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Multifractal structure of the monthly rainfall
regime in Catalonia (NE Spain): Evaluation of the
non-linear structural complexity
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ABSTRACT

The complex non-linear regime of the monthly rainfall in Catalonia (NE Spain) is analyzed by means of the reconstruction fractal theorem
and the multifractal detrended fluctuation analysis algorithm. Areas with a notable degree of complex physical mechanisms are detected by
using the concepts of persistence (Hurst exponent), complexity (embedding dimension), predictive uncertainty (Lyapunov exponents), loss
of memory of the mechanism (Kolmogorov exponent), and the set of multifractal parameters (Hölder exponents, spectral asymmetry, spectral
width, and complexity index). Besides these analyses permitting a detailed description of monthly rainfall pattern characteristics, the obtained
results should also be relevant for new research studies concerning monthly amounts forecasting at a monthly scale. On one hand, the number
of necessary monthly data for autoregressive processes could change with the complexity of the multifractal structure of the monthly rainfall
regime. On the other hand, the discrepancies between real monthly amounts and those generated by some autoregressive algorithms could
be related to some parameters of the reconstruction fractal theorem, such as the Lyapunov and Kolmogorov exponents.
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The monthly rainfall regime in Catalonia, NE Spain, is analyzed20
by means of the fractal theory with the aim of improving the21
knowledge about its complex physical mechanism.22

I. INTRODUCTION23

The fractal structure of nature phenomena can be success-24
fully analyzed by taking Mandelbrot (1983) as a reference. More25
concretely, the physical mechanisms of these phenomena can be26
studied by taking into account concepts such as predictive insta-27
bility, degree of complexity, and loss of memory of the phys-28
ical mechanism (Turcotte, 1997; Diks, 1999; and Dimr, 2005).Q2 29
Another relevant point of view is the analyses of these phenom-30
ena by means of the multifractal theory (Goltz, 1997) and, more

Q3
31

concretely, by means of specific algorithms applied to time series32
(Kantelhardt et al., 2002). Some examples of these fractal and mul-33
tifractal analyses on solid Earth sciences (seismology and tecton-34
ics) are Hirabayashi et al. (1992), Godano et al. (1996), Enescu35
et al. (2005), and Ozturk (2012), among others. With respect36
to dynamic atmospheric and climatology, Koscienly-Bunde et al.37

(1998), Talkner and Weber (2000), García-Marín et al. (2013; 2019), 38
Rodríguez et al. (2013), Burgueño et al. (2014), Lana et al. (2015; 39
2016), and Herrera-Grimaldi et al. (2019) , among others, can be 40
cited. 41

By focusing the analysis on the characteristics of a rainfall 42
regime, a detailed analysis of its complexity could permit a better 43
detection of regions where rainfall amount forecasting is quite easy 44
or, alternatively, difficult, and of high uncertainty. The complexity 45
of a rainfall regime could be quantitatively evaluated by fractal and 46
multifractal theories. The application of the reconstruction fractal 47
theorem (RFT) (Diks, 1999) to monthly amount series permits one 48
to quantify several concepts such as persistence or randomness of 49
the time series (Hurst exponent), predictive uncertainty (Lyapunov 50
exponents), complexity of the physical process (embedding dimen- 51
sion), and loss of memory of the physical system (Kolmogorov 52
entropy). The multifractal behavior, determined by the multifractal 53
detrended analysis (MDFA) (Kantelhardt et al., 2002), quantifies the 54
complexity of the physical mechanism bearing in mind the central, 55
maximum, and minimum Hölder exponents; spectral amplitude and 56
asymmetry; as well as a complexity index that summarizes these 57
multifractal parameters. 58
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The main objective of this study is a detailed analysis of the spa-59
tial distribution of fractal and multifractal parameters characterizing60
the complexity of the monthly pluviometric regime of a Mediter-61
ranean area, Catalonia, where a homogeneous Mediterranean cli-62
mate is not expected due to its varied and complex topography. As63
a consequence, advantages and shortcomings concerning monthly64
amounts forecasting and possible time trends on monthly amounts65
could be relevant. On one hand, different levels of the monthly66
regime complexity could be detected for the different climatic areas67
of Catalonia. On the other hand, monthly rainfall forecasting uncer-68
tainties could be expected with a certain degree of veracity. The69
randomness or persistence of the monthly pluviometric series is70
quantified by the Hurst exponent. The complexity of the physical71
process governing the pluviometry of the different climatic areas72
is characterized by the embedding dimension concept (number of73
non-linear equations to describe the physical mechanism), and the74
uncertainty degree on forecasting monthly amounts is assumed to75
be strongly related to the Lyapunov exponents. Additionally, the76
Kolmogorv entropy permits quantification of the loss of memory77
of the physical mechanism, this question being a relevant factor78
if autoregressive processes are applied to forecast monthly rainfall79
amounts. The complexity of the rainfall regime is described from80
different points of view based on the multifractal spectrum (maxi-81
mum, minimum, and central Hölder exponents; spectral amplitude;82
and spectral asymmetry) all of them being summarized by a com-83
plexity index. The results obtained in these fractal and multifractal84
analyses permit a detailed description, at a local scale, of the phys-85
ical mechanisms complexity governing the pluviometry of an area86
of varied topography. In short, improvements on monthly rainfall87
forecasting and validation of monthly amount time trends should88
be expected.89

The contents of this paper are organized as follows. The quality90
of the dataset and the recording continuity are discussed in Sec. II.91
The RFT theorem and the MDFA algorithm are described with92
detail, being also explained the meaning of the corresponding frac-93
tals parameters in terms of monthly rainfall regimes, in Sec. III. The94
obtained results are introduced in detail in Sec. IV and the rele-95
vance of them, with possible improvements on rainfall forecasting at96
a monthly scale and verification of possible time trends on monthly97
amounts, are summarized in Sec. V.98

II. STUDY AREA AND DATABASE99

The area of the Iberian Peninsula corresponding to Catalonia100
(NE Spain) should be identified as belonging to a Mediterranean cli-101
mate in agreement with the Köppen–Geiger classification (Mc Night102
and Hess, 2000), bearing in mind its latitude on the Northern Hemi-103
sphere and the characteristics of several climatic variables. Neverthe-104
less, some relevant differences on thermometric and pluviometric105
regimes within the territory have to be taken into consideration due106
to the relatively complex orography (Fig. 1) and the temperate effects107
of the Mediterranean Sea on areas close to the Mediterranean coast,108
whereas the littoral fringe is characterized by moderate low tempera-109
tures in winter and notable hot episodes in summer, the inner areas,110
delimited by the Pre-Littoral chains, the Eastern Pyrenees, and the111
Ebro valley, are characterized by cold winters and very hot sum-112
mers. Annual average temperatures vary from 0°C (Pyrenees) to113

17 °C (inner areas), and the extreme temperature records are within 114
a very wide range of 75 ° (maximum 43 °C for inner Catalonia and 115
minimum −32 ° for the Pyrenees). With respect to the pluviometric 116
regime, the complex topography also contributes to different spatial 117
distributions of rainfall amounts, and three different domains could 118
be assumed, whereas Pyrenees and Pre-Pyrenees areas are character- 119
ized by average annual amounts close to or exceeding 1000 mm/yr, 120
sometimes with copious snow episodes (especially for the north 121
face of the Pyrenees), some places of the Pre-Littoral chain achieve 122
amounts close to or slightly exceeding 700 mm/yr, and the records 123
of the rest of territory (inner Catalonia and Littoral fringe) range 124
from 300 to 700 mm/yr. Consequently, the expected equinoctial 125
thermometric and rainfall regimes are only explicitly accomplished 126
in the Littoral fringe and some inner domains, being a relevant 127
factor for the rest of the territory the Pre-Littoral and Eastern Pyre- 128
nees chains. In short, bearing in mind rainfall temperatures and 129
wind regimes, five different climate domains, all of them within 130
a generic Mediterranean climate, can be established for Catalonia. 131
These five domains would be that corresponding to Littoral fringe, 132
Inner territory, Mediterranean-mountain, transition from Mediter- 133
ranean to Atlantic domain, and Atlantic Mountain (the last one a 134
small domain in the north face of the Pyrenees). Previous recent 135
analyses of pluviometry and thermometric regimes in Catalonia 136
can be found in Burgueño et al. (2014), Lana et al. (2016), and 137
Casas-Castillo et al. (2018), among others, who have recently ana- 138
lyzed them at local and regional scales. A very detailed description 139
of thermometric and pluviometric regimes can be also found in 140
Clavero et al. (1996). 141

Due to the relative complex orography of Catalonia (Fig. 1), 142
with altitudes about sea level achieving 2900 m in the Pyrenees, 143

FIG. 1. Topographic image with the most relevant orographic elements (Eastern
Pyrenees, Central Basin, and Littoral and Pre-Littoral chains).
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2000 m on the Pre-Pyrenees, varying from 900 to 1500 m in the Pre-144
Littoral chain, close to 500–600 m in the Central Basin, and only a145
few hundred meters on the Littoral chain, a pluviometric network146
as dense as possible is necessary. Monthly rainfall amount series147
have been collected from Servei Meteorològic de Catalunya (SMC,148
www.meteo.cat), the meteorological agency of Catalonia, including149
records of two other organisms: Fabra Observatory (Reial Acadèmia150
de Ciències i Arts, RACA, Barcelona) and Ebre Observatory (Ramon151
Llull University, URL, and CSIC, Consejo Superior de Investiga-152
ciones Científicas, CSIC, Spanish Government). A set of 96 monthly153
amount series [Fig. 2(a)] have been selected, offering the emplace-154
ment of the rain gauges a relatively dense spatial distribution and,155
at the same time, accomplishing relevant conditions. First, several156
tests of homogeneity and data quality were applied at daily scale by157
Llabrés-Brustenga et al. (2019) to distinguish the acceptable rain-158
fall series. Second, for very short lags of few days without records,159
unknown daily rain amounts have been substituted by those gen-160
erated by a krigging process (Stein, 1999 and Press et al., 2007),161
taking into account daily records close to the gauge without data and162
the topography of the area including these emplacements have been163
taken in this krigging process. Third, an appropriate length (40 years164
interval) for a right computation of fractal parameters has been con-165
sidered. The results of applying these constraints are illustrated in166
Fig. 2(b), where the chosen 96 rainfall records represent 80%–100%167
of the available data for 1960–2000.168

A first description of the rainfall regime is shown in Figs. 3(a)169
and 3(b), where the spatial distribution of the average annual170
rain amounts and the standard deviations are represented. The171
differences on the average amounts at annual scale are quite172
evident by comparing Littoral and Pre-Littoral emplacements173
(500–800 mm/yr), areas of the Central basin (300–500 mm/yr), as174
well as emplacements close to the Eastern Pyrenees and the Pyre-175
nees chain itself (800–1000 mm/yr and 1100 mm/yr in a few places).176
It is also remarkable the high standard deviations for many areas,177
including the Pyrenees area, being this fact in agreement with the178
expected irregularity of a Mediterranean rainfall regime. In fact, the179
spatial patterns of the geographical distribution of average and stan-180
dard deviation are quite similar, with a quite evident tendency to181
increase the standard deviations with the average amounts.182

III. FRACTAL AND MULTIFRACTAL THEORY183

A. Reconstruction theorem184

1. Rescaled-range analysis185

A first step on a fractal analysis of time series could be the pro-186
cess designed as the rescaled-range analysis (Korvin, 1992), which is187
quantified by the power law,188

R(τ )

S(τ )
∝ τH, (1)

with R(τ ) and S(τ ) being the range of variation and standard devia-189
tion, respectively, of segments of length τ and H, the Hurst exponent190
of Eq. (1). If this power-law equation is well accomplished, the time191
series could be qualified as random (H very close to 0.5), persis-192
tent (H notably exceeding 0.5), or anti-persistent (H clearly lowering193

(a)

(a)

FIG. 2. (a) Pluviometric network with the location of the 96 rain gauges (open
triangles). (b) Annual evolution of the number of available gauges. Vertical dashed
lines limit the chosen 40 years interval for the analysis.

0.5). Besides a possible way of self-similar/affine character verifica- 194
tion of the series (Turcotte, 1997), the numeric values of H permit to 195
decide if the randomness of the series discourages forecasting strate- 196
gies or the persistent/anti-persistent character facilitates successful 197
application of forecasting algorithms. 198
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FIG. 3. Spatial distribution of the average annual rainfall amounts and their
standard deviations.

2. Reconstruction fractal theorem199

The reconstruction theorem (Diks, 1999) permits one to quan-200
tify the complexity and predictive instability of a physical process.201
With respect to the complexity and possible chaotic behaviors, the202
fundamental parameters are the minimum number of nonlinear203
equations associated with a physical mechanism, the embedding204
dimension, dE, necessary to obtain an asymptotic value of the cor-205
relation dimension µ and the Kolmogorov entropy, κ , which is a206
measure of the loss of memory of the physical mechanism along the207
process. The mathematical process of the reconstruction theorem is208

based on the generation of m-dimensional space vectors, 209

Z(i) = {x(i), x(i + 1), . . . , x(i + m − −1)}; i = 1, . . . , N, (2)

with{x(k)} being the set of n elements of a empiric data series and 210
N = n−m+1. In terms of Z(i), the correlation integral, following 211
the Grassberger–Procaccia formulation (Grassberger and Procaccia, 212
1983a; 1983b), is written as 213

C(m, r) = lim
N→∞

1

N2

∑N

i,j=1
H{r − ‖Z(i) − Z(j) ‖}, (3)

with r being an Euclidean distance in the m-dimensional space 214
and H{·}, the Heaviside function. Equation (3) is the starting point 215
to obtain numeric estimations of parameters µ and κ . Assuming 216
that the correlation integral can be expressed as C(m,r) = Am e−mκ 217
rµ(m), with Am being the correlation amplitude for the reconstruc- 218
tion dimension m and plotting this correlation integral in terms of r 219
on log–log scales, 220

log{C(m, r)} = log(Am) − mκ + µ(m)log(r), (4)

whose slope µ(m) is straightforwardly obtained for every 221
reconstruction dimension m by means of linear regression on 222
log–log scales. As mentioned in other papers related to this con- 223
cept of correlation dimension (Burgueño et al., 2014), two factors 224
which could lead to wrong estimations of µ(m) have to be care- 225
fully revised. On one hand, the phenomenon of lacunarity (Turcotte, 226
1997), many times detected for small values of r; on the other hand, 227
the saturation of C(m, r) for high values of r. These shortcomings 228
concerning µ(m) can be easily solved by searching for the r interval 229
for which log{C(m,r)} is strongly linear dependent on log(r) and, at 230
the same time, the highest square regression coefficient is detected. 231
In this way, the slope of the log–log linear dependence becomes a 232
good estimation of µ(m). 233

After a right quantification of the correlation dimension for 234
every reconstruction dimension m, it is relevant to observe that 235
µ(m) will tend asymptotically to a value, µ*, which is interpreted as 236
the minimum number of non-linear equations describing the mech- 237
anism that governs empiric data {x}. In this way, µ* becomes a first 238
evaluation of the complexity of the analyzed time series. It is also 239
relevant that a high maximum dimension m or, in other words, a 240
necessary high embedding dimension dE for achieving the asymp- 241
totic value of µ(m), is usually associated with a random behavior of 242
the analyzed time series. 243

Together with the degree of complexity and a possible ran- 244
dom component of the physical mechanism, the loss of memory of 245
the physical system is another valuable parameter. This question is 246
quantified by the Kolmogorov entropy exponent, κ , which can be 247
estimated as follows. According to Eq. (4) and Lana et al. (2010), 248
grouping log{C(m, r)}−µ(m)log(r), as α(m), 249

α(m) = log(Am)−mκ . (5)

This last equation permits a fast and accurate estimation of κ 250
by a least square regression of empiric α(m) in terms of m, pro- 251
vided that log(Am) should be a constant. Empirical data confirm 252
this behavior only with m tending to ∞, being then assumed that 253
Am + 1/Am tends to 1.0 for high reconstruction dimensions m. In 254
other words, correlation amplitudes tend to be very similar for high 255
reconstruction dimensions. 256
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Another relevant application of the reconstruction theorem is257
the quantification of the predictive instability. After generating m-258
dimensional vectors according to Eq. (2), in agreement with Wiggins259
(2003), the Lyapunov exponents, λj (j = 1,2,. . . ,m), can be computed260
according to the algorithms proposed by Eckmann et al. (1986) and261
Stopp and Meier (1988). Assuming that the addition of all the m Lya-262
punov exponents is negative, the trajectory in the m-dimensional263
space is described by aperiodic orbits around a strange attractor264
defined by the Kaplan–Yorke dimension, DKY (Kaplan and Yorke,265
1979). Quantitatively,266

DKY = c +
1

|λc+1|

∑c

j=1
λj , (6)

with c being the maximum number of positive and negative Lya-267
punov exponents in a decreasing order, and accomplishing λ1 +268
λ2 + · · · + λc ≥ 0.269

B. Multifractal spectrum270

The concept of multifractal spectrum offers a new viewpoint271
of non-linear systems’ complexity. At the same time, stablishes272
the multifractal characteristics (central Hölder exponent, extreme273
Hölder exponents, spectral amplitude and spectral asymmetry), as274
well as a synthesis of the physical mechanism degree complexity by275
taking advantage of a combination of Hölder exponents.276

1. MDFA algorithm277

The multifractal detrended fluctuaction analysis (MDFA) rep-278
resents a reliable way of characterization of multifractal nonstation-279
ary and stationary time series (Kantelhardt et al., 2002), the main280
objective being quantification of the rescaled structure of the q-order281
moments of the analyzed series, which is a process inherent to a mul-282
tifractal structure analysis. It is worth mentioning that the MDFA283
offers higher quality and simplicity in comparison with other algo-284
rithms with similar objectives (Feder, 1988; Muzy et al., 1994) and285
it has been applied to very different scientific fields such as human286
health, biology or Earth sciences, among others.287

The MDFA algorithm can be summarized as the following five288
steps:289

• Computation of the time series profile obtaining residuals from290
the average of the whole series.291

• Segmentation of the profile. Ns non-overlapping segments of292
the profile, with equal length s, are generated. With the aim of293
improving computational accuracy, this second step is usually294
repeated starting from both extremes of the profile. In this way,295
2Ns segments are available.296

• Computation of the local variance for each one of the 2Ns seg-297
ments. A least-square polynomial fit is computed for every seg-298
ment and the residual variance of this fitting process is quanti-299
fied for every segment, the non-stationarity of the series being300
then removed. In agreement with Koscielny-Bunde et al. (2006),301
polynomial degrees varying from 2 to 5 could be convenient.302

• Computation of the qth-order fluctuation function, F(s)q. This 303
function is defined by Eqs. (7a) and (7b), 304

F(s)q =

{

1

2Ns

∑2Ns

1
[F2(s, ν)]

q/2

}1/q

; q 6= 0; −∞ < q < +∞,

(7a)

305

F(s)0 =

{

1

4Ns

∑2Ns

1
ln[F2(s, ν)]

}

; q = 0. (7b) 306

F2(s, ν) is the local variance for every one of the 2Ns segments and 307
parameter q is chosen varying within the +15, –15 range. Steps 308
2–4 have to be repeated for several segment lengths s. In agree- 309
ment with Kantelhardt et al. (2002) useful values of s would be 310
in the m + 2 ≤ s < N/4 interval, where m is the selected order for 311
polynomial fits of step 3. 312

• The scaling behavior of F(s)q. By assuming the hypothesis 313
that the analyzed series are long-range power-law correlated, log–log 314
plots of F(s)q vs s for each value of q accomplish the power-law given 315
by Eq. (8), 316

F(s)q ≈ sh(q), (8)

with the exponent h(q) depending on q. If the analyzed series is 317
non-stationary or noisy (fractal Brownian signals, for example), the 318
exponent h(q = 2) will be equal to H + 1, with H being the above 319
introduced Hurst exponent. Conversely, for the stationary time 320
series, as daily extreme temperatures or monthly atmospheric circu- 321
lation indices, the exponent h(q = 2) is exactly the Hurst exponent 322
H. The exponent h(q) is many times also cited as the generalized 323
Hurst exponent. 324

Differences between monofractal and multifractal behaviors 325
have to be considered. Monofractal structures do not contribute 326
very relevantly to obtain more information about the structure of 327
the mechanism governing the analyzed series. Nevertheless, details 328
offered by multifractal structures are much more complete. In the 329
first case, variances F2(s,ν) are identical or very similar for all seg- 330
ments s and the generalized Hurst exponent is reduced to the Hurst 331
exponent H. Conversely, for multifractal behavior, segments with 332
large variance dominate the q-order fluctuation function for positive 333
q. Thus, the generalized Hurst exponent, h(q), describes the scaling 334
behavior of the segments with large fluctuations. Alternatively, for 335
negative values of q, small fluctuations govern the q-order fluctu- 336
ation function and then h(q) describes the scaling behavior of the 337
segments with small fluctuations (Movahed and Hermanis, 2008). 338

2. Singularity spectrum 339

The singularity spectrum f(α) [Eq. (9a)] is closely related to the 340
q-order fluctuation function, F(s)q, in terms of the generalized Hurst 341
exponent, h(q), and the Legendre transform 342

f(α) = q{α − h(q)} + 1 (9a)

being also related the Hölder exponent α to the generalized Hurst 343
exponent by Eq. (9b), 344

α = h(q) + q
dh(q)

dq
, (9b)
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where α is also identified as the singularity strength or the Hölder345
exponent and f(α) represents the fractal dimension of the differ-346
ent subset of the series. The multifractal scaling exponent, τ (q), is347
defined as348

τ(q) = qh(q) − 1 (10)

and the Hölder exponent α, in agreement with Eqs. (9b) and (10),349

α(q) = dτ/dq. (11)

The singularity spectrum provides new viewpoints of the mul-350
tifractal structure of a series, given that f(α) quantifies the fractal351
dimensions of subsets of the series associated with the same sin-352
gularity strength α. Several relevant fractal parameters related to353
the singularity spectrum have to be considered. One of them is354
the critical (central) Hölder exponent αo, which corresponds to355
the maximum of f(α). A small value of αo implies that the “fine-356
structure” of the physical mechanism cannot be analyzed from357
empiric data. Conversely, a large value of αo strongly suggests the358
recovering of the “fine-structure.” It is worth mentioning that the359
Hurst exponent, H = h(q = 2), and αo show a clear linear relation-360
ship, confirmed, for instance, by Burgueño et al. (2014). The other361
two relevant parameters, spectral asymmetry and spectral width, are362
related to the mathematical structure of f(α). The shape of this func-363
tion is expected well fitted to a quadratic function [Eq. (12)] around364
the position αo,365

f(α) = A(α − α0)
2 + B(α − α0) + C, (12)

where C is an additive constant theoretically equal to 1, given that366
f(α) is defined as a normalized function with a maximum equal367
to 1.0, and B quantifies the asymmetry of the spectrum: B = 0 for368
a symmetric spectrum; B > 0 (“fine-structure”) for a right-skewed369
spectrum; B < 0 (“smooth-structure”) for a left-skewed spectrum.370
The spectrum width, W, defined as the range of α is defined as371
W = αmax–αmin, with f(αmax) = f(αmin) = 0. Bearing in mind that372
αmax and αmin are theoretically obtained by tending q to ±∞, these373
extreme Hölder exponents are estimated by extrapolating the fit-374
ted curve of Eq. (12) to zero. In short, the wider the range of the375
Hölder exponent, the stronger is the multifractality. Similarly, the376
wider the range of α, the “richer” is the structure of the physical377
process. As a summary, a series with a high value of α0, a wide378
range of fractal exponents and a right-skewed shape is more com-379
plex than one with the opposite characteristics (Shimizu et al., 2002).380
In terms of physical mechanism, a fine-structure could be analyzed381
provided that parameters αo, B, and W confirm high complexity.382
On the contrary, only a smooth-structure of the physical mechanism383
would be obtained if the values of these three parameters suggest low384
complexity.385

The complexity of the monthly rainfall multifractal structure386
can be summarized by the complexity index, CI, proposed by387
Shimizu et al. (2002). This global coefficient of complexity is defined388
by the addition of three normalized multifractal parameters, the cen-389
tral Hölder exponent, α0, the multifractal amplitude, (αmax−αmin),390
and a new quantification of the asymmetry (αmax−α0)/(α0−αmin).391
In agreement with this definition of the asymmetry, a quotient very392
close (or equal) to 1.0 will imply high (absolute) symmetry. Con-393
versely, a left asymmetry will be characterized by a quotient lower394
than 1.0 and a right asymmetry by a quotient higher than 1.0. The395

TABLE I. Minimum, maximum, mean, standard deviation, SD, and skewness, Sk, of

the RFT parameters for the 96 records.

Min Max Mean SD Sk

H 0.37 0.70 0.55 0.06 0.338
λ1 0.11 0.22 0.16 0.02 0.316
DKY 11.99 13.62 12.66 0.38 0.286
µ* 6.71 9.75 8.18 0.60 0.205
K 0.54 2.31 1.64 0.31 −0.643

asymmetry could be also directly represented by the coefficient B of 396
Eq. (12). Nevertheless, this coefficient could be sometimes affected 397
by computational uncertainties due to a relative bad fit of empirical 398
data to the mentioned Eq. (12). 399

In short, whereas high positive values of CI would imply a 400
notable complexity on the physical mechanisms governing the ana- 401
lyzed phenomena, negative and lower positive CI’s would be associ- 402
ated with more simple physical mechanisms. In consequence, high 403
positive values of CI would be associated with difficult success pre- 404
dictability. Conversely, negative or low positive values of CI would 405
suggest an easier predictability. 406

Finally, it is straightforward to conclude that the monofractal- 407
ity will be characterized by a singularity spectrum f(α) = 1.0 of null 408
width. This fact would imply that the dependence of h(q) on q disap- 409
pears, and it is reduced to the Hurst exponent H, which at the same 410
time is coincident with the single Hölder exponent α. In short, it is 411
evident that a monofractal structure has to be assumed notably less 412
complex than a multifractal structure. 413

IV. RESULTS 414

A relatively complex spatial distribution of the fractal parame- 415
ters has to be expected due to, as mentioned in Sec. II, the complex 416
orography including several mountain chains, a central basin, and 417
proximity to the Mediterranean coast. As a consequence, a revision 418
of several characteristics concerning RFT and MDFA parameters is 419
necessary to detect places where the physical processes governing 420
the monthly rainfall would be relatively easy or complex. First of 421

TABLE II. Cross-correlation coefficients between different pairs of FRT parameters.

Bold types correspond to coefficients very close to 1.0 and exceeding 95% statistical

confidence.

H λ1 −0.10

H DKY −0.19
H µ* 0.03
H K −0.03
λ1 DKY 0.86
λ1 µ* 0.89
λ1 K 0.05
DKY µ* −0.53
DKY K 0.13
µ* K 0.29
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(a) (b)

(e) (f)

(c)

FIG. 4. Spatial distribution of (a) Hurst exponents, (b) embedding dimensions, (c) first Lyapunov exponents, (d) Kaplan–Yorke dimension, and (e) Kolmogorov entropy.

all, the predominant and extreme parameter values are introduced422
and their meaning, with respect to the complexity of the physical423
mechanism, are discussed. After that, more details are given with424
respect to the spatial distribution of these parameters and possible425
relationships to orography and proximity to the Mediterranean Sea.426

A. Reconstruction fractal theorem427

(a) The Hurst exponent: With respect to parameters obtained from428
the RFT (Table I), the Hurst exponent is characterized by429
predominant values slightly exceeding 0.5 (showing signs of430
persistence), manifested by a skewness of 0.34, average and431
standard deviation of 0.55 and 0.06, respectively, and only a432
few cases with low and high Hurst exponents, implying anti-433
persistence and persistence, respectively. The spatial distribu-434
tion of this exponent (Fig. 4) is characterized by a domain of435
quasi-randomness behavior (H varying from 0.4 to 0.6) cover-436
ing almost all the analyzed area, and some isolated emplacement437
of clear anti-persistence (H < 0.4) and persistence (H > 0.6). In438
short, the monthly rainfall regime could be assumed with a439
few notable signs of persistence and anti-persistence and pre-440
dominant behavior close to randomness. This predominance441
would be an impediment on autoregressive processes leading to442
compute forthcoming monthly amounts.443

(b) The embedding dimension: The minimum number of neces- 444
sary non-linear equations, represented by µ*, to quantify the 445
monthly rainfall series is characterized by a relatively long inter- 446
val (6.71–9.75), with average and standard deviations of 8.18 447
and 0.60, respectively, and a low skewness (Table I). A high 448
ratio of embedding dimensions is within the interval (7.25–9.0). 449
Consequently, due to these high values of µ*, the autoregressive 450
process to quantify forthcoming monthly amounts is expected 451
to be complex. The spatial distribution of µ* (Fig. 4) detects the 452
Central Basin and some isolated emplacement of the Mediter- 453
ranean coast with relatively low values of µ*. It is also relevant 454
signs of an increasing tendency toward the North-eastern and, 455
especially, toward the North-western (Pyrenees domain). In 456
short, the monthly rainfall regime would be characterized by 457
more complex mechanisms (systems of non-linear equations), 458
especially in these two just mentioned areas. 459

(c) The predictive instability: The instability, in other words, the 460
uncertainty on forthcoming predicted monthly amounts, is 461
notably governed by the first Lyapunov exponent. Its values are 462
delimited by a short range from 0.11 to 0.22, with a very small 463
standard deviation (0.02) and a notable number of samples 464
exceeding an average of 0.16 (Table I). A high ratio of monthly 465
rainfall amounts are characterized by λ1 varying from 0.125 to 466
0.175. In agreement with Fig. 4, besides two small areas at the 467
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FIG. 5. An example of multifractal spectrum corresponding to a gauge in
North-Western Catalonia. Solid points represent empirical samples of multifrac-
tality for a wide range of α(q) parameters. The continuous line describes the
theoretical multifractal spectrum, given by a second order polynomial.

North-east and the South-west with the highest values, this first468
Lyapunov exponent is characterized by two well defined areas;469
one of them approximately covering the Mediterranean coast,470
Littoral, and Pre-littoral chains and the beginning of the East-471
ern Pyrenees; the other corresponding to the rest of the analyzed472
domain, including a good part of the North-western Catalonia473
and most of the Eastern Pyrenees chain.474

(d) Kaplan–Yorke dimension: The Kaplan–Yorke dimension is475
characterized by a narrow range (11.99–13.62), an average of476
12.66, a moderate standard deviation (0.38), and skewness (0.29)477
(Table I), and a high ratio of monthly series with DKY ranging478
from 12.25 to 13.25. Due to its expected relation to the Lyapunov479
exponents (specially the first exponent), a spatial structure, sim-480
ilar to that observed for λ1, should be expected, excepting for481
the range of (12.0–12.5) of Kaplan–Yorke dimensions expand-482
ing along a narrow fringe up to the Northern Mediterranean483
coast (Fig. 4). In short, higher predictive instabilities have to be484
expected toward the South and North-east of the Catalonia.485

(e) The loss of memory of the physical system: The measure of486
the loss of memory of the physical system (the Kolmogorov487
exponent K), is characterized by a wide range (0.54–2.31) and488
standard deviations and average values of 0.31 and 1.64 (Table489
I). Nevertheless, a high number of cases are within the (1.5–2.0)490
interval. Consequently, most of the monthly rainfall patterns491
would be characterized by outstanding loss of memory. Then,492
the necessary number of monthly amounts to obtain a reliable493
estimation of the next amount would be high, this fact making494

TABLE III. Minimum, maximum, mean, standard deviation, SD, and skewness, Sk,

of the MDFA parameters.

Min Max Mean SD Sk

α0 0.36 0.66 0.50 0.05 0.101
αmax 0.55 0.91 0.72 0.07 0.184
αmin 0.02 0.55 0.27 0.09 −1.471
W 0.18 1.01 0.44 0.12 1.530
0 −4.45 2.50 −0.05 1.18 −0.404
CI −2.83 2.52 0.00 1.00 −0.071

complex an autoregressive process. The spatial distribution of 495
K is not very homogeneous (Fig. 4) and distinction has to be 496
made between a clear dominant area with K ranging from 1.5 497
to 2.5 and another lowering 1.5. In consequence, two regions 498
are detected. On one hand, an area representing a high ratio of 499
the domain where the loss of memory is relevant; on the other 500
hand, a more reduced area (North-eastern and some Western 501
emplacements), where the loss of memory of the physical system 502
is notably smaller. 503

Table II also summarizes possible relationships among the dif- 504
ferent RFT parameters. The notable cross-correlation between the 505
first Lyapunov exponent and the Kaplan–Yorke Yorke dimension 506
could be expected bearing in mind Eq. (6), where the dependence 507
of DKY on the Lyapunov exponents is quite evident. Beside this 508
first high cross-correlation, it is also very relevant the correlation 509
between the first Lyapunov exponent, λ1, and the dimension µ*. 510
In agreement with the meaning of these two fractal parameters, 511
the predictive instability would increase with the number of non- 512
linear equations describing the physical mechanism of the successive 513
monthly rainfall amounts. 514

B. Multifractal detrended fluctuation analysis 515

An example of multifractal spectrum is shown in Fig. 5. This 516
spectrum has been obtained from monthly rainfall records belong- 517
ing to a raingauge emplaced in the Pyrenees. Solid points are the 518
empiric samples of multifractal spectrum for a wide range of q 519
exponents, within the ±∞ interval. The solid line is the quadratic 520
polynomial given by Eq. (12), and the dashed horizontal line delim- 521
its the maximum expected multifractal amplitude f(α–α0) = 1.0. In 522
spite of the good fit of empiric multifractallity to Eq. (12), the the- 523
oretical maximum is slightly higher than 1.0, which is a, sometimes 524
detected, not very relevant shortcoming. The example of this figure 525
is also a good example of almost null asymmetry (γ ≈ 0), given that 526
the extrapolated values to determine the extremes (αmax – α0) and 527
(αmin – α0) are very close to ±0.21, leading to a spectral amplitude 528
close to 0.42. In agreement with Table III, these last two values are 529
very close to the average of W and γ when the whole sample of 96 530
parameters is analyzed. 531

(a) The central α0 Hölder exponent: This multifractal parameter, 532
characterizing the complexity of the physical process, is iden- 533
tified by extreme values of 0.36 (low complexity) and 0.66 (high 534
complexity). Bearing in mind that its average and standard 535
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(a) (b) (c)

(d) (e) (f)

FIG. 6. Spatial distribution of (a) the central Hölder exponent, (b) spectral amplitude, (c) maximum and (d) minimum Hölder exponents, (e) spectral asymmetry, and (f)
complexity index.

deviation are 0.50 and 0.05, respectively, and the low skew-536
ness (0.101) (Table III), most of the α0 values are detected537
within the interval (0.35–0.45) which would represent physi-538
cal processes of moderate complexity. Nevertheless, bearing in539
mind the contribution of the other two parameters, multifractal540
spectral amplitude W and asymmetry γ , the degree of physi-541
cal complexity will be finally quantified by means of the index542
CI. With respect to the spatial distribution of the central Hölder543
exponent (Fig. 6), it is evident that a great part of Catalonia is544
characterized by α0 within the 0.45–0.55 interval. Only toward545
the south, for some areas, α0 is less than 0.45 (minor com-546
plexity). Opposite to this, for some places on the North, not547
necessarily emplaced in the Pyrenees, the parameter exceeds548
0.55, describing higher complexity. At least for this multifrac-549
tal parameter, the proximity to the Mediterranean coast and the550
Pyrenees, or the emplacement on the Central Basin, are factors551
not conditioning α0.552

(b) The maximum, αmax, and minimum, αmin, Hölder exponents:553
In agreement with Table III, αmax and αmin are characterized554
by small standard deviations (0.09 and 0.05, respectively) and555
a moderate skewness on αmax. Most of the values of these556

parameters are detected within narrow ranges (0.65–0.80 for 557
αmax and 0.20–0.35 for αmin). From the spatial point of view 558
(Fig. 6), αmax with values from 0.7 to 0.8 covers a great area, 559
being also notable the domain characterized by values within 560
the 0.6–0.7 interval. Are also outstanding some small isolated 561
domains along the Mediterranean coast where αmax exceeds 0.8. 562
αmin varying from 0.2 to 0.4 covers a great portion of the map, 563
being also worthy of mention two small nuclei (0.0–0.2 and 564
0.4–0.6). Although both extreme Hölder parameters contribute 565
to the quantification of the complexity, emplacements with sim- 566
ilar behaviors on αmax and αmin are difficult to detect. For this 567
reason, for a better characterization of the complexity, the spec- 568
tral amplitude W can be considered, ranging from 0.18 to 1.01, 569
an average and standard deviation of 0.44 and 0.12, a very rele- 570
vant skewness of 1.53 (Table III), and with many of the W sam- 571
ples within the (0.30–0.55) interval. Bearing in mind the notable 572
value of the skewness, a quite heterogeneous spatial distribu- 573
tion of this last index could be expected. Nevertheless, Fig. 6 574
describes a great portion of Catalonia associated with spec- 575
tral amplitudes from 0.3 to 0.5, being also detected the widest 576
amplitudes on two reduced domains of the Mediterranean coast 577
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TABLE IV. Cross-correlation, CCor, for pairs of MDFA parameters. Bold types corre-

spond to coefficients exceeding 95% statistical confidence level.

Pairs of MDFA CCor

α0, αmax 0.60
α0, W −0.12
α0, γ −0.04
α0, CI 0.52
αmax, W 0.64
αmax, γ 0.07
αmax, CI 0.89
W, γ −0.24
W, CI 0.48
γ , CI 0.42

(North-east and South-west extremes) and the narrowest ones578
on a small area in the Pre-Littoral chain.579

(c) The asymmetry: Another point of view of the complexity is580
offered by the asymmetry γ , with extreme values varying from581
−4.45 (strong left asymmetry) to 2.50 (strong right asymme-582
try). The average of all the 96 asymmetry samples is almost null583
(−0.05) and the standard deviation is 1.18 (Table III). In agree-584
ment with Fig. 6, the most common range of asymmetry is from585
0.75 to 1.0 and from 1.0 to 1.25. Both positive ranges would be586
associated with right asymmetries of the multifractal spectra,587
characterizing signs of complexity. Exceptionally, the highest588
right asymmetries (γ exceeding 1.25) are detected in reduced589
areas on the Central Basin, the Mediterranean coast, and the590
inner Catalonia. Conversely, the left asymmetries (γ lowering591
0.75 appear in reduced areas and, especially, on the north face592
of the Eastern Pyrenes).593

(d) The complexity index: Taking into account the possibility of594
monthly rainfall series associated with very different values of595
α0, W, and γ , the index CI is finally chosen as the best param-596
eter to define the complexity of every monthly rainfall series.597
This index is characterized (Table III) by extremes of −2.83598
(low complexity) and 2.52 (high complexity), with moderate599
symmetry (skewness equal to 0.071) and a clear predominance600
of monthly series, 71 out of 96 cases, within the (−1.0, +1.0)601
interval. The spatial distribution of CI can be described (Fig. 6)602
by a few places with low values (<−0.5), being an example603
the mouth of the Ebro river and neighboring domains, at the604
southern extreme, prevalence of a very moderate complexity605
(−0.5, 0.5) throughout the country and outstanding values of606
CI (strong complexity) toward the North-eastern extreme.607

Possible correlations among the different multifractal parame-608
ters are summarized in Table IV. The cross-correlation coefficients609
certainty has been quantified, in agreement with Hirsch et al. (1992),610
being obtained in all cases cross-correlations exceeding 90%–95%611
significant levels. It is noticeable the strong positive correlation612
between αmax and CI as well as the notable correlations between613
αmax and W and αmax and α0. It is also worth mentioning that the614
weight of the central Hölder exponent α0, the multifractal spec-615
tral amplitude W, and the asymmetry γ on the parameter CI is616

quite similar by revising the corresponding cross-correlation coef- 617
ficients. Consequently, besides the strong correlation between αmax 618
and CI, the complexity of the physical mechanism governing the 619
monthly rainfall regime is due to a similar weighted contribution 620
of the central Hölder exponent, the multifractal spectral amplitude, 621
and asymmetry. 622

V. CONCLUSIONS 623

The analysis of the fractal/multifractal structure of the monthly 624
rainfall regime in Catalonia permits to confirm from a new view- 625
point the heterogeneous spatial distribution of monthly rainfall 626
patterns. This heterogeneous distribution, in spite of a relatively 627
reduced geographic domain, would be the consequence of a complex 628
orography, with a notable range of altitudes from zero meters above 629
sea level (Mediterranean coast) up to 3000 m (Pyrenees) and the dif- 630
ferent mountain chains (Eastern Pyrenees, Littoral, and Pre-Littoral 631
chains) and a wide Central Basin. Bearing in mind the predominant 632
NW frontal passages form the Atlantic Ocean and the Eastern advec- 633
tions on the Mediterranean Sea, these one especially in autumn, the 634
effects of the topographic barriers created by the mountain chains 635
on local rainfall regimes are expected. Additionally, the proximity 636
or remoteness to the Mediterranean coast is another factor to be 637
considered. 638

Concepts as randomness/persistence, uncertainties on fore- 639
casting processes, the complexity degree of the non-linear equations 640
describing the physical process, its loss of memory, and a combined 641
set of multifractal parameters, leading to quantifying the complex- 642
ity of the monthly rainfall regime, have permitted to accomplish 643
two relevant objectives. First, a new and complete classification of 644
rainfall pattern areas, bearing in mind the spatial distribution of the 645
different fractal/multifractal parameters describing properties of the 646
rainfall regime. Second, the detection of rainfall regimes needing a 647
high, low, or moderate number of consecutive monthly amounts 648
previous to the forthcoming amount obtained by autoregressive 649
processes. Additionally, places where the uncertainty and the dis- 650
crepancy between forecasted and really recorded amounts would 651
be high, low, or moderate are also detected. These results, con- 652
cerning number of necessary monthly amounts and discrepancies 653
between real and forecasted amounts, are relevant bearing in mind 654
that the analyzed Mediterranean region is characterized by long dry 655
spells. Then, accurate autoregressive processes are necessary to fore- 656
cast forthcoming monthly amounts preventing or mitigating the 657
effects of these long dry spells. Consequently, the next step on the 658
increasing knowledge about the monthly rainfall regime in Catalo- 659
nia should be the application of autoregressive processes, bearing 660
in mind results obtained in this paper from the viewpoint of the 661
fractal/multifractal theory. Additionally, validation of possible time 662
trends on monthly amounts should be also considered. 663
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