
The Conceptual Schema of Ethereum

Antoni Olivé[0000-0001-9806-3007]

Department of Service and Information System Engineering

Universitat Politècnica de Catalunya – Barcelona Tech, Barcelona, Catalonia
antoni.olive@upc.edu

Abstract. There is an abundant literature on Ethereum, but as far as we

know what is missing is its explicit conceptual schema. We present here the

conceptual schema of Ethereum in UML. The schema should be useful to those

that want to understand Ethereum and to those that develop the schema of

Ethereum–based DApps. We present a few population constraints, and show

that they suffice for the specification at the conceptual level of what is

understood by immutability of a blockchain. We also show that the well–known

reification construct and an initial constraint suffice to specify at the conceptual

level that the Ethereum blockchain stores the full state history.

Keywords. Conceptual modeling, Conceptual schema, Blockchain,

Ethereum, Immutability.

1. Introduction

This paper reports the main results of a project aiming at developing the conceptual

schema of Ethereum, a popular open–source platform for blockchain–based

decentralized applications [1]. The project had two main goals: (1) to know the

conceptual schema of that system, and (2) to check the degree to which the constructs

that have been developed in the conceptual modeling field allow the complete

specification of a complex system like Ethereum. Of particular concern was how to

specify immutability at the conceptual level.

The rationale of the first goal was that so far most of the Ethereum literature is

written from either a technical or an economic perspective [2]. Application

developers, researchers and students in general that need to learn the foundations of

Ethereum have easily available a large number of books, papers and web documents

(such as, for example, [3-5]), but they usually include (and, sometimes, focus on)

many complex implementation details that make their understanding difficult [6].

From a conceptual modeling point of view, it is easy to see that what is missing in

the above literature is the explicit conceptual schema. Ethereum, like all blockchains,

is basically a particular kind of distributed database [7,8] and, as such, it necessarily

has a conceptual schema. The important role of the explicit definition of that schema

not only in the development of database and of information systems, but also in their

understanding, has been recognized since long ago [9-11].

The final authenticated version is available online at https://doi.org/10.1007/978-3-030-62522-1_31

The rationale of the second goal was that blockchains in general, and Ethereum in

particular, have some features whose conceptualization is not obvious. We wanted to

check whether the constructs provided by conceptual modeling languages are

sufficient to deal with those features. One of them, which is present in all blockchains,

is immutability [12]: what kind of integrity constraints are needed to specify

immutability? The other feature, which is specific to Ethereum, is that, besides the

transactions, it maintains the full state history of the state of the instances of Account,

which is the main entity type represented in the blockchain. The question is then: do

we need a temporal conceptual model [13-15] to specify the full state history?

We describe here the main result of our project: the conceptual schema of

Ethereum in UML. We deal only with the main elements of the structural schema; the

behavioral one, at the conceptual level, is simpler. We have found that standard UML,

extended with a few known temporal constraints, suffices for defining that schema,

including the blockchain immutability and its full state history.

The structure of the paper is as follows. Next section introduces the temporal

constraints that will be needed. Section 3 presents the conceptual schema of

Ethereum. Section 4 reviews related work. Section 5 briefly summarizes the paper

and suggests further work.

2. Population and initial constraints

In this section, we define the temporal constraints that will be used in this paper1.

These constraints have been previously presented in the literature using several terms

and formalisms [16-19]. We use here the terminology of the temporal constraints

defined in [20] and indicate how to use the constraints as stereotypes in UML.

We assume that entities and relationships are instances of their types at particular

time points (or states). By lifespan we mean the set of times during which the system

operates. We represent by E(e,t) the fact that e is an instance of entity type E at t. We

denote by R(p1:E1,…,pn:En) the schema of a relationship type named R with entity

type participants E1,…,En, playing roles p1,…,pn, respectively. Attributes will be

considered as ordinary binary relationship types. We represent by R(e1, …,en,t) the

fact that entities e1,…,en participate in a relationship instance of R at t.

2.1 Entity type population constraints

The population of an entity type E is the set of its instances at some time (or state).

An entity type is constant when its population is always the same. An entity type E is

permanent when once an entity e becomes an instance of E, e continues to be an

instance until the end of the lifespan. It can be seen that a constant entity type is also

permanent. On the other hand, if E is a covering generalization of a set of permanent

entity types, then E is also permanent.

In UML, the above constraints can be defined as stereotyped constraints to which

we give the short names of k (for constant) and p (for permanent).

1 See [23] for the first-order logic formalization of the constraints and examples.

2.2 Relationship type population constraints

The population of a relationship type R is the set of its instances (relationships) that

exist at some time (or state). We say that a relationship type R(p1:E1,…,pn:En) is

constant with respect to a participant pi if the instances of R in which an instance

ei of Ei participates are the same during the temporal interval in which ei exists.

Similarly, R is permanent with respect to participant pi if the instances of R in which

an instance ei of Ei participates never cease to exist while ei is an instance of Ei.
A relationship type R is constant if it is constant with respect to all its participants.

Similarly, R is permanent if it is permanent with respect to all its participants. It can

be seen that a constant relationship type is also permanent.

In UML, the above constraints can be defined as stereotyped constraints to which

we give the same short names as before: k (for constant) and p (for permanent).

2.3 Creation-time constraint

A creation-time constraint  of an entity type E is a constraint that its instances must

satisfy only at the time when they become an instance of E [21]. Formally:

e,t ((E(e,t)  t’(t’ < t  E(e,t’))  (e,t))

3.Ethereum

Figure 1 is a broad view of the main concepts of the conceptual schema of Ethereum

in UML. In the figures, greyed rectangles denote entity types whose complete

definition is shown in other figures. The Blockchain consists of a set of Blocks, which

in turn consist of a set of Transactions. The state of the system consists of a set of

Accounts and their properties. Transactions change that state. For each block, the

system stores the state of the accounts (AccountState) at the moment when the

transactions included in the block have been processed and the block has been added

to the blockchain. In what follows we describe in detail those concepts.

3.1 Accounts

There are two kinds of accounts: Externally Owned Account (abbreviated as

EOAccount) and ContractAccount, see Fig. 2. Both are permanent. Their

generalization is the abstract entity type Account, which is also permanent.

Accounts are identified by means of their address, which is a constant attribute. An

externally owned account is created and controlled by a user. Its address is

determined from the user public key, which in turn is determined from the user

private key. The sets of private/public keys of the users are stored in their wallets (not

shown in the Figure).

A contract account is controlled by the code it contains, and its address is assigned

by the system when the account is created. A contract account can be created by a

user or by the code of another contract account.

Besides their address, both kinds of accounts have two attributes, called nonce and

balance. For externally owned accounts, attribute nonce indicates the number of

transactions sent from them, while for contract accounts it indicates the number of

contract–creations made by them. Attribute balance indicates the amount of ether, the

cryptocurrency of Ethereum, owned by the account. The balance is represented in wei,

the smallest subunit of ether.

Attributes code and storage apply only to contract accounts. Attribute code

contains the code that is executed when called by a transaction or by another contract

account. The code is written in the EVM code language, and it is executed by the

Ethereum Virtual Machine. Normally, the code of an account cannot change, but there

is the possibility of executing a destruct operation with the effect that the code and the

storage are removed from the account. Note that if code could not be destructed, then

we could define it as a constant attribute of ContractAccount.

Contract accounts have also an attribute called storage, which is used by the

contract code. A contract can neither read nor write to any storage apart from its own.

In Ethereum, there are two kinds of states: world state and account state. An

account state is the set of values of the attributes of an account at a given moment. A

world state is the set of all accounts existing at a given moment and their account

state at that moment.

For each block, Ethereum stores the world state at the moment when the

transactions included in a block have been processed and the block has been added to

the blockchain. Therefore, the world state of a given block includes all accounts and

their state existing after all transactions included in the block have been processed.

The world and the account states have been modeled in Fig. 2 by the association

between Block and Account, and its reification, the entity type AccountState. Both the

association and AccountState are permanent. In the association, the role block is

constant, meaning that the set of accounts to which a block is associated with is fully

determined when the block is added to the system, and cannot be changed. The role

account in that association is permanent because new instances can be added at any

time.

For each block, there is an instance of the association block–account (and therefore

of AccountState) for each account that exists at the time the block is created. This can

be easily expressed by means of a creation-time constraint (see sect 2.3). In logic, if R

is the association block–account, the constraint would be:

(b,t) ≡ a (Account(a,t) R(b,a,t))

Note that given that Account is permanent, once an account is created, it will be

associated with the block within which it was created and with all future blocks.

An instance of AccountState is an account state of the corresponding account.

There are two permanent subtypes of AccountState, EOAccountState and

ContractAccountState, similarly to the two subtypes of Account. The account

attributes have been defined in these entity types, and all of them are constant.

The current values of the account attributes could have been defined as derived

attributes of Account and of ContractAcccount. These attributes would not be

constant. However, for simplicity, this has not been done in Fig. 2. The derivation

rules would indicate that their value is that of the AccountState or

ContractAccountState instances corresponding to the same account in the last block.

The set of instances of AccountState of a block is the world state corresponding to

that block. Given the population constraints of AccountState, Account, Block (we will

see that is also permanent) and those of the association block–account it follows that

Ethereum stores the full history of its states.

With respect to immutability, the schema fragment of Fig. 2 indicates that the

instances of Account and AccountState cannot be deleted and their attributes cannot

be modified. Moreover, the instances of the association block–account of a block

cannot be changed. However, and this is a subtle and necessary point, it is possible to

add instances of that association to accounts.

3.2 Transactions

There are two kinds of transactions: MessageCall and ContractCreation, see Fig. 3.

Both are permanent. Their generalization, the abstract entity type Transaction, is also

permanent. All attributes of transactions are constant.

Transactions can be identified in three ways. The first is by means of attribute id,

which is automatically computed when the transaction is created. The second is the

tuple (sender, nonce). Transactions are originated by externally owned accounts,

which send them to the network for processing. The association Sends indicates the

sender of a transaction. The association is permanent, with role sender permanent (an

account can send several transactions) and role transaction constant (the sender is

determined when the transaction is created and cannot be changed later). Transactions

sent by an externally owned account are numbered consecutively (nonce) starting at

zero. The third way of transaction identification involves attribute index, which will

be explained in the next section.

A message call is a transaction sent to a recipient. The association Receives

indicates the recipient. The association is permanent with role messageCall constant

and role recipient permanent. If the recipient is an externally owned account, the ether

indicated in the attribute value is transferred from the sender to the recipient. If the

recipient is a contract account, then its code is executed using the transaction attribute

data as input. In this case, the transaction value may or may not be transferred to the

recipient account.

A contract creation is a transaction that creates a new contract account. The code of

the new account is obtained from the initCode attribute and it can be executed in

future message calls. The transaction value is the starting balance of the new account

(may be zero).

In order to ensure that a transaction has been originated by the sender, the

transaction includes a signature attribute. The signature is obtained from the private

key of the sender and the transaction attributes. Given a transaction, anyone can check

that only the owner of the sender account could have sent it.

In Ethereum, processing a transaction has a fee, which is paid by the sender. The

fee is expressed in units of gas. A unit of gas has a price in ether. When the recipient

of a transaction is a contract account, it may be difficult to know in advance the

amount of gas to be spent in a transaction. In order to control the maximum fee to be

paid, transactions include attributes gasLimit and gasPrice. The first indicates the

maximum number of units of gas to be spent, and the second the price of each unit of

gas the sender is willing to pay.

Once a transaction has been executed, Ethereum generates a Receipt that encodes

information from the transaction execution. In the association transaction–receipt

both roles are constant. Receipt has two constant attributes: statusCode, which

indicates whether the transaction has been successful or a failure, and gasUsed, which

is the amount of gas used by the transaction. If the transaction was a

ContractCreation, then the association IsCreatedBy relates the contract account with

the receipt of the transaction that created it. The two roles of the association are

constant.

During the execution of a transaction, the code of the contract accounts involved in

that transaction can add entries to the log of the transaction. Log is permanent and has

two constant attributes: data and topics. The meaning of these attributes is application

dependent. The two roles of the association log–receipt are constant. In the Logs

association, contractAccount is permanent while log is constant.

With respect to immutability, the schema fragment of Fig. 3 states that the

instances of Transaction, and its subtypes, Receipt and Log cannot be deleted and

their attributes cannot be modified. Three associations (transaction–receipt, log–

receipt and IsCreatedBy) are constant, meaning that their instances cannot be deleted

and no new instances can be added to the existing participants in those associations.

The other three associations (Sends, Receives, Logs) are permanent, which implies

that their instances cannot be deleted, but it is possible to add new instances to entities

with a permanent role.

3.3 Blocks

In Ethereum, the blockchain consists of an ordered sequence of blocks. Figure 4

shows the entity types Blockchain and Block and the composition association between

them. Blockchain is constant, and its population consists of a single instance, while

Block is permanent and its population consists of many instances. The role blockchain

is permanent because new blocks are added to the composition, while the role block is

constant because a block is associated to the blockchain when it is created and cannot

be changed.

All attributes of Block are constant. The first two are identifiers of blocks. Attribute

id is a hash computed by the system from the block’s contents, which includes several

attributes irrelevant to our conceptual modelling purposes. Attribute number is

derived. The corresponding derivation rule defines its value as the index of the block

in the composition. The first block has a number of zero.

As has been indicated, the role block in the blockchain composition is constant.

However, in this case the role block is ordered, which means that the blocks of the

blockchain are ordered (a sequence in this case). This raises a subtle point: what

precludes the change of the order of the blocks in the sequence? We could define a

new population constraint for this purpose but in this case it is not necessary. It

suffices to define attribute number as constant, which implies that the position of a

block in the sequence cannot change.

Attribute timestamp indicates the time when the block was added to the

blockchain. An obvious constraint is that it must be greater than that of the previous

block in the sequence.

 Blocks are prepared and added to the blockchain by miners, which are specialized

network nodes. The miner of a block is compensated (in ether) for the work done. The

compensation is sent to an account designated by the miner, given by the association

block–beneficiary in Fig. 4. The compensation includes a reward (attribute reward)

and the fees of all transactions included in the block (attribute transactionFees). In

some cases, a block may include up to two special stale blocks, called uncle blocks,

which do not include transactions. If it is so, then the beneficiary receives an

additional reward (attribute unclesIncReward), and the uncles receive the reward

given by attribute unclesReward. For simplicity, Figure 4 shows neither the uncle

blocks nor their beneficiaries.

A block, in turn, consists of an ordered sequence of transactions. Figure 4 shows

the composition association between Block and Transaction. Note that both roles in

that association are constant: the instances of the composition are determined when a

block and a transaction are created and cannot be changed. A block and its

transactions are recorded in the blockchain at the same time.

In addition to the two ways indicated in the previous section, an instance of

Transaction can be identified by the block of which it is a part and the index attribute

(Fig. 3). This is a derived attribute whose value is the position of the transaction in the

block. The attribute is constant, which –among other things– means that the position

on a transaction in the block cannot be changed.

With respect to immutability, the schema fragment of Fig. 4 indicates that the

single instance of Blockchain exists since the beginning of the system’s lifespan and,

as well as the instances of Block, it cannot be deleted. The attributes of both types

cannot be changed. One association (block–transaction) is constant. The other two are

permanent. It is possible to add blocks to the blockchain (association blockchain–

block) and to add blocks to an account (association block–beneficiary). Changing the

position of a block in the blockchain or the position of a transaction in a block is not

allowed.

It is interesting to see that the population constraints allow us to easily define that it

is possible to add blocks to the blockchain, but that it is not possible to add

transactions to a block.

4. Related work

In the literature, the two works that are more related to ours are the blockchain

domain ontology [2] and EthOn [6,22]. The blockchain domain ontology is not

blockchain–specific, but general. It distinguishes three ontological layers (datalogical,

infological and essential) and it includes an ontology for each layer. Our conceptual

schema would basically be placed in their infological layer. The ontology

corresponding to this level, the infological ontology, consists of six entity types, five

associations, and one attribute. The conceptual schema that we have presented here is

much more detailed because it is blockchain–specific.

EthOn is an ontology in RDF Schema and OWL that formalizes most of the

concepts used in the Ethereum platform as described in the “yellow paper” [1]. The

scope of EthOn is different from that of our conceptual schema. EthOn includes in an

integrated ontology both the concepts related to the data stored in the platform and the

concepts related to the implementation. In the classical terminology used in

conceptual modelling [9], it can be said that EthOn describes in an integrated view

both the conceptual and the internal schema of Ethereum. On the other hand, EthOn

does not specify the population constraints of its concepts needed to specify their

immutability, and it does not formalize the full state history.

5. Conclusions

We have presented the conceptual schema of Ethereum in UML. As far as we know,

this is the first time that the schema is presented in the literature. We hope the schema

will be useful to those that want to understand Ethereum and to those that develop the

schema of Ethereum–based DApps [23].

We have presented and formalized a few population constraints, and we have

shown that they suffice for the specification at the conceptual level of what is

understood by immutability of a blockchain. Finally, we have shown that the well–

known reification construct and an initial constraint suffice to specify at the

conceptual level that the Ethereum blockchain stores the full state history.

This work can be extended in several directions. We point out two of them here.

First, it would be useful to complete the structural schema that we have presented

with a few remaining details, and to develop the behavioral one. Second, a work

similar to the one presented here could be done with other blockchain platforms.

Acknowledgments. The author is greatly indebted to Joan Antoni Pastor and Jordi

Estapé for their comments to earlier drafts of this paper.

References

1. Wood, G. Ethereum: A secure decentralised generalised transaction ledger,

https://ethereum.github.io/yellowpaper/paper.pdf (2020).

2. de Kruijff J., Weigand H.: Understanding the Blockchain Using Enterprise Ontology. In:

Dubois E., Pohl K. (eds.) Advanced Information Systems Engineering. CAiSE 2017. LNCS,

vol. 10253 (2017)

3. Antonopoulos, A.M., Wood, G.: Mastering Ethereum: Building Smart Contracts and DApps.

O'Reilly Media (2018)

4. Dameron, M.: Beigepaper: An Ethereum technical specification.

 https://github.com/chronaeon/beigepaper/blob/master/beigepaper.pdf (2019)

5. Kasireddy, P.: How does Ethereum work, anyway? https://medium.com/@preethikasireddy/

how-does-ethereum-work-anyway-22d1df506369 (2017)

6. Pfeffer, J.: EthOn — introducing semantic Ethereum. Organized Ethereum knowledge,

https://media.consensys.net/ethon-introducing-semantic-ethereum-15f1f0696986 (2017)

7. Dinh, T.T.A., Liu, R., Zhang, M., Chen, G., Ooi, B. C., Wang, J.: Untangling Blockchain: A

Data Processing View of Blockchain Systems, in IEEE TKDE, 30(7), pp. 1366–1385 (2018)

8. Kim, H.M., Laskowski, M.: Toward an ontology-driven blockchain design for supply-chain

provenance. Int. Syst. in Accounting, Finance and Management 25(1): 18–27 (2018)

9. ANSI: ANSI/X3/SPARC study group on data base management systems. Interim report.

FDT, Bulletin of ACM SIGMOD 7(2) (1975)

10. Mylopoulos, J.: Conceptual Modelling and Telos. In: Loucopoulos, P, Zicari, R. (eds.)

Conceptual Modelling, Databases and CASE, John Wiley and Sons, pp. 49–68. (1992)

11. Delcambre L.M.L., Liddle S.W., Pastor O., Storey V.C.: A Reference Framework for

Conceptual Modeling. In: Trujillo J. et al. (eds.) Conceptual Modeling. ER 2018. LNCS,

vol. 11157 (2018)

12. Hofmann, F., Wurster, S., Ron, E., Böhmecke-Schwafert, M.: The immutability concept of

blockchains and benefits of early standardization, 2017 ITU Kaleidoscope: Challenges for a

Data-Driven Society (ITU K), Nanjing, pp. 1–8. (2017)

13. Gregersen, H., Jensen. C.S.: Temporal entity-relationship models-a survey, IEEE TKDE,

vol. 11, no. 3, pp. 464–497 (1999)

14. Combi C., Degani S., Jensen C.S.: Capturing Temporal Constraints in Temporal ER

Models. In: Li Q. et al. (eds.) Conceptual Modeling - ER 2008. LNCS, vol. 5231. (2008)

15. Artale A., Franconi E.: Foundations of Temporal Conceptual Data Models. In: Borgida

A.T., Chaudhri V.K., Giorgini P., Yu E.S. (eds.) Conceptual Modeling: Foundations

and Applications. LNCS, vol. 5600. Springer, (2009)

16. Costal, D., Olive, A., Sancho, M.R.: Temporal features of class populations and attributes

in conceptual models. In: Embley, D.W. (ed.) ER 1997. LNCS, vol. 1331, pp. 57–70. (1997)

17. Cabot J., Olivé A., Teniente E.: Representing Temporal Information in UML. In:

Stevens P., Whittle J., Booch G. (eds.) «UML» 2003 - The Unified Modeling

Language. Modeling Languages and Applications. LNCS, vol. 2863. (2003)

18. Artale, A., Parent, C., Spaccapietra, S.: Evolving objects in temporal information systems.

Ann. Math. Artif. Intell. 50(1–2): 5–38 (2007)

19. McBrien P.: Temporal Constraints in Non-temporal Data Modelling Languages. In: Li Q. et

al. (eds.) Conceptual Modeling–ER 2008. LNCS, vol. 5231. (2008)

20. Olivé, A.: Conceptual Modeling of Information Systems. Springer, Berlin (2007)

21. Olivé, A.: A method for the definition of integrity constraints in object-oriented conceptual

modeling languages. Data Knowl. Eng. 59(3): 559–575 (2006)

22. Pfeffer, J.: EthOn: An Ethereum Ontology. https://consensys.github.io/EthOn/

 EthOn_spec.html. Accessed (March 2020)

23. Olivé, A.: The conceptual schema of Ethereum and of the ERC–20 token standard.

http://hdl.handle.net/2117/328036 (2020)

