.

When examining the counts of aggregating chicks in each image, the Maiviken (South Geor-
gia) chicks exhibited significantly more aggregation behavior (SE = 0.35, p<0.001) than either
the Georges Point (SE = 0.86, p<0.001) or Petermann Island colonies (SE = 1.46, p<0.001;
Table 2). However, our model for the number of aggregations at each colony revealed that not
only did chick aggregations increase significantly at Maiviken compared to Petermann Island
and Georges Point (SE = 0.18, p<0.001), but the number of aggregations exhibited by Peter-
mann Island chicks also differed significantly from Georges Point (SE = 0.46, p<0.001), with
chicks at Petermann Island undergoing far fewer aggregations (SE = 1.02, p<0.001).

For both our measures of the number of chicks aggregating and the number of aggregations,
we found negative relationships between our response variables and 1) the day within the post-
guard period (SE = 0.02, p<0.04; SE = 0.02, p<0.001) and 2) the ratio of guarded chicks to
unguarded chicks (SE = 0.12, p<0.001; SE = 0.08, p<0.001, Table 1). In other words, the num-
ber of chicks aggregating and the total number of aggregations increased when chicks were
younger and when more chicks were left unguarded by their parents.

We also found a relationship between the environmental variables of temperature and wet
conditions present and the two measures of chick aggregations, although these conditions
depended on the location of the colony. The number of aggregations and counts of chicks
aggregating increased at Petermann Island when wet conditions were present at the colony
(SE = 2.01, p = 0.02; SE = 1.42, p<0.001, Table 1). In addition, the number of aggregations at

Table 2. Summary of measures of variance (range, mean, and standard deviation) in three aggregation characteristics (1) average aggregation
size, 2) total number of chicks in aggregations, and 3) total number of aggregations at each of our four study sites and in total across all four sites:
Maiviken, Georges Point, Port Lockroy, and Petermann Island.

Aggregation measure Measures of variance Site

Maiviken Georges Point Port Lockroy Petermann Island All sites

Average aggregation size Range 3–73 3–9 3–10 3–3 3–73

Mean 10.62 3.59 4.03 3 8.11

sd 12.15 1.30 1.99 0 5.34

Total number of chicks in aggregations Range 0–105 0–13 0–10 0–3 0–105

Mean 15.81 1.02 0.13 0.03 2.88

sd 19.03 2.12 0.85 0.30 10.32

Percent of chicks aggregating Range 0–100 0–52.53 0–100 0–37.5 0–100

Mean 27.62 3.99 1.28 0.16 5.92

sd 27.93 8.25 8.53 2.15 16.28

Total number of aggregations Range 0–9 0–3 0–2 0–1 0–9

Mean 3.59 0.28 0.03 0.01 0.37

sd 1.30 0.55 0.20 0.10 1.00

doi:10.1371/journal.pone.0145676.t002
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Petermann Island was significantly different from both the Georges Point (SE = 1.51,
p = 0.002) and Maiviken colonies (SE = 1.50, p<0.001). We also found a significant negative
relationship between temperature and wet conditions and the counts of chicks in aggregations
across sites (SE = 0.12, p = 0.01), but not between the total aggregation counts in each image.
In other words, as temperature increased during wet conditions, the total counts of chicks in
aggregations decreased.

Discussion
To the best of our knowledge, we are the first to study the adaptive significance of chick aggre-
gation behavior in gentoo penguins and the first to examine this behavior at multiple colonies,
covering a large geographic range, in any penguin species. Our results support the idea that
aggregations occur to decrease an individual’s energetic expenditure during wet, cold condi-
tions. However, we found significant differences in aggregation behavior across a latitudinal
gradient, particularly between the Maiviken (South Georgia) site and two of the other three
sites located in closer proximity on the Antarctic Peninsula, suggesting that this behavior may
be colony specific, and the result of a more complex set of interactions.

The timing of the post-guard phase varied notably between Maiviken, South Georgia and
the three Antarctic Peninsula sites (Fig 2). The phenology of gentoo penguins has been shown
to vary between years and locations, a relationship that is influenced by sea temperature and
local resource availability [21]. Because aggregation behavior is closely linked with the post-
guard phase, the timing of this behavior may be dictated by parental phenological constraints.
Specifically, the timing of post-guard period may be dictated by the adult need to build up
reserves prior to moult, and therefore leave chicks unguarded, while the formation of aggrega-
tions may be instead dictated by a chick’s need to survive and thermoregulate without constant
guard [10]. In addition, certain colonies may be more synchronous than others [20] and asyn-
chronicity may influence chick aggregation behavior as aggregations may be smaller and less
frequent when individuals enter the post-guard period at different times.

We found a significant link between temperature, increased wet conditions, and the age of
chicks and our two measures of aggregation behavior (Table 1), similar to past studies focusing
on this behavior in other penguin species (eg. Adélie penguins [13, 14]; emperor penguins [7];
king penguins [9]). In particular, we found that a slight decrease in temperature when wet con-
ditions were present correlated with an increased number of chicks aggregating (Table 1). In
addition, chicks appear to aggregate earlier in the post-guard period when younger and there-
fore more vulnerable to cold, wet conditions. Although gentoo chicks are thought to fully self-
regulate body temperature roughly 15 days after hatching [35], before the post-guard period,
other evidence suggests that chicks may not be able to thermoregulate independently when wet
conditions are present [36]. Our study supports harsh weather conditions potentially being as
influential in chick aggregating behavior as daily temperature variation.

Although our analysis revealed that, overall, aggregations are related to temperatures and
wet conditions; we also found significant differences when examining each of our aggregation
measures within sites (Table 1). In particular, the number of aggregations and chicks aggregat-
ing was significantly and positively related to wet conditions at the Petermann Island, Antarctic
Peninsula study site, but not at the other three sites. In addition, chicks at the two study sites
located at either extreme of our latitudinal gradient, Maiviken and Petermann Island, under-
went different degrees of aggregation behavior: the Maiviken chicks aggregating significantly
more while the Petermann Island chicks aggregated significantly less. It is possible that colonies
may form aggregations using different mechanisms, depending on their location and the con-
ditions present during the post-guard period. However, because our analysis across sites
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revealed general trends, it is more likely that aggregations form due to wet, cold conditions and
that the differences in weather and the timing of the post-guard period between sites is driving
aggregation extent.

Unlike in other penguin species (Adélie penguins [13]; African penguins [15]; king pen-
guins [9]) we did not find evidence to support either predator avoidance or aggregation from
unrelated adults as a driver of chick aggregation formations in gentoo penguins (cf. African
penguins [16]; chinstrap penguins [10]; king penguins [9]). However, the study of predator
attendance was limited, as photographs were not taken frequently enough to consistently detect
predation events or abundance (n = 8). Therefore, we cannot reliably determine whether pre-
dation is an additional driver of this behavior in gentoos. Likewise, gentoo chicks are particu-
larly mobile when compared to conspecifics, so time-lapse images taken at a frequency of every
hour, as is the case with this study, are limited in their ability to assess aggregation behavior
when chicks move outside the boundaries of the sub-colony.

In addition, the ratio of adults to chicks did not appear to influence our measures of chick
aggregations, although we did find evidence that more chicks aggregate and more aggregations
occur across the species’ range when fewer chicks are guarded by their parents (Table 1). How-
ever, the relationship between aggregations and the ratio of guarded to unguarded chicks likely
suggests that chicks are aggregating more when adults are absent and thermoregulation is con-
sequently more difficult, rather than because of aggressive advances from adults. Directly quan-
tifying aggression events would be an obvious next step to confirm this finding. Nevertheless,
because adult to chick ratio has been used to determine significant trends in this behavior in
the past [10], and we did not discover a relationship between this variable and aggregation
measures, we believe that our results regarding unrelated adult aggression are likely accurate,
even without direct observation.

We provide strong evidence that chick aggregations form more often and are larger in size
at our northern-most colony on the island of South Georgia. The difference in aggregating
behavior between South Georgia and our three Antarctic Peninsula colonies provides evidence
that this behavior, although apparent in all four colonies, does not appear to be generalizable
across the range of the species. Instead, we show that colonies exhibit distinct differences in
their aggregating behavior, which is likely due to differences in environmental conditions pres-
ent and may be exaggerated by the difference in the timing of the post-guard phase. Studying
multiple sites within the species range is the first step in gaining a better understanding of the
range of aggregation behaviors at a species level, demonstrating how colonies are related in
their behaviors, and whether or not this behavior is generalizable. Single colony studies, while
useful, may lack this breadth of understanding. The significant differences in behaviors
between colonies, as revealed by this study, demonstrate the necessity to examine colonies at
multiple locations before generalizing results, which otherwise may be oversimplified when
determining the drivers of observed behaviors.

Our results highlight the utility of time-lapse cameras to remotely monitor animal behavior
using scan sampling methods, without the need for in situ data collection [30]. The method
allows for accurate measurement of the timing of behaviors and assures the standardization of
sampling across multiple locations at the same time, while also limiting observer differences.
We provide evidence of the strength of cameras as wide-scale behavioral sensors; however, the
inability to routinely detect predation or events of adult aggression using time-lapse imagery
also suggests some important limitations. Given the facility to study multiple colonies simulta-
neously, we were able to better understand how behaviors differ between colony locations in
the same species. Future studies should evaluate multiple colonies before generalizing behav-
iors based on one location and past studies may need to be re-evaluated to determine whether
chick aggregation and other behaviors are in fact exhibited species-wide.
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S1 Fig. Images from the first day of the post-guard period in gentoo penguins (Pygoscelis
papua) during the 2012–2013 breeding season at each of our four study sites: A) Maiviken,
B) Georges Point, C) Port Lockroy, and D) Petermann Island.
(TIFF)
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