

Title: Lattice-Based Threshold Cryptography

Author: Ferran Alborch Escobar

Advisor: Paz Morillo Bosch, Ramiro Martínez Pinilla

Department: Mathematics

Academic year: 2019-2020

Degree in Mathematics

Universitat Politècnica de Catalunya

Facultat de Matemàtiques i Estad́ıstica

Degree in Mathematics

Bachelor’s Degree Thesis

Lattice-Based Threshold Cryptography

Ferran Alborch Escobar

Supervised by Paz Morillo Bosch, Ramiro Mart́ınez Pinilla

June, 2020

Thanks to the supervisors of this bachelor’s degree thesis, Paz and Ramiro to introduce me to this
subject and the huge help and enthusiasm they have given.

Abstract

Ever since the appearance of quantum computers, prime factoring and discrete logarithm based cryptog-
raphy has been put in question, giving birth to the so called post-quantum cryptography. The goal of this
bachelor’s degree thesis is to develop a post-quantum threshold cryptosystem, in particular based on Ring
Learning with Errors, a lattice-based problem.

Keywords

Post-quantum cryptography, Lattices, Threshold cryptography

1

Contents

1 Introduction 3

2 Theory 5

2.1 Notation . 5

2.2 Introduction to Lattices . 5

2.3 Introduction to cryptography . 8

3 Regev’s cryptosystem 10

4 Distributed cryptography 14

4.1 Preliminaries . 14

4.2 Bendlin and Damg̊ard’s proposal . 16

4.3 Distributed key generation . 19

5 RLWE threshold cryptosystem 24

5.1 Threshold decryption . 25

5.2 Distributed key generation . 28

6 Conclusion 31

7 Bibliography 32

2

1. Introduction

To be able to hide information written in a message has been a more or less important problem for mankind
ever since it invented writing: from ancient military leaders wanting to keep their messages about strategies
secret, to nowadays, where virtually everything needs encryption due to the hyper-connected society we live
in. Analogously, being able to break an encryption and read the message has also been a relevant problem
for humanity, thus creating cat and mouse dynamics in cryptography, where ones chase after breaking the
current encryption scheme while others chase after creating a new cryptosystem not yet breakable with the
current tools at disposal.

The XXth century brought with it a new tool for both, the computer, and with it came the explosion of
cryptography based on the discrete logarithm and prime factoring problems. The safety of these kinds of
cryptography, given big enough numbers, enabled the huge development of the connected society, mainly
internet, while still giving some protection to the information sent through this vast channel.

However, the rising of new computer systems as quantum computers threatens all cryptography based
on the discrete logarithm and prime factoring problems, given that there is an algorithm that solves these
problems in polynomial time in quantum computers, due to Peter Shor [21] in 1999.

Therefore, new “post-quantum” cryptography has been one of the main concerns of applied math-
ematics in the XXIst century so far. New brands of cryptography, such as lattice-based cryptography,
multivariate cryptography, hash-based cryptography and more have been hot topic these last few years
and great progress has been made. As stated in the title, this bachelor’s degree thesis will be focused on
lattice-based cryptography.

The internet and general web connectivity also spawned in the mid 1990s the concept of threshold
cryptography, where the decryption protocol needs several players to cooperate for it to work, and less
players than the ones needed cannot recover any relevant information of the message. Secret sharing
schemes, that are the same concept but what the players have to recover can be anything instead of
specifically an encrypted message, had been born before (specifically in 1979 in [20]), but its application in
cryptography made less sense without the ability of immediate, or nearly, exchange of information between
two or more parties. Threshold cryptography is for example used in electronic voting, where the various
members of electronic polling stations must work together to decrypt the polling results.

The objective of this bachelor’s degree thesis is to develop a threshold cryptosystem based on Ring
Learning With Errors (RLWE), a lattice-based problem. For this intent we will take as starting point a
cryptosystem presented by Bendlin and Damg̊ard in [2] based on Learning With Errors (LWE), yet another
lattice-based problem, and the goal is to take the main ideas and apply it to RLWE.

This work is structured as follows:

• Theory. We give notation and a brief introduction to lattices and to cryptography, so as to better
understand the following sections.

• Regev’s cryptosystem. We present the first lattice-based cryptosystem proposed by Regev in [18]
(with the parameters proposed by Bendlin and Damg̊ard in [2]) to familiarize ourselves with lattice-
based crptography, and to ease the comprehension of Bendlin and Damg̊ard’s threshold cryptosystem
which is based on Regev’s.

• Distributed cryptography. After some preliminaries, we expose Bendlin and Damg̊ard’s threshold
cryptosystem and distributed key generation.

3

Lattice-Based Threshold Cryptography

• RLWE threshold cryptosystem. In this section we first present the RLWE cryptosystem proposed by
Lyubashevsky, Peikert and Regev in [12], in which we will base our proposal of threshold cryptosystem.
Then we expose our proposal, heavily inspired on Bendlin and Damg̊ard’s, and prove it correct and
secure.

• Conclusion. We give a summary of the extent of our developments and how they could be furthered.

Inside each of these sections, and their respective subsections, we will use Definitions, Propositions,
Lemmas, Theorems, Corollaries, Techniques, Protocols and Functionalities. The first five need no explain-
ing, then Techniques will outline specific established procedures, Protocols will map out the threshold
decryption and distributed key generation protocols, and Functionalities will define whatever functionalities
we need to prove security through simulation. This differentiation is to highlight the difference between
Protocols and Functionalities, while the first are implementable algorithms, the second, while mimicking
the first, are only used to prove security of a certain protocol.

4

2. Theory

2.1 Notation

• 〈a, b〉 :=
∑k

i=1 ai bi , a, b ∈ Zk
q for some k , q ∈ Z>0.

• X ∼ χ means X is a random variable following the distribution χ.

• Every element in Zk
q for some k ∈ Z>1 is written in bold while the elements in Zq are not.

• A function f (x) is said to be negligible if ∀k ∈ Z>0, ∃n0 ∈ Z>0 such that ∀n ≥ n0, |f (n)| < 1
nk .

2.2 Introduction to Lattices

In this subsection we will go through definitions and basic theorems related to lattices, since the encryption
schemes later proposed will be based in lattice problems. This information can mostly be found in [16].

Definition 2.1. A lattice L is a set of points in an n-dimensional space n ∈ Z>0 (usually Rn) such that:

• L is an additive subgroup: 0 ∈ L and x , y ∈ L ⇒ −x , x + y ∈ L.

• L is discrete: ∀x ∈ L, ∃U 3 x such that U ∩ L = {x}, with U neighbourhood of x .

Remark. Note that this properties give lattices a periodic structure. Usually a lattice is defined by a basis
of vectors.

Definition 2.2. Given b1, ... , bk ∈ Rn k linearly independent vectors, the generated lattice given by this
set of vectors is:

L(b1, ... , bk) =

{
k∑

i=1

zi bi |zi ∈ Z

}
= {Bz|z ∈ Zk} = L(B)

Note that we have called B the matrix formed by b1, ... , bk as columns, we call b1, ... , bk a basis of the
lattice L. Also note that many different basis may define the same lattice.

Theorem 2.3. Let B, B′ ∈ Rn×k . Then, L(B) = L(B′) ⇐⇒ ∃U ∈ Zk×k unimodular matrix such that
B′ = BU.

Proof. ⇐) Assume B′ = BU, with U unimodular matrix. Then B = B′U−1, since U is invertible. Given
that U, U−1 ∈ Zk×k , this means that the vectors in L(B) are an integer linear combination of vectors in
B′ (L(B) ⊆ L(B′)) and viceversa. Therefore L(B) = L(B′).

⇒) Assume L(B) = L(B′). This means that each column of B′ is an integer linear combination of
vectors of B, therefore b′i = Bui with ui ∈ Zk ∀i , giving us B′ = BU with U ∈ Zk×k . The same argument
can be made in the other direction giving us B = B′V, with V ∈ Zk×k . Adding it all together we get
B′ = B′VU. Then B′(VU−Id) = 0, and since B′ is non-singular we get that U is a unimodular matrix.

Remark. This last theorem is important since most lattice-based problems hardness depends on the basis
defining the lattice given as an input, mainly the orthogonality of the basis.

5

Lattice-Based Threshold Cryptography

Definition 2.4. The orthogonality defect of L(B) if B ∈ Rn×n is given by:

δ(B) =

∏n
i=1 ‖bi‖

det(B)

It can also be normalized taking the n-th root n
√
δ(B). A highly orthogonal basis has a low orthogonal

defect.

Definition 2.5. The minimum λi (B) is the radius of the smallest hypersphere centered in the origin that
contains at least i linearly independent points of the lattice.

Since hardness of most lattice problems depends on the orthogonality one may think how difficult finding
a highly orthogonal base may be, but it turns out this is a difficult problem. There are several algorithms:
the Lenstra-Lenstra-Lovasz (LLL) algorithm presented in [11], that performs gaussian elimination on the
elements of the basis two by two; the Blockwise Korkine-Zolotarev (BKZ) reduction presented in [19],
that improves the former using blocks of k vectors but has to find the shortest vector, which is a difficult
problem; and there are more algorithms based on the shortest vector problem. However, all these algorithms
are exponentially slow, or in the case of LLL is polynomial but its result is exponentially far from being
optimal.

Definition 2.6. A lattice L is said to be q-ary if Zn
q ⊂ L ⊂ Zn.

There are two usual ways to represent a q-ary lattice given a matrix A ∈ Zn×m
q :

• The Λq form:

Λq(A) = {y ∈ Zn|y = Az (mod q), z ∈ Zm}

• The orthogonal Λ⊥q form:

Λ⊥q (A) = {y ∈ Zn|AT y = 0 (mod q)}

Definition 2.7. The dual lattice of L ⊂ Rn is L∗ = {w ∈ Rn|〈w, x〉 ∈ Z, ∀x ∈ L}

Proposition 2.8. Λq and Λ⊥q are dual of each other up to normalization.

Proof. We will divide the proof in two:

First we will see Λ⊥q (A) ⊆ qΛq(A)∗:

y ∈ Λ⊥q (A) ⊆ Zn ⇒ yT A ≡ 0 (mod q)⇒ yT A = qaT , a ∈ Zm ⇒ (q−1y)T A = aT ⇒
(q−1y)T Az = aT z ∈ Z, ∀z ∈ Zm ⇒ (q−1y) ∈ Λq(A)∗ ⇒ y ∈ qΛq(A)∗ ⇒ Λ⊥q (A) ⊆ qΛq(A)∗

And now we will see Λ⊥q (A) ⊇ qΛq(A)∗:

y ∈ qΛq(A)∗ ⇒ y = qy′, y′ ∈ Λq(A)∗ ⇒ yT A = qy′
T

A⇒ yT A = qa, a ∈ Zm

⇒ yT A ≡ 0 (mod q)⇒ y ∈ Λ⊥q (A)⇒ Λ⊥q (A) ⊇ qΛq(A)∗

6

Now we will define the problems on which security of lattice-based cryptography are usually based.

Definition 2.9. Given B a base of the lattice L(B), the γ−approximated Shortest Vector problem (γ-SVP)
is finding a non-zero vector v ∈ L(B) such that ‖v‖ ≤ γ · λ1(L(B)).

A decision version of the SVP is the GAPSVP problem, that is, given B a base of lattice L(B), to
decide whether its shortest vector is shorter than 1 or bigger than a given value β.

The hardness of these problems depends on γ and β. The γ-SVP has been proven to be NP-hard for γ
polynomial in n dimension of the lattice [1], with only exponential algorithms known to solve it [8] and it is
believed that no probabilistic polynomial time algorithm exists neither classic or quantic. The GAPSVP is
also conjectured not to have any solving probabilistic polynomial time algorithm in the range of parameters
that are useful for cryptography.

The SVP problem is called Short Integer Solution (SIS) when described using the dual lattice, since
finding short vectors of the lattice is equivalent to finding short integer vectors such that Ax = 0.

Definition 2.10. Given B a base of the lattice L(B) and a vector t ∈ Rn called the target vector,the
Approximate Closest Vector Problem (γ-CVP) is finding a vector u ∈ L(B) such that if

v = arg min
w∈L(B)

‖t−w‖ then ‖u− v‖ ≤ γ‖t− v‖

However, working with a general lattice is not very efficient, therefore we use what we call ideal lattices,
since its structure helps using faster computations, like using the Fast Fourier Transform, and no algorithm
solving the previous problems is known to be able to take advantage of this structure.

Definition 2.11. Given a vector f ∈ Rn we call the transformation matrix F the following matrix:
0 ... 0 −f1

. . . −f2

Idn−1
...

. . . −fn


Definition 2.12. An ideal lattice is a lattice L which basis is the matrix A = [a, Fa, ... , Fn−1a], where F
is the transformation matrix of a ∈ Zn.

Remark. These are called ideal lattices because we can see them as ideals in the ring Rq = Zq[x]/〈fn(x)〉
where fn(x) ∈ Zq[x] is some polynomial. Therefore we identify any vector v = (v1, ... , vn) ∈ Zn

q with a
polynomial v(x) = v1 + v2x + ... + vnxn−1 ∈ Rq. It is easily observed that by construction, multiplication
of polynomials a, b in Rq is equivalent to multiplying the matrix A constructed from the vector a and its
transformed matrix with the vector b. Therefore the points in L(A) are the polynomials in 〈a〉 ∈ Rq.

We usually choose fn(x) = xn + 1 with n a power of 2, since it gives us good security reductions and
the possibility to use the Fast Fourier Transform.

7

Lattice-Based Threshold Cryptography

2.3 Introduction to cryptography

In this subsection we will go through some needed definitions related to cryptography.

Definition 2.13. [14] A cryptosystem or encryption scheme is a tuple (P, C,K, E ,D) such that:

• P is a set called plaintext space.

• C is a set called cyphertext space. Where the elements in this space live depends heavily on the
encryption and decryption protocols.

• K is a set called key space. Where the elements in this space live depends heavily on the encryption
and decryption protocols.

• E = {Ek : k ∈ K} is a set of functions Ek : P ×R → C called encryption functions. These functions
depend on the key k. R is a randomness space because some encryption (and decryption) protocols
use random values.

• D = {Dk : k ∈ K} is a set of functions Dk : C×R → P called decryption functions. These functions
depend on the key k .

• ∀e ∈ K, ∃d ∈ K such that Dd (Ee(m)) = m ∀m ∈ P.

Note that if we have d = e then we call it symmetric encryption, otherwise we call it asymmetric or
public key encryption. Also, in public key encryption K can be divided in two different sets, Ks the secret
key space and Kp the public key space. Then we must have d ∈ Ks and e ∈ Kp.

When using a cryptosystem to transfer confidential data, one needs several properties to ensure the
transfer is indeed confidential.

Definition 2.14. A cryptosystem is said to be correct if the decryption protocol gives correct output except
with negligible probability.

Definition 2.15. An adversary A is a Probabilistic Polynomial Time (PPT) algorithm or a tuple of them
that maintains a state, so as to be able to have information of previous executions. Its abilities, character-
istics and objectives depend on what kind of security you want to prove in a given cryptosystem.

An adversary is said to be passive if A can see all the messages and internal data of a corrupted player
but still follows the protocol. It is called semi-honest if, as before, A can see all the messages and internal
data of a corrupted player and corrupted players follow the protocol but may stop at any time. It is called
active if besides stopping any corrupted player, A can cause them to deviate arbitrarily from the protocol.
Furthermore, any of the types of adversaries mentioned before can be static if the set of corrupted players
is set at the beginning of the computation of the protocol or adaptative if the set of corrupted players may
vary during the application of the protocol [2].

Definition 2.16. [6] A cryptosystem is said to be semantically secure if given only cyphertext c and the
public key k it is infeasible for an adversary A to derive any significant information about the message.

However proving semantical security is usually hard so we will define another type of security:

Definition 2.17. [10] A cryptosystem is said to be Indistinguishable Chosen Plaintext Attack Secure (IND-
CPA Secure) if for any adversary A generating two same length messages and sending them to an oracle,
where the oracle decides a message with a fair coin toss and returns it encrypted, the difference between
the probability of the adversary guessing which message was encrypted and 1

2 is negligible.

8

Lemma 2.18. If a cryptosystem (P, C,K, E ,D) is IND-CPA Secure then it is semantically secure.

For proof of this lemma refer to [7].

Definition 2.19. [9] (Informal). A commitment scheme is a cryptographic algorithm that allows a player
to commit to a chosen statement without showing it to other players. The statement may be revealed
afterwards.

9

Lattice-Based Threshold Cryptography

3. Regev’s cryptosystem

In this section we will go through Regev’s cryptosystem, one of the first lattice-based cryptosystems pre-
sented, and it has heavily influenced latter lattice-based cryptography. It is a system based on the Learning
With Errors problem (LWE), and was presented by Oded Regev in [18]. However we will present the choice
of parameters given by Rikke Bendlin and Ivan Damg̊ard in [2], since it is the cryptosystem in which their
threshold cryptosystem is based.

First of all we need some definitions and notation.

Definition 3.1. [2] n ∈ Z>0 is said to be B-smooth if given the prime factorization of n, n =
∏k

i=0 pi ,
then it verifies that pi ≤ B and n is square free.

Definition 3.2. [2] Let χ be a probability distribution in Zq, q ∈ N, n ∈ Z>0 and s ∈ Zn
q.

Then As,χ is the distribution in Zn
q × Zq given by (a, 〈a, s〉+ e), where a ∈ Zn

q is chosen uniformly at
random and e ∼ χ.

Definition 3.3. [2] The decisional LWE problem is being able to distinguish a sample from As,χ from the
uniform distribution in Zn

q × Zq with a probability that is non-negligibly bigger than 1
2 .

Definition 3.4. [2] The search LWE problem is being able to find s given polinomially many samples from
As,χ with non-negligible probability.

Definition 3.5. [18] Ψβ, β ∈ R+ is the distribution in T = R/Z obtained by sampling a Gaussian random

variable X , X ∼ N(0, β
2π) and then reducing modulo 1. Therefore:

Ψβ(r) =
∞∑

k=−∞

1

β
e−π(r−k

β
)2

, ∀r ∈ [0, 1)

Definition 3.6. [18] The discretization to Zq, q ∈ Z>0 of any distribution in T (Ψ : T→ R+), noted as
Ψ : Zq → R+ is sampling from Ψ, multiplying by q, and then rounding to the closest integer. Therefore:

Ψ(i) :=

∫ i+ 1
2

q

i− 1
2

q

Ψ(x) dx

Remark. We will further use Ψβ built using the two definitions above. Note that Ψβ has mean 0 and
standard deviation β, and Ψβ has a standard deviation bounded by βq. Also note that if Y ∼ Ψβ then
Y = bqX e (mod q), with X ∼ Ψβ.

Given these definitions we can proceed to explain the cryptosystem, first stating its parameters, and
then how it works.

The parameters are [2]:

• n ∈ Z>0 will be the dimension of the vectors. It is also called security parameter since security
usually depends on the size of n.

• q ∈ Z>0 such that q = 2Θ(n) and is B-smooth with B = O(nk) for some k ∈ Z>0 will be the
modulo. It is also called main parameter.

10

• m ∈ Z>0 such that m = O(n3) will be the size of the public key.

• χ ∼ Ψβ with β = qα−1 for α = 1/4 will be the distribution followed by the disturbances. We have
chosen this particular value of β for simplicity, though any β between 0 and 1 could be used. The

standard deviation is bounded by qβ = qα = q
1
4 .

Now given all the parameters we can define the five components of the cryptosystem’s tuple [2].

Definition 3.7. Given the parameters stated before, Regev’s cryptosystem’s tuple is as follows:

• P = {0, 1}. We need to encrypt bit a bit.

• C = Zn
q × Zq.

• This is a public key encryption scheme, we have Ks = Zn
q and Kp = Zm×n

q × Zm
q .

• The secret key will be s ∈ Ks chosen uniformly at random. The public key (A, b) ∈ Kp, where A
is chosen uniformly at random and b = As + e (mod q), where e ∈ Zm

q such that ei ∼ χ. We will
note as Ai the row number i of A.

• E = {Ek : k ∈ Kp} such that, given r = (r1, ... , rm) ∈ {0, 1}m chosen uniformly at random and a bit
γ:

Ek : P → C
γ 7→ (a, b)

Where (a, b) = (
∑m

i=1 ri Ai , γ
⌊q

2

⌋
+ 〈r, b〉).

• D = {Ds : s ∈ Ks} such that c = (a, b):

Ds : C → P
c 7→ γ

Where γ is 0 if after computing v := b−〈a, s〉 (mod q) is closer to 0 than to bq
2c, and is 1 otherwise.

Now given the encryption and decryption scheme we need to prove it correct and secure. We will first
prove it is correct for a certain type of distribution χ and then we will prove that Ψβ verifies that condition.

Theorem 3.8. [2] If ∀k ∈ {0, 1, ... , m} and ẽ ∼
∑k

i=1 χ it holds that:

Pr(|ẽ| ≥ 3
√

q) ≤ 2−O(n)

then except with negligible probability the decryption protocol will give correct output.

The proof is not done in [2], but we will give a proof of the theorem.

Proof. We know that the decryption is based on the following operation:

v := b − 〈a, s〉 ≡q γ
⌊q

2

⌋
+ 〈r, b〉 − 〈

m∑
i=1

ri Ai , s〉

≡q γ
⌊q

2

⌋
+

m∑
i=1

ri (〈Ai , s〉+ ei)−
m∑

i=1

ri 〈Ai , s〉 ≡q γ
⌊q

2

⌋
+

m∑
i=1

ri ei

11

Lattice-Based Threshold Cryptography

Now given this value v we know the decryption algorithm returns 0 if |v | ≤
⌊q

4

⌋
and returns 1 if

|v | >
⌊q

4

⌋
, if we look at the elements of Zq from −

⌊q
2

⌋
to
⌊q

2

⌋
. Then the protocol gives correct output

except with negligible probability if and only if |〈r, e〉| <
⌊q

4

⌋
except with negligible probability, and we also

know since r ∈ {0, 1}m that ẽ := 〈r, e〉 ∼
∑k

i=1 χ if k =
∑m

i=1 ri , since ei ∼ χ. Then:

Pr
(
|〈r, e〉| ≥

⌊q

4

⌋)
≤ Pr(|ẽ| ≥ 3

√
q) ≤ 2−O(n) <

1

O(nk)
∀k ∈ Z>0

and therefore negligible.

Remark. Note that in the last line we have used that 3
√

q ≤ q
4 if q ≥ 8 and since q = 2Θ(n) this holds for

n ≥ 3. We can suppose n ≥ 3 because for these kind of encryption schemes to be secure they usually use
n ≈ 210 which is obviously bigger than 3.

Lemma 3.9. [2] For the choice of parameters made, for any k ∈ {0, 1, ... , m}, a constant c ∈ (0, 4) and
e ∼

∑k
i=1 χ it holds that:

Pr(|e| ≥ c
√

q) ≤ 2−O(n)

We will go through a more extended version of the proof given in [2].

Proof. Since χ = Ψβ we have that e =
∑k

i=1bqXie (mod q), with Xi ∼ Ψβ. We also know, if e ′ :=∑k
i=1 qXi (mod q), that:

|e − e ′| =

∣∣∣∣∣
k∑

i=1

bqXie (mod q)−
k∑

i=1

qXi (mod q)

∣∣∣∣∣ =

=

∣∣∣∣∣
k∑

i=1

bqXie − qXi (mod q)

∣∣∣∣∣ ≤
∣∣∣∣∣

k∑
i=1

1

2
(mod q)

∣∣∣∣∣ =
k

2
< m

Now, since m = O(n3) and q = 2Θ(n) we also know m <
c
√

q
2 for a big enough n, so it is sufficient to

prove that Pr(|e ′| ≥
c
√

q
2) ≤ 2−O(n). Given that Ψβ has mean 0 and standard deviation bounded by 4

√
q by

construction, e ′ has mean 0 and standard deviation
√

k · 4
√

q. Using Chebyshev’s inequality:

Pr

(
|e ′| ≥

c
√

q

2

)
= Pr

(
|e ′| ≥

c
√

q

2
√

k 4
√

q
·
√

k 4
√

q

)
≤ Pr

(
|e ′| ≥ t ·

√
k · 4
√

q
)
≤ 1

t2

where t =
c
√

q

2
√

m 4
√

q
. Using m = O(n3) and q = 2Θ(n) again we get 2

√
m ≤ d

√
q for some constant d > 0.

This holds for n big enough since 2
√

m = O(n
3
2) and d

√
q = O(2

1
d

O(n)). Then t ≥
c
√

q
d
√

q 4
√

q = q
1
c
− 1

d
− 1

4 ,

resulting in 1
t2 ≤ 1

q2(1
c−

1
d
− 1

4)
. Since we want to see for which d this is negligible, and q is exponential in n

we need to see when the exponent is bigger than zero:

2(
1

c
− 1

d
− 1

4
) > 0 ⇐⇒ 1

d
<

1

c
− 1

4
⇐⇒ 1

d
<

4− c

4c
⇐⇒ d >

4c

4− c

And given that c < 4 we can always pick such d, proving the lemma.

12

With the Lemma 3.9 and the Theorem 3.8 we have proven the correctness of the cryptosystem. Let us
prove semantical security now.

Theorem 3.10. [2] The cryptosystem is semantically secure under the assumption that GAPSVP is hard
in the worst case.

Like before we will give a slightly more fleshed out proof than the one given in [2].

Proof. To prove this we will reduce the GAPSVP to the decision LWE problem, and we will after prove
that distinguishing between encryptions of 0 and 1 is at least as hard as the decision LWE problem, proving
it then IND-CPA secure, which in turns implies it is semantically secure.

Firstly we will reduce in polynomial time the GAPSVP to the search LWE problem. To do so we will
take advantage that we have chosen q to be exponentially large in n, and therefore we are able to use the
reduction given by Chris Peikert in [15].

Secondly, we will reduce in polynomial time the search LWE problem to the decision LWE problem. To
do this reduction we will base ourselves in the reduction given by Regev in [18], where it does exhaustive
search over all elements in Zq. However, Regev used in this proof a modulus q which was prime, not
B-smooth as we have. This is easily solved by doing the reduction modulo pi each of the primes in q and
recombine them using the Chinese Remainder Theorem.

Now we have reduced the GAPSVP, which we know that the best algorithms to solve it are exponential,
to the decision LWE problem. This means that given an oracle that returns the solution to any given decision
LWE problem we have an algorithm in polynomial time that solves GAPSVP. Therefore, given that GAPSVP
is harder than polynomial, the decision LWE problem must be too.

Finally we need to prove that distinguishing between encryptions of 0 and 1 is at least as hard as
the decision LWE problem. This was also proved by Regev in [18]. The basic idea is that given an
algorithm that distinguishes between the encryptions of 0 and 1, which means an algorithm Dist that
receives as input a cyphertext C ∈ C and outputs V or F , such that |p0 − p1| is not negligible, where
p0 = Pr(Output = V |C = Ek (0)) and p1 = Pr(Output = V |C = Ek (1)), with Ek encryption function;
then Dist will also distinguish between an encryption of 0 and a random element of Zn

q × Zn
q or between

an encryption of 1 and a random element of Zn
q × Zn

q since pr = Pr(Output = V |C = r) with r a random
element of Zn

q×Zn
q will need to be non-negligibly different from p0 or p1. Therefore distinguishing between

encryptions of 0 and 1 is at least as hard as distinguishing if an element of Zn
q×Zq comes from a distribution

As,χ (an encryption) or is an element picked at random, which is the decision LWE problem.

13

Lattice-Based Threshold Cryptography

4. Distributed cryptography

In this section we will go through, after some preliminaries, the threshold cryptosystem proposed by Bendlin
and Damg̊ard in [2], that works around Regev’s cryptosystem. We will then use this cryptosystem as base
to create our cryptosystem around Ring Learning With Errors.

4.1 Preliminaries

Definition 4.1. [20] A threshold secret sharing scheme of threshold t and u players is a scheme such that
given some data D it divides it to u pieces D1 ... , Du such that:

• Knowledge of t + 1 or more pieces Di makes D easily computable.

• Knowledge of t or less pieces Di leaves D completely undetermined (i.e. all its possible values are
equally likely).

Definition 4.2. We will call a threshold cryptosystem a secret sharing scheme where what we try to recover
is plaintext from cyphertext.

Remark. Therefore, in a threshold cryptosystem the encryption works as in a normal cryptosystem (only
one person or entity encrypts the message), but it is necessary the collaboration of t + 1 players to decrypt
the message.

Technique 4.3. [20] Shamir secret sharing over Zq allows u players share a secret s ∈ Zq so that only
t + 1 players (t < u) can solve the secret together and whatever group of players of size less or equal than
t cannot obtain any information on s. The algorithm works as follows:

• Choose t elements bi ∈ Zq and define the polynomial f (z) := s +
∑t

i=1 bi z
i (mod q) (i.e. choose

a random polynomial f (z) ∈ Zq[x] such that f (0) = s).

• For every player Pi , their share of the secret is f (i).

• When t + 1 players want to recover the secret they use Lagrange interpolation to find f (z) and then
compute f (0).

Remark. The recovery of the secret works because of Lagrange interpolation, which states that given t + 1
points (f (ij), j = 1, ... , t + 1), there exists a unique polynomial of degree at most t that passes through
these points, and it is given by:

f (z) =
t+1∑
j=1

f (ij)
∏
k 6=j

z − ik
ij − ik

Proposition 4.4. The linear combination (with elements of Zq) of Shamir shares of different secrets is a
Shamir share of the same linear combination of the secrets.

Proof. We have (a1, ... , au) ∈ Zu
q Shamir shares of a ∈ Zq with threshold t, t < u, and (b1, ... , bu) ∈ Zu

q

Shamir shares of b ∈ Zq with threshold t. This means that for any t + 1 shares of a (without loss of
generality we can assume them the t + 1 first), if f (z) :=

∑t+1
j=1 f (ij)

∏
k 6=j

z−ik
ij−ik

(mod q) with f (ij) = aj

14

then f (0) = a and for any t + 1 shares of b (without loss of generality we can assume them the t + 1 first),
if g(z) :=

∑t+1
j=1 g(ij)

∏
k 6=j

z−ik
ij−ik

(mod q) with g(ij) = bj then g(0) = b.

We want to see that λ(a1, ... , au) + µ(b1, ... , bu), λ,µ ∈ Zq are Shamir shares of λa + µb (mod q),
i.e that given any t + 1 shares (without loss of generality we can assume them the t + 1 first), if h(z) :=∑t+1

j=1 h(ij)
∏

k 6=j
z−ik
ij−ik

(mod q) with h(ij) = λaj +µbj (mod q) then h(0) = λa +µb (mod q). Let us see

it:

h(z) =
t+1∑
j=1

(λaj + µbj)
∏
k 6=j

z − ik
ij − ik

≡q λ(
t+1∑
j=1

aj
∏
k 6=j

z − ik
ij − ik

) + µ(
t+1∑
j=1

bj
∏
k 6=j

z − ik
ij − ik

) ≡q λf (z) + µg(z)

And therefore h(0) ≡ λf (0) + µg(0) (mod q) ≡ λa + µb (mod q).

Proposition 4.5. Let (a1, ... , au) ∈ Zu
q be Shamir share of a ∈ Zq with threshold t +1 (t < u) and b ∈ Zq,

then (b + a1, ... , b + au) (mod q) is a Shamir share of b + a (mod q) with threshold t + 1 (t < u).

Proof. We know that for any t + 1 shares of a (without loss of generality we can assume them the t + 1
first) if f (z) :=

∑t+1
j=1 f (ij)

∏
k 6=j

z−ik
ij−ik

(mod q) with f (ij) = aj then f (0) = a. Let us see that for any

t + 1 shares in (b + a1, ... , b + an) (without loss of generality we can assume them the t + 1 first), if
g(z) :=

∑t+1
j=1 g(ij)

∏
k 6=j

z−ik
ij−ik

(mod q) with g(ij) = b + aj (mod q) then g(0) = b + a (mod q):

g(z) :=
t+1∑
j=1

(b + aj)
∏
k 6=j

z − ik
ij − ik

≡q

t+1∑
j=1

b
∏
k 6=j

z − ik
ij − ik

+
t+1∑
j=1

aj
∏
k 6=j

z − ik
ij − ik

:≡q h(z) + f (z)

Where h(z) is a polynomial of degree at most t that has t +1 points fixed at b, which implies that h(z) = b.
Therefore we have g(0) ≡ h(0) + f (0) (mod q) ≡ b + a (mod q).

Corollary 4.6. Let λj =
∏

k 6=j
ik

ik−ij
the Lagrange coefficients, for any degree n. Then

∑n+1
j=1 λj = 1.

Proof. Let us do Lagrange interpolation of f (z) = 1, polynomial of degree at most n:

f (0) =
n+1∑
j=1

1 · λj = 1⇒
n+1∑
j=1

λj = 1

Definition 4.7. [22] A pseudorandom function Φ·(·) is a deterministic function that maps two sets (domain
and range) on the basis of a key, which when run multiple times with the same input gives the same output
but given an arbitrary input the output seems random, i.e. one cannot predict the output of a given input
only knowing other evaluations.

Technique 4.8. [5] PseudoRandom Secret Sharing in Zq (PRSS) allows u players to non-interactively
share a common random value with a threshold of t players (t ≤ u) given a pseudorandom function Φ·(·)
that given a seed and a cyphertext outputs values in the interval I = [a, b] and whatever group of players
of size less or equal than t cannot obtain any information on s. The algorithm works as follows:

• For each subset H of t players we define a key KH ∈ Zq uniformly at random.

• Each player Pj is given KH , ∀H such that Pj /∈ H.

15

Lattice-Based Threshold Cryptography

• The pseudorandom number they are sharing is x :=
∑

H ΦKH
(c), with c a cyphertext. Since there

are
(u

t

)
such subsets H, we know x ∈ [

(u
t

)
a,
(u

t

)
b].

Remark. For any subset of t + 1 players that wants to retrieve x they have all the keys, since each key is
given to u − t players.

Since this sharing is a type of additive sharing and the Shamir shares are polynomial shares, we will
need a way to convert one to the other.

Technique 4.9. [3] Converting between additive shares and polynomial shares allows to, given (a1, ... , at+1)
additive shares of a secret a of threshold t (i.e. a =

∑t+1
i=1 aj), convert them to (a′1, ... , a′t+1) Shamir

shares of a for t + 1 players of threshold t. The algorithm works as follows:

• Each player Pj chooses t elements βi ∈ Zq and computes fj (z) = aj +
∑t

i=1 βi z
i .

• Each player Pj sends to every player i fj (i).

• The Shamir share of a for each player Pj is a′j = f (j) :=
∑t+1

k=1 fk (j).

Remark. The resulting shares are truly Shamir shares of the secret a, since essentially what we did was do
a Shamir share of each additive share and then adding them all together, and we have seen already that
sum of Shamir shares gives Shamir shares of the sum, in this case a.

4.2 Bendlin and Damg̊ard’s proposal

Now that we have covered all the preliminaries we can present the encryption scheme with threshold t of
Bendlin and Damg̊ard presented in [2]. We will first present the encryption scheme, which uses a Trusted
Third Party (TTP) to generate the keys, secondly we will prove its correctness and finally we will present
two functionalities we will use to prove security for passive adversaries corrupting t ≤ u − 1 players and
we will see that this proof works for proving security of this same protocol against a semi-honest adversary
corrupting t < u

2 players and against an active adversary corrupting t < u
3 adversaries, all of it based on

[2].

We will use the notion of a client, external to the threshold decryption protocol, who has an encrypted
message and wants to decrypt it with the help of the players and chooses which t + 1 of them help him,
to make comprehension easier.

Protocol 4.10. The decryption protocol works as follows, if we take I = [−√q,
√

q] the image of Φ·(·):

1. A Trusted Third Party generates the keys KH ∈ Zq for every subset H of players of size t and
distributes them according to PRSS (Technique 4.8). It also generates the secret key s = (s1, ... , sn) ∈
Zn

q and the public key (A, b) ∈ Zm×n+1
q as in Regev’s cryptosystem and sends to the players (A, b)

and Shamir shares of s.

2. Client receives cyphertext (a, b), decides which t + 1 players will decypher the text and sends them
the cyphertext and a list of the players participating in the decryption.

3. Each player Pj computes ẽ j = b−〈a, sj〉 that is a Shamir share of ẽ = e +
⌊q

2

⌋
· γ with 〈r, e〉 being r

the random vector in {0, 1}m and e the vector of errors, because of Proposition 4.4 and Proposition
4.5.

16

4. Each player Pj computes its additive share of x :=
∑

H ΦKH
(c) in the following way: in order, the

additive share x j is the sum of all ΦKH
(c) no player before has, but Pj does. Then it converts this

share to x̃ j Shamir share of x using Technique 4.9.

5. Each player Pj computes x̃ j + ẽ j Shamir share of x + ẽ and sends it privately to the client.

6. Client reconstructs x + ẽ using Lagrange interpolation, then returns 0 if x + ẽ is closer to 0 than to
bq

2c and returns 1 otherwise.

Remark. Note that the only difference between this threshold decryption protocol and Regev’s scheme is
that we add distortion x as a random number in the encryption. This randomness is necessary so as to
not give any relevant information on the error e when sharing the decryption, since that would leak some
information on the secret key.

Theorem 4.11. Let
(u

t

)
< 1

4

√
q − 1 and assume that

Pr(|e| ≥ b√qc) ≤ 2−O(n)

Then except with negligible probability the decryption protocol will have correct output.

Proof. We will prove it first for an encryption of 0 and afterwards for an encryption of 1.

Assume we have an encryption of 0. Then the client will have reconstructed x + e from the shares.
We want to see |x + e| < q

4 except with negligible probability. We know by definition that |x | <
(u

t

)√
q,

so by the first assumption of the theorem we have that |x | < q
4 −
√

q. We also know by the second

assumption of the theorem that Pr(|e| ≤ b√qc) ≥ 1− 2−O(n). Therefore Pr(|x + e| ≤ bq
4c) ≥ 1− 2−O(n),

so Pr(|x + e| > bq
4c) ≤ 2−O(n) and the probability of error in output is negligible.

Assume we have an encryption of 1. Then the client will have reconstructed x + e + bq
2c. Now we

want to see that Pr(|x + e + q
2 | <

q
4) < 2−O(n), because the decryption will fail then. Since we are in Zq

we know that |x + e + q
2 | <

q
4 ⇐⇒ |x + e| > q

4 . Now we have:

Pr
(
|x + e +

q

2
| < q

4

)
= Pr

(
|x + e| > q

4

)
= 1− Pr

(
|x + e| ≤ q

4

)
≤ 2−O(n)

Remark. Note that we have already proven in Lemma 3.9 that our distribution of errors satisfies the property
required for the theorem. Also note that correctness for the cryptosystem places an upper bound for u the
number of players if we fix q, or a lower bound for the modulus q if we fix u.

Now that we have proven correctness we will go forward to present the three functionalities we will use
to prove security, and afterwards prove the security of the cryptosystem.

Functionality 4.12. We define the functionality FKeyGen that works as following:

1. When given “start” by all players, FKeyGen chooses a secret key s = (s1, ... , sn) ∈ Zn
q uniformly at

random and constructs the public key (A, b) ∈ Zm×n+1
q , as in Regev’s cryptosystem.

2. For each subset H of size t of players FKeyGen chooses key KH ∈ Zq uniformly at random.

3. FKeyGen receives from the adversary, for each corrupted player Pj , the shares s j
i ∈ Zq, ∀i = 1, ... , n.

17

Lattice-Based Threshold Cryptography

4. Using Lagrange interpolation and the shares s j
i received from the adversary, FKeyGen computes a

polynomial f (x1, ... , xn) = (f1(x1), ... , fn(xn)), fi (xi) ∈ Zq[x] of degree t that goes through the
shares and such that f (0) = s, and then computes the Shamir shares for every i = 1, ... , n.

5. FKeyGen sends privately to every player Pj their share sj = (s j
1, ... , s j

n) of the secret key and KH for
all H such that Pj /∈ H.

6. FKeyGen sends public key to all players and adversary.

Remark. Note that we give the adversary the ability to choose which shares of the secret the corrupted
players get. This is done this way since we will need to know what are the corrupted players when proving
security. The easiest way to do so is like this, and given the fact that this kind of adversary is stronger
than usual, the protocol will also be secure under weaker adversaries.

Functionality 4.13. We define the functionality FKeyGen−and−Decrypt or FKG−D that implements the same
steps as Protocol 5.10:

1. When receiving “start” of all players send “start” to FKeyGen, receives all the shares of s and all the
KH and forwards it to every player.

2. When receiving “decrypt (a, b)” from the client, send “decrypt (a, b)” to all players participating in
the decryption and the adversary, and then reconstruct the encrypted bit γ.

3. In the next round, send γ and the shares of every player to the client and adversary.

Functionality 4.14. We define the new functionality FSimDecrypt that works as follows, assuming B the
set of corrupted players:

1. When given “start” by all players in B FSimDecrypt gives “start” to FKeyGen and receives all the shares
of s and the keys KH .

2. FSimDecrypt sends the shares of s and their respective KH to the players in B.

3. When receiving “decrypt (a, b)” from the client, FSimDecrypt sends “decrypt (a, b)” to all players in
B, receives their shares of the decryption and decrypts the bit γ with these shares, the shares of the
secret key of the honest players and the decryption protocol.

4. For the honest players FSimDecrypt must simulate shares to broadcast in the next round, so for every KH

the adversary does not know (i.e. B ⊆ H) FSimDecrypt generates a random integer rH ∈ [−√q,
√

q],
and we define y =

∑
B*H ΦKH

(c) +
∑

B⊆H rH . Now using Lagrange interpolation FSim computes

shares of y + γbq
2c using Lagrange interpolation, the shares of the decryption received by the players

in B in step 3 and γ calculated in step 3.

5. In the next round send γ bit corresponding to cyphertext (a, b) and the shares of y + γbq
2c.

Theorem 4.15. When given access to the functionality FKeyGen and assuming that Φ·(·) is a pseudo-
random function, the decryption protocol is secure. The adversary is assumed to be passive and static,
corrupting up to t = u − 1 players.

18

Proof. To prove this we will use that the Regev’s cryptosystem is semantically secure (as we have proved
in Theorem 3.10), therefore we only need to prove that no information is leaked when sharing the secret
key and the decryption. We will do so by creating a functionality FSimDecrypt that simulates what FKG−D

does but using random input instead of using the secret key, and then proving that both functionalities
are statistically indistinguishable to the adversary. This will mean that the adversary cannot differentiate
random input from the secret key, thus meaning that no information about the secret key is leaked when
sharing the decryption.

Now we need to prove that indeed both functionalities are indistinguishable to the adversary. The
shares of the adversary, the KH the adversary receives and the interaction between the functionalities and
the adversary are obviously indistinguishable. γ will be correct in both cases given Theorem 4.11, and
furthermore, y + γbq

2c will be an effective ”decryption” of γ in the sense that it will be closer to 0 if γ = 0
and closer to q

2 if γ = 1, also by direct consequence of Theorem 4.11 (what we are adding to γbq
2c in the

worst case scenario is smaller).

The only thing we need to see now is that y +γbq
2c and x +e+bq

2c are indistinguishable to the adversary.
y and x are computationally indistinguishable to the adversary given the properties of pseudorandomness
of Φ·(·). Now we know that y is the sum of at least one element taken uniformly at random from an
interval of size 2

√
q, and e is distributed in an interval of size 2 3

√
q, which is exponentially smaller (in n)

than 2
√

q. Therefore, the way y and y + e are distributed are statistically indistinguishable, therefore since
y and x are computationally indistinguishable, y and x + e are statistically indistinguishable. Therefore,
the outcome is the one expected.

Remark. What this proof says is, broadly, that given two “decryptions” of γ (in the same sense as before),
one deriving from the secret key and one randomly constructed, they are indistinguishable. This means
that by using the pseudorandomly generated number x the cryptosystem effectively mutes any relevant
information of e and in consequence of s.

Basing ourselves on this cryptosystem is easy to see that it will also work, with slight adjustments,
against a semi-honest adversary corrupting up to t < u

2 players (there will always be t + 1 non-stopped
players to decrypt), and against an active adversary corrupting up to t < u

3 players using the same argument
as in [4] (it will always be verifiable who is saying the truth, because more than half of the players not in
the protocol will not be corrupt).

Note that even if this protocol is correct and secure, it is highly inefficient, given that the number of
KH grows exponentially with u if t is a constant fraction of u. Therefore this protocol is only feasible with
a small number of players.

4.3 Distributed key generation

The given protocol relies in a TTP to generate the keys, so it would be improved with a protocol to do the
distributed key generation. To give it we will need to introduce a new secret sharing protocol and a new
functionality.

Technique 4.16. [5] Non-Interactive Verifiable Secret Sharing in Zq (NIVSS), allows a dealer D to share
a secret s with u players with threshold t given a value a ∈ Zq and a pseudorandom function φ·(·) that
given a seed and a outputs values in the interval I = [a, b]. It works very similarly to PRSS. The algorithm
works as follows:

1. For each subset H of t players the dealer D chooses a key KH ∈ Zq uniformly at random.

19

Lattice-Based Threshold Cryptography

2. The dealer D gives to player Pj all the KH such that Pj /∈ H.

3. The dealer D reconstructs the pseudorandom value the players share r =
∑

H φKH
(a), since he has

all the keys.

4. D broadcasts the value s − r , and now all the players have a share of s by adding their shares on r .

Remark. We would like to note a few things about NIVSS. Firstly, the verifiability of this protocol resides
in the fact that every player can check the values other players output for the noise generated by the
pseudorandom function if they both have the same key. Secondly, the pseudorandom function used in
NIVSS is different than the one we have used in PRSS before, since it has different domain and range.
And finally, even if the dealer D sends a random value y instead of s − r , the protocol would still provide
the rest of the players with a valid share of some value, in particular of y + r .

We will now define the protocol for distributed key generation, for which we will need to assume
private communication channels between players, and then define two functionalities we will use to prove
its security. However, we will also need to prove that adding the distributed key generation does not render
the decryption protocol insecure, so we will define another functionality to prove the protocol’s security
against an active, static adversary corrupting t < u

3 players. Unlike before, the “näıve” protocol one could
think against a passive adversary would not work against an active adversary, therefore we will prove this
protocol is secure against an active, static adversary corrupting t < u

3 players and we will after see that it
also works against a passive adversary corrupting t ≤ u− 1 players and a semi-honest adversary corrupting
t < u

2 players, all of it based on [2].

Protocol 4.17. The key generation protocol works as follows if we take I = [− 3
√

q, 3
√

q] the image interval
of φ·(·):

1. For the secret key s ∈ Zn
q each player Pj chooses uniformly at random (s j

1, ... , s j
n) ∈ Zn

q their
contribution on the secret key and shares it with all the players using Shamir secret sharing, first
using a commitment scheme to commit every s j

i . Then the players will have, by adding all the shares

received by other players Shamir shares of s =
(∑

j s j
1, ... ,

∑
j s j

n

)
because of Proposition 4.4.

2. For the keys KH ∈ Zq that will be used for the PRSS in the threshold decryption, for every subset H

of t players each player Pj chooses uniformly at random K j
H ∈ Zq their contribution on these keys

and shares it with all the players using Shamir secret sharing. Then the players will have, by adding
all the shares received by other players Shamir shares of KH =

∑
j K j

H because of Proposition 4.4.
Finally all players send privately their shares on KH to all the players in A the complement of H, so
they can recover KH .

3. For the error contributions each player Pj chooses its error contribution e j
i for every row i of the

matrix according to the distribution Ψβ. Then they act as the dealer in a NIVSS to share e j
i to all

players. All players verify the value broadcast when doing the NIVSS e j
i −
∑

H φKH
(a) is in the interval

[−
(u

t

)
3
√

q,
(u

t

)
3
√

q]. Now all players have shares of every e j
i and by their lineality also of ei =

∑
j e j

i .

4. For A ∈ Zm×n
q we proceed as in generating the secret key s m times, and finally all players send to

all players their share on the public key so that everyone can recover it.

5. Every player computes locally their Shamir share on bi = 〈Ai , s〉 + ei by performing these same
operations with the shares they have on s and ei (having previously converted the shares to Shamir
using Technique 4.9).

20

Remark. We would like to note some facts about the protocol. Firstly, given how the shares in PRSS,
and extensively NIVSS, work, the shares every player has on bi will vary depending on which players are
contributing to reconstruct it. Secondly, by verifying whether the value broadcast when doing every NIVSS
is in the interval [−

(u
t

)
3
√

q,
(u

t

)
3
√

q], what we are really are verifying is if e j
i is in the interval [− 3.5

√
q, 3.5
√

q],

which is needed for the correctness of the decryption protocol, and we know that a value following Ψβ

will be outside of the interval [− 3.5
√

q, 3.5
√

q] only with negligible probability because of Lemma 3.9. Finally,
this distributed key generation is, once again, highly inefficient given the amount of Shamir shares and
application of NIVSS required.

Functionality 4.18. We define the functionality FRand , which has four different commands and works as
follows:

• “Shared value from D” where D is a player. The player D sends to FRand a value chosen uniformly
at random in Zq and the adversary sends to FRand a set of shares for the corrupt players. Then the
functionality uses Lagrange interpolation to construct consistent Shamir shares of the value sent by
D for the honest players and finally sends the shares to each player.

• “Random shared value”. FRand calls “Shared value from Pi ” for all players, and then each player
locally adds the shares of all the random numbers, giving shares of s =

∑
i si .

• “Random value to B” where B is a set of players. FRand calls “Random shared value” and all the
players send their shares to the players in B.

• “Constrained value from D” where D is a player. Player D performs a NIVSS of its secret s,
with the functionality verifying afterwards whether the broadcast value is in [−

(u
t

)
3
√

q,
(u

t

)
3
√

q], and
returning “Fail” if it is not.

Functionality 4.19. Given access to the functionality FRand we define the functionality FKeyGen′ that
works as follows:

1. When receiving “start” from all honest players call “Random shared value” n times to generate and
share the secret key s = (s1, ... , sn) ∈ Zn

q.

2. For each subset H of t players call “Random value to A” where A is the complement of H to generate
the keys KH used for the PRSS in the decryption.

3. Call “Random value to P” with P the set of all players nm times to generate A ∈ Zn×m
q .

4. Receive the broadcast value from the NIVSS done for each e j
i from player Pj and call “Constrained

value from Pj ”.

5. Broadcast the public key given by (Ai , bi = 〈Ai , s〉+ ei)
m
i=1 and every player’s share of bi .

Remark. Note that here again as in Functionality 4.12 we give the adversary the ability to choose the shares
of the corrupted players. The reason is the same as in Functionality 4.12.

Functionality 4.20. We define the functionality FSimGen as follows:

1. Receive the shares of the corrupted players of s j
i , i = 1, ... , n and for every player Pj from the

adversary and generate a random vector s ∈ Zn
q. Then send the shares back to the adversary.

21

Lattice-Based Threshold Cryptography

2. Receive the shares of the corrupted players of K j
H for every player Pj and every subset H of t players

from the adversary, and generate a random number KH for every H. Then send the shares back to
the adversary.

3. Receive the shares of the corrupted players of Aj
i ,k for i = 1, ... , m; k = 1, ... , n and every player

Pj from the adversary and generate random matrix A ∈ Zm×n
q . Then send the shares back to the

adversary.

4. To simulate the sharing of the values e j
i receive the broadcast values for every corrupted player and

return “Fail” if they are not in the interval [−
(u

t

)
3
√

q,
(u

t

)
3
√

q]. Then simulate the NIVSS for every

honest player taking random numbers as keys and a random noise contribution e j
i in [− 3.5

√
q, 3.5
√

q].

5. Reconstruct the public key (Ai , bi = 〈Ai , s〉 + ei)
m
i=1 and since FSimGen knows the shares of the

corrupted players, construct shares of bi consistent with the adversary for all honest players with
Lagrange interpolation.

6. Broadcast (A, b) and the shares of the honest players of bi .

Theorem 4.21. The Key Generation protocol securely implements the functionality FKeyGen′ . The adver-
sary is assumed to be active and static, corrupting up to t < u

3 of the players.

Proof. As in Theorem 4.15, we have defined a functionality FSimGen that simulates what FKeyGen′ does but
using random values, and now we will prove that it is indistinguishable to the adversary which functionality
it is interacting with.

Since every step is done exactly in the same order and are distributed exactly the same, it is easy to
see that FKeyGen′ and FSim are indistinguishable to the adversary.

Remark. Note that what we are proving here is slightly different that what we were proving on Theorem
4.15. What we want to know is that when distributing the generation of the keys the players don’t know
any information on the individual values chosen by each other of the players, which is what we have proven
by seeing it is indistinguishable from a functionality choosing all the values at random.

Now we only need to prove that with the distributed key generation the decryption protocol is still
secure. We will define another functionality and then prove the security, also based on [2].

Functionality 4.22. We define the functionality FKeyGen′−and−Decrypt or FKG ′−D as Functionality 4.13,
FKG−D but using FKeyGen′ instead of FKeyGen.

Theorem 4.23. Assuming we use FKeyGen′ to generate the public key (A, b) and the secret key s, and that

the number of players u satisfies u
(u

t

)
<

10
√

q
m . If GAPSVP is hard in the worst case, then encryption under s

is semantically secure against any active polynomial time adversary corrupting t < u
3 players that interacts

with FKeyGen′ during key generation. Furthermore, Protocol 4.10 securely implements the functionality
FKG ′−D and in particular decryption under s is correct except with negligible probability.

Proof. Firstly we will prove semantical security. To see that we will prove that given an element in Zn
q×Zq

the adversary cannot distinguish whether it is a key generated by FKeyGen′ or it is a random element. That
would imply that since the adversary when decrypting cannot distinguish between a true encryption or a
random element, which in its turn implies, as we have seen in Theorem 3.10, that the adversary cannot
distinguish between an encryption of 0 and 1. Let us then see that if an adversary can distinguish between a

22

key generated by FKeyGen′ from a random element in Zn
q×Zq then we can solve decision LWE. Let I be an

instance of decision LWE, a vector we want to see whether it is random or part of As,χ. We then simulate
to run FKeyGen′ so we get the noise contributions from the adversary and add them to the instance I before
returning the vector to the adversary. Then if the instance I was uniformly distributed then the fake key
will be uniformly distributed too and if I was in As,χ then the key will follow the same distribution as if
generated by FKeyGen′ , allowing us to solve decision LWE. And as seen in Theorem 3.10 then if GAPSVP
is hard in the worst case, then encryption under s is semantically secure.

Secondly we will prove correctness. Let e + x be the reconstructed value after the decryption protocol,
what we need to see is that e is small enough. Let e j

i the contribution of player Pj to ei . Then e =∑m
i=1 ri ei =

∑m
i=1

∑u
j=1 ri e

j
i with |e j

i | ≤
(u

t

)
3
√

q (in the worst case scenario if all the shares in the NIVSS

protocol were to be 0) so |e| ≤ um
(u

t

)
3
√

q. And we know from Theorem 5.11 that the decryption will be

correct if the probability that |e| > √q is negligible, which is fulfilled if u
(u

t

)
<

6
√

q
m holds true, which it

does.

Finally we will prove that the simulation still holds. The proof of the simulation works as in Theo-
rem 5.15, however we need to see that indeed the interval where e resides is exponentially smaller than

[−√q,
√

q]. Indeed, since |e| ≤ um
(u

t

)
3
√

q and u
(u

t

)
<

10
√

q
m we get that |e| < 10

√
q · 3
√

q = q
13
30 which is

exponentially smaller than
√

q.

This proves the protocol secure against active, static adversaries corrupting t < u
3 players. It is obvious

from the security of the secret sharing schemes that the protocol will be secure against a passive adversary
corrupting t ≤ u − 1 players and a semi-honest adversary corrupting t < u

2 players.

23

Lattice-Based Threshold Cryptography

5. RLWE threshold cryptosystem

Now that we have seen how the threshold decryption and key generation works on a cryptosystem based
on Regev’s cryptosystem, we will proceed to adapt it to a cryptosystem based on the one proposed by
Lyubashevsky, Peikert and Regev in [12], which is very similar to Regev’s cryptosystem but using the ideal
version of LWE, called Ring Learning With Errors (RLWE).

Definition 5.1. We define Rq = Zq[x]/〈xn + 1〉 polynomial ring. Note that we identify any polynomial in
〈a〉 ∈ Rq with points in the lattice L(A), with A = [a, Fa, ... , Fn−1a] and F transformation matrix of a, as
we have seen in Definition 2.12 and the following remark.

We will need to define the parameters for the LPR cryptosystem:

• m ∈ Z>0.

• n ∈ Z>0, n = 2m, the security parameter of the cryptosystem.

• q ∈ Z>0 such that q = 2Θ(n).

• l ∈ Z>0 the number of samples of encrypted messages.

• Ψ ξ
q

with ξ = α
(

nl
log(nl)

) 1
4

, α > 0 discrete Gaussian in Zq with standard deviation bounded by ξ.

Definition 5.2. Given the parameters above, LPR cryptosystem’s tuple is as follows:

• P = {0, 1}n. We can encrypt strings of bits, not bit a bit as in Regev’s cryptosystem. For every
message m of n bits we want to encrypt, we associate it with the polynomial in Rq with such
coefficients.

• C = Rq × Rq.

• This is a public encryption scheme, we have Ks = Rq and Kp = Rq × Rq.

• The secret key will be s ∈ Ks chosen following the distribution Ψ ξ
q

and the public key will be (aE , bE)

where aE ∈ Rq is chosen uniformly at random and bE = aE · s + e with e ∈ Rq is chosen following
the distribution Ψ ξ

q
. When an element in Rq is said to be chosen following the distribution Ψ ξ

q
it

means that every coefficient follows such distribution in Zq.

• E = {Ek : k ∈ Kp} such that given a message m ∈ P:

Ek : P → C
m 7→ (u, v)

Where (u, v) = (aE · rE + eu, bE · rE + ev + m · bq
2c) with k = (aE , bE) and rE , eu, ev ∼ Ψ ξ

q
and

therefore their coefficients are small elements in Rq.

• D = {Ds : s ∈ Ks} such that given a cyphertext (u, v) ∈ C:

Ds : C → P
(u, v) 7→ m

24

Where we will recover every bit of m by rounding every coefficient of v − s · u to 0 or bq
2c (mod q)

and then mapping 0 to 0 and bq
2c to 1.

Remark. Note that the product here is as a product of polynomials in Rq. If we want to translate it to the
lattice equivalent it will be given by the product of the anticyclic matrix generated by one vector with the
other. In other words, let a(x), b(x) ∈ Rq, then:

a(x) · b(x) (mod xn + 1) ≡


a1 −an −an−1 ... −a2

a2 a1 −an ... −a3

a3 a2 a1 ... −a4
...

...
...

. . .
...

an an−1 an−2 ... a1

 ·


b1
...
...

bn


where a = (a1, ... , an) and b = (b1, ... , bn) are the coefficients of a(x) and b(x).

5.1 Threshold decryption

Now we can present the threshold decryption protocol for RLWE encryption. To do so we will need to give
a couple more parameters. Let ΦR

· (·) a pseudorandom function that given a key in Zq and a cyphertext
outputs a pseudorandom value in I n, where I = [a, b] is an interval.

Protocol 5.3. The decryption protocol works as follows:

1. A Trusted Third Party generates the keys KH ∈ Zq for every subset H of players of size t and
distributes them according to PRSS (Technique 4.8). It also generates the secret key s ∼ Ψ ξ

q
and

the public key (aE , bE) ∈ Rq × Rq as in LPR cryptosystem. Then the TTP sends to the players
(aE , bE) and Shamir shares of s. We call s j the Shamir share of s of player Pj , understood as a
Shamir share on the vector of coefficients of s.

2. Client receives cyphertext (u, v), decides which t + 1 players will decypher the text and sends them
(u, v) and a list of the players participating in the decryption.

3. Each player Pj computes ẽ j = v − s j · u that is a Shamir share of ẽ = e · rE + ev − s · eu + bq
2c ·m

with e, rE , ev , s, eu ∼ Ψ ξ
q

because of Proposition 4.4 and Proposition 4.5.

4. Each player Pj computes its additive share of x :=
∑

H ΦR
KH

(c) in the following way: in order, the

additive share xj is the sum of all ΦR
KH

(c) no player before has, but Pj does. Then Pj converts this

share to x̃j Shamir share of x using Technique 4.9.

5. Each player Pj computes x̃j + ẽ j Shamir share of the vector of coefficients of x + ẽ ∈ Rq, where
x + ẽ ∈ Rq is understood as the polynomial in Rq with vector of coefficients x + ẽ.

6. Client reconstructs x + ẽ using Lagrange interpolation, then returns 0 if x + ẽ is closer to 0 than to
bq

2c and returns 1 otherwise for every bit.

Before proving correctness and security we will state a result we will use in the proof taken from [13].

Lemma 5.4. [13] Let Ψσ
q

be a discrete Gaussian with standard deviation bounded by σ. Then ∀c > 0:

Pr(|Ψσ
q
| > cσ) < 2e−

c2

2

25

Lattice-Based Threshold Cryptography

Theorem 5.5. Let c = Ω(
√

n), 0 < d < 1 and let I = [−(cξ)2(2n + 1)qd , (cξ)2(2n + 1)qd]n the interval
image of ΦR

· (·). Assume that ξ < 1
c

√
q

4(2n+1)((u
t)qd +1)

Then the decryption protocol will have correct

output except with negligible probability.

Proof. Let ê = e · rE + ev − s · eu. What we want to see is that Pr((|x + ê|)i >
q
4) is negligible ∀i , where

(.)i notes the coefficient i on the polynomial.

Since the product in Rq is done through the anticyclic matrix, we know we have that:

(|ê|)i ≤ |ei · rE1 |+ |ei−1 · rE2 |+ ... + |ei+2 · rEn−1 |+ |ei+1 · rEn |+ |evi |+ |si · eu1 |+ ... + |si+1 · eun |

and therefore, since e, rE , ev , s, eu ∼ Ψξ, if we have that Pr(|Ψξ| > k) < λ for some k ,then Pr((|ê|)i >
2nk2 + k) < λ.

From Lemma 6.4 we know that Pr
(
|Ψξ| > cξ

)
≤ 2e−

c2

2 , so we have that k = cξ. And given that
ξ, c > 1 (if we take α > 1) we have that k > 1 and therefore 2nk2 + k < k2(2n + 1), so:

Pr
(
(|ê|)i > k2(2n + 1)

)
< Pr

(
(|ê|)i > 2nk2 + k

)
< 2e−

c2

2

We also know that by construction:

|xi | ≤
(

u

t

)
(cξ)2(2n + 1)qd

And by definition:

ξ <
1

c

√
q

4(2n + 1)
((u

t

)
qd + 1

) ⇒ k2 <
q

4(2n + 1)
((u

t

)
qd + 1

) ⇒ k2(2n + 1)

((
u

t

)
qd + 1

)
<

q

4

Therefore giving us:

Pr
(

(|x + ê|)i >
q

4

)
< Pr

(
(|x + ê|)i > k2(2n + 1)

((
u

t

)
qd + 1

))
< 2e−

c2

2

And given that c = Ω(
√

n) the probability is negligible.

Now we will prove security. We know that the difficulty of distinguishing between two cyphertexts is
directly related to RLWEq,n,Ψ ξ

q

, and given our set of parameters, there exists a reduction from RLWEq,n,Ψ ξ
q

to K− DGSγ in [17], where K− DGSγ is an ideal lattice problem usually hard to solve and:

γ = max

{
η(I)

√
2

ξ

(
nl

log(nl)

) 1
4

Ω(
√

log(n)),

√
2n

λ1(I ∗)

}

This means that breaking the security of the cryptosystem is as hard as solving K− DGSγ . Therefore
we only need to prove that no information is leaked when doing the threshold decryption (as in the previous
chapter).

As the chapter before, we now need to prove that no relevant information is leaked while sharing the
decryption. And as before we will define three functionalities to help with the proof.

26

Functionality 5.6. We define the functionality FRKeyGen that works as following:

1. When given“start” by all players, FRKeyGen chooses a secret key s ∈ Rq uniformly at random and
constructs the public key (aE , bE) ∈ Rq × Rq, as in LPR cryptosystem.

2. For each subset H of size t of players FRKeyGen chooses key KH ∈ Zq uniformly at random.

3. FRKeyGen receives from the adversary, for each corrupted player Pj , the share s j ∈ Rq.

4. Using Lagrange interpolation and the shares s j received from the adversary, FRKeyGen computes a
polynomial f (x1, ... , xn) = (f1(x1), ... , fn(xn)), fi (xi) ∈ Zq[x] of degree t that goes through the shares
and such that f (0) = (s1, ... , sn) with (s1, ... , sn) is the vector of coefficients of s, and then computes
the Shamir shares for every player.

5. FRKeyGen sends privately to every player Pj their share s j of the secret key and KH for all H such
that Pj /∈ H.

6. FRKeyGen sends public key to all players and adversary.

Functionality 5.7. We define the functionality FRKeyGen−and−Decrypt or FRKG−D that implements the same
steps as Protocol 6.3:

1. When receiving “start” of all players send ”start” to FRKeyGen, receives all the shares of s and all the
KH and forwards it to every player.

2. When receiving “decrypt (u, v)” from the client, send “decrypt (u, v)” to all players participating in
the decryption and the adversary, and then reconstruct the decrypted message m.

3. In the next round, send m and the shares of every player to the client and adversary.

Functionality 5.8. We define the new functionality FSimRDecrypt that works as follows, assuming B the
set of corrupted players:

1. When given “start” by all players in B FSimRDecrypt gives “start” to FRKeyGen and receives all the
shares of s and the keys KH .

2. FSimRDecrypt sends the shares of s and their respective KH to the players in B.

3. When receiving “decrypt (u, v)” from the client, FSimRDecrypt sends “decrypt (u, v)” to all players in
B, receives their shares of the decryption and decrypts the message m with these shares, the shares
of the secret key of the honest players and the decryption protocol.

4. For the honest players FSimRDecrypt must simulate shares to broadcast in the next round, so for every
KH the adversary does not know (i.e. B ⊆ H) FSimRDecrypt generates a random vector of integers
rH ∈ [−1

2 (cξ)2(2n + 1)qd , 1
2 (cξ)2(2n + 1)qd]n, and we define y ∈ Rq as the polynomial such that its

coefficients are
∑

B*H ΦR
KH

(c)+
∑

B⊆H rH . Now using Lagrange interpolation FSimRDecrypt computes

shares of y + mbq
2c using Lagrange interpolation, the shares of the decryption received by the players

in B in step 3 and m calculated in step 3.

5. In the next round send the message m corresponding to cyphertext (u, v) and the shares of y +mbq
2c.

27

Lattice-Based Threshold Cryptography

Theorem 5.9. When given access to the functionality FRKeyGen and assuming that ΦR
· (·) is a pseudo-

random function, the decryption protocol is secure. The adversary is assumed to be passive and static,
corrupting up to t = u − 1 players.

Proof. This proof is analogous to the proof of theorem 4.15, changing the functionalities for their analogous
in RLWE (adding an R in front), Φ·(·) for ΦR

· (·) and the length of the intervals, from 2
√

q to 2(cξ)2(2n +
1)qd and from 2 3

√
q to 2(cξ)2(2n + 1) which is obviously exponentially smaller than the first since 0 <

d < 1.

As in the chapter before, we have only proven security against a passive adversary corrupting t ≤ u− 1
players, but it is very easy to see that the same protocol is secure against a semi-honest adversary corrupting
t < u

2 players and against an active adversary corrupting t < u
3 players.

5.2 Distributed key generation

Again, as before, we will proceed to define the protocol for distributed key generation based on the LPR
cryptosystem, for which we will need to assume private communication channels between players, and then
define two functionalities we will use to prove its security. However, we will also need to prove that adding
the distributed key generation does not render the decryption protocol insecure, so we will define another
functionality to prove the protocol’s security against an active, static adversary corrupting t < u

3 players
as in the previous chapter.

Protocol 5.10. The key generation protocol works as follows, given φR
· (·) a pseudorandom function that

given a seed and an integer returns a pseudorandom value in [−(cξ)2(2n + 1)qd̃ , (cξ)2(2n + 1)qd̃]n with
the same parameters as in the previous subsection and having 0 < d̃ < d :

1. For the secret key s ∈ Rq, each player Pj chooses its contribution (s j
1, ... , s j

1) with s j
i ∼ Ψ ξ

q
√

n

. Then

they act as the dealer in a NIVSS to share every s j
i to all players. All players verify the value broadcast

when doing the NIVSS s j
i −
∑

H φ
R
KH

(0) is in the interval [−
(u

t

)
(cξ)2(2n + 1)qd̃ ,

(u
t

)
(cξ)2(2n + 1)qd̃].

Now all players have shares of every s j
i and by their lineality also of si =

∑
j s j

i . Then s is the
polynomial in Rq with coefficients (s1, ... , sn).

2. For the keys KH ∈ Zq that will be used for the PRSS in the threshold decryption, for every subset H
of t players each player Pj chooses uniformly at random KHj

∈ Zq their contribution on these keys
and shares it with all the players using Shamir secret sharing. Then the players will have, by adding
all the shares received by other players Shamir shares of KH =

∑
j KHj

because of Proposition 4.4.
Finally all players send privately their shares on KH to all the players in A the complement of H, so
they can recover KH .

3. For the contributions to e ∈ Rq proceed identically to when generating s.

4. For aE ∈ Rq every player Pj chooses its share (aj
E ,1, ... , aj

E ,n) randomly in Z n
q and does a Shamir

share of it. Then all players send to all players their share on all the (aj
E ,1, ... , aj

E ,n) so every player

can recover (by adding the shares)
(∑

j aj
E ,1, ... ,

∑
j aj

E ,n

)
. aE will be the polynomial in Rq with

coefficients
(∑

j aj
E ,1, ... ,

∑
j aj

E ,n

)
.

28

5. Every player computes locally their Shamir shares on bE = aE · s + e by performing these same
operations with the shares they have on s and e (having previously converted the shares to Shamir
using Technique 4.9).

Remark. All the remarks previously made about the NIVSS protocol still hold true this time, but now we
would also like to remark that taking s and e as we have, indeed follows the parameters of the previous
subsection, since:

n∑
i=1

Ψ ξ
q
√

n

∼
n∑

i=1

bqΨ ξ
q
√

n

e (mod q) ∼ bq
n∑

i=1

Ψ ξ
q
√

n

e (mod q) ∼ bqΨ√
n ξ

q
√

n

e (mod q) ∼ Ψ ξ
q

Where we have used that Ψβ is the reduction to T of a N
(

0, β
2π

)
and therefore given n independent

N
(

0, β
2π

)
we have:

n∑
i=1

N(0,
β

2π
) ∼ N

0,

√√√√ n∑
i=1

(
β

2π

)2
 ∼ N

(
0,
√

n
β

2π

)

We will now proceed to define the three functionalities needed to prove security of the distributed key
generation scheme.

Functionality 5.11. We define the functionality FRRand , which has four different commands and works as
follows:

• “Shared value from D” where D is a player. The player D sends to FRand a value chosen uniformly
at random in Zq and the adversary sends to FRand a set of shares for the corrupt players. Then the
functionality uses Lagrange interpolation to construct consistent Shamir shares of the value sent by
D for the honest players and finally sends the shares to each player.

• “Random shared value”. FRand calls “Shared value from Pi ” for all players, and then each player
locally adds the shares of all the random numbers, giving shares of s =

∑
i si .

• “Random value to B” where B is a set of players. FRand calls “Random shared value” and all the
players send their shares to the players in B.

• “Constrained value from D” where D is a player. Player D performs a NIVSS of its secret
s, with the functionality verifying afterwards whether the broadcast value is in [−

(u
t

)
(cξ)2(2n +

1)qd̃ ,
(u

t

)
(cξ)2(2n + 1)qd̃], and returning “Fail” if it is not.

Functionality 5.12. Given access to the functionality FRRand we define the functionality FRKeyGen′ that
works as follows:

1. When receiving “start” from all honest players receive the broadcast value from the NIVSS done for
each s j

i from player Pj and call “Constrained value from Pj ”.

2. For each subset H of t players call “Random value to A” where A is the complement of H to generate
the keys KH used for the PRSS in the decryption.

3. Call “Random value to P” with P the set of all players n times to generate the coefficients of aE ∈ Rq.

29

Lattice-Based Threshold Cryptography

4. Receive the broadcast value from the NIVSS done for each e j
i from player Pj and call ”Constrained

value from Pj ”.

5. Broadcast the public key given by (aE , bE = aE · s + e) and every player’s share of bi .

Functionality 5.13. We define the functionality FRSimGen as follows:

1. Receive the shares of the corrupted players of si ,j , i = 1, ... , n and for every player Pj from the
adversary and generate a random vector (s1, ... , sn) with si ∼ Ψ ξ

q
. Then send the shares back to the

adversary.

2. Receive the shares of the corrupted players of KHj
for every player Pj and every subset H of t players

from the adversary, and generate a random number KH for every H, Then send the shares back to
the adversary.

3. Receive the shares of the corrupted players of the coefficients of aE for every player Pj from the
adversary and generate randomly aE ∈ Rq. Then send the shares back to the adversary.

4. To simulate the sharing of the values e j
i receive the broadcast values for every corrupted player and

return “Fail” if they are not in the interval [−
(u

t

)
(cξ)2(2n+1)qd̃ ,

(u
t

)
(cξ)2(2n+1)qd̃]. Then simulate

the NIVSS for every honest player taking random numbers as keys and a random noise contribution
e j

i in [−
(u

t

)
(cξ)2(2n + 1)qd̃ ,

(u
t

)
(cξ)2(2n + 1)qd̃].

5. Reconstruct the public key (aE , bE = aE · s + e) and since FRSimGen knows the shares of the
corrupted players, construct shares of bE consistent with the adversary for all honest players with
Lagrange interpolation.

6. Broadcast (aE , bE) and the shares of the honest players of bE .

Theorem 5.14. The Key Generation protocol securely implements the functionality FRKeyGen′ . The ad-
versary is assumed to be active and static, corrupting up to t < u

3 of the players.

Proof. The proof is analogous to Theorem 4.21.

Now we only need to prove that with the distributed key generation the decryption protocol is still
secure. We will define another functionality and then prove the security.

Functionality 5.15. We define the functionality FRKeyGen′−and−Decrypt or FRKG ′−D as Functionality 5.7,
FRKG−D but using FRKeyGen′ instead of FRKeyGen.

Theorem 5.16. Assuming we use FRKeyGen′ to generate the public key (aE , bE) and the secret key s, and
the conditions of Theorem 5.5 are fulfilled. If K− DGSγ is hard, then encryption under s is semantically
secure against any active polynomial time adversary corrupting t < u

3 players that interacts with FRKeyGen′

during key generation. Furthermore, Protocol 5.10 securely implements the functionality FRKG ′−D and in
particular decryption under s is correct except with negligible probability.

Proof. The proof is analogous to the proof of Theorem 4.23 with the decision RLWE problem, adding the
bounds for q

4 and (|x + ê|i) from Theorem 5.5.

This proves the protocol secure against active, static adversaries corrupting t < u
3 players. It is obvious

from the security of the secret sharing schemes that the protocol will be secure against a passive adversary
corrupting t ≤ u − 1 players and a semi-honest adversary corrupting t < u

2 players.

30

6. Conclusion

As seen in the previous section, the objective of developing a new threshold cryptosystem with distributed
key generation based on RLWE has been accomplished, since we have defined it and proven correctness
and security for certain choices of parameters. However, to make the cryptosystem somewhat operative
we still need to have in mind two things.

Firstly and most importantly, the security of this cryptosystem has only been proven to be asymptotically
as difficult as K− DGSγ , with γ depending on the choice of parameters. Therefore, to have security to be
as hard as one desires, we should fine-tune all the parameters of the cryptosystem (n, q, l , c , d and d̃) to
obtain such security.

Secondly, and a little bit more complicated to solve, our cryptosystem suffers in a similar way as Bendlin
and Damg̊ard’s, in the sense that the shared generation of the value x , in our case a vector, through PRSS
is highly inefficient due to the amount of keys necessary (as it has been stated before). This could be
solved by using another secret sharing scheme, or even instead of using the statistical difference measured
with the traditional metric in R, we could try to use another metric or a divergence, a notion weaker than
distance sometimes used in cryptography proofs.

All this, however, is left as future work and has not been explored in this bachelor’s degree thesis.

31

Lattice-Based Threshold Cryptography

7. Bibliography

References

[1] AJTAI, Miklós. The shortest vector problem in L2 is NP-hard for randomized reductions. In Proceedings
of the thirtieth annual ACM symposium on Theory of computing. 1998. p. 10-19.

[2] BENDLIN, Rikke; DAMGÅRD, Ivan. Threshold decryption and zero-knowledge proofs for lattice-based
cryptosystems. In Theory of Cryptography Conference. Springer, Berlin, Heidelberg, 2010, p. 201-218.

[3] CATALANO, Dario. Efficient distributed computation modulo a shared secret. In Contemporary Cryp-
tology. Birkhäuser Basel, 2005. p. 1-39.

[4] CHAUM, David; CRÉPEAU, Claude; DAMGÅRD, Ivan. Multiparty unconditionally secure protocols.
In Proceedings of the twentieth annual ACM symposium on Theory of computing. 1988. p. 11-19.

[5] CRAMER, Ronald; DAMGÅRD, Ivan; ISHAI, Yuval. Share conversion, pseudorandom secret-sharing
and applications to secure computation. In Theory of Cryptography Conference. Springer, Berlin,
Heidelberg, 2005. p. 342-362.

[6] GOLDWASSER, Shafi; MICALI, Silvio. Probabilistic encryption and how to play mental poker keeping
secret all partial information. In Proceedings of the fourteenth annual ACM Symposium: Theory of
Computing, 1982, p. 365-377.

[7] GOLDWASSER, Shafi; MICALI, Silvio. Probabilistic encryption. Journal of computer and system
sciences, 1984, vol. 28, no 2, p. 270-299.

[8] GAMA, Nicolas; NGUYEN, Phong Q. Finding short lattice vectors within mordell’s inequality. In
Proceedings of the fortieth annual ACM symposium on Theory of computing. 2008. p. 207-216.

[9] GOLDREICH, Oded. Foundations of cryptography: volume 1, basic tools. Cambridge university press,
2007.

[10] KATZ, Jonathan; LINDELL, Yehuda. Introduction to modern cryptography. CRC press, 2014.

[11] LENSTRA, Hendrik Willem; LENSTRA, Arjen Klaas; LOVÁSZ, László. Factoring polynomials with
rational coeficients. 1982.

[12] LYUBASHEVSKY, Vadim; PEIKERT, Chris; REGEV, Oded. On ideal lattices and learning with errors
over rings. Journal of the ACM (JACM), 2013, vol. 60, no 6, p. 1-35.

[13] LYUBASHEVSKY, Vadim. Lattice signatures without trapdoors. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer, Berlin, Heidelberg, 2012. p.
738-755.

[14] MENEZES, Alfred J., et al. Handbook of applied cryptography. CRC press, 1996.

[15] PEIKERT, Chris. Public-key cryptosystems from the worst-case shortest vector problem. In Proceed-
ings of the forty-first annual ACM symposium on Theory of computing, 2009, p. 333-342.

32

[16] PEIKERT, Chris, et al. A decade of lattice cryptography. Foundations and Trends R© in Theoretical
Computer Science, 2016, vol. 10, no 4, p. 283-424.

[17] PEIKERT, Chris; REGEV, Oded; STEPHENS-DAVIDOWITZ, Noah. Pseudorandomness of ring-LWE
for any ring and modulus. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing. 2017. p. 461-473.

[18] REGEV, Oded. On lattices, learning with errors, random linear codes, and cryptography. Journal of
the ACM (JACM), 2009, vol. 56, no 6, p. 1-40.

[19] SCHNORR, Claus-Peter; EUCHNER, Martin. Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical programming, 1994, vol.66, no 1-3, p. 181-199.

[20] SHAMIR, Adi. How to share a secret. Communications of the ACM, 1979, vol. 22, no 11, p. 612-613.

[21] SHOR, Peter W. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM review, 1999, vol. 41, no 2, p. 303-332.

[22] YI, Xun; PAULET, Russell; BERTINO, Elisa. Private information retrieval. Synthesis Lectures on
Information Security, Privacy, and Trust, 2013, vol. 4, no 2, p. 1-114.

33

	Introduction
	Theory
	Notation
	Introduction to Lattices
	Introduction to cryptography

	Regev's cryptosystem
	Distributed cryptography
	Preliminaries
	Bendlin and Damgård's proposal
	Distributed key generation

	RLWE threshold cryptosystem
	Threshold decryption
	Distributed key generation

	Conclusion
	Bibliography

