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Abstract. The aim of this paper is simulation of thermally induced liquid-solid dendritic 

growth in a binary alloy (Fe-0.6%C) steel in two dimensions by a coupled deterministic 

continuum mechanics heat and species transfer model and a stochastic localized phase change 

kinetics model that takes into account the undercooling, curvature, kinetic, and 

thermodynamic anisotropy. The stochastic model receives temperature and concentration 

information from the deterministic model and the deterministic heat and species diffusion 

equations receive the solid fraction information from the stochastic model. The heat and 

species transfer models are solved on a regular grid by the standard explicit Finite Difference 

Method (FDM). The phase-change kinetics model is solved by the novel Point Automata (PA) 

approach. The PA method was developed and introduced [1,2] in order to circumvent the 

mesh anisotropy problem, associated with the classical Cellular Automata (CA) method. 

Dendritic structures are in the CA approach sensitive on the relative angle between the cell 

structure and the preferential crystal growth direction which is not physical. The CA approach 

used in the paper for reference comparison is established on quadratic cells and Neumann 

neighborhood. The PA approach is established on randomly distributed points and 

neighborhood configuration, similar as appears in meshless methods. Both methods provide 

same results in case of regular PA node arrangements and neighborhood configuration with 

five points. A comparison between both stochastic approaches has been made with respect to 

dendritic growth with different orientations of crystallographic angles. It is demonstrated that 

the new PA method can cope with dendritic growth of a binary alloy in any direction which is 

not the case with the CA method. 

 

 

1 INTRODUCTION 

Numerical modeling is having an increasingly important role in studies of dendritic growth 
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during solidification [3]. The simulation of microstructure based on the CA technique can 

reproduce most of the dendritic features observed experimentally with the acceptable 

computational efficiency. However, simple CA models are not capable of reproducing the 

typical growth features of dendrites when the primary branches do not coincide with the 

preferential mesh orientations. The reason for that is that the simple CA models suffer from 

the strong impact of the mesh orientation. It does not matter which crystallographic 

orientation will be chosen, the CA will always shift the dendrite with respect to the grid axis. 

The crystallographic orientation axes of different dendrites have in general different angles 

with respect to the coordinate system. We use a novel Point Automata (PA) method in this 

paper. It follows the CA concept and is able to solve the mentioned crystallographic 

orientation problem. A basic feature of this method is the random distribution of the nodes in 

the domain instead of using regular cells, which leads to different distances between the nodes 

and different neighborhood configurations for each of them. This new concept was first 

proposed by Janssens for modeling the recrystallization [4,5]. The first results of the dendritic 

growth with various orientations based on the PA method have been developed in [1] for pure 

metals. The PA algorithm, developed in the present paper, is able to obtain the dendritic 

morphology of solidifying binary alloy (Fe-0.6% C steel is taken as an example), by solving 

the heat and mass transfer equations, coupled with the solid fraction field through the 

calculations of the crystal growth velocity, interface curvature, thermodynamic and kinetic 

anisotropy, respectively. Previous classical CA solutions of the dendritic growth of the Fe-

0.6% C steel are demonstrated in [6,7]. The present paper is structured in the following way: 

the governing equations of the heat and mass transfer model are defined first, followed by the 

description of the stochastic model. The solution of temperature, concentration field and solid 

fraction is explained afterwards. Finally, the numerical results of FDM-PA method are shown 

and compared with the results of the FDM-CA method. 

 

2 MODEL DESCRIPTION 

Consider a two dimensional domain Ω  with boundary Γ  filled with a binary phase change 

material which consists of at least two phases, solid and liquid, separated by an interfacial 

region. 

2.1  Heat and species transport 

2.1.1 Heat diffusion 

The following heat transport equation is solved first: 
 

( ) ( )h T
t

∂
= ∇ ⋅ ∇

∂
ρ λ  (1) 

 

where ρ , h , λ , T  represent material density, specific enthalpy, thermal conductivity and 

temperature, respectively. The specific enthalpy is constituted as 
p l

h c T f L= + , where 
p

c , L , 

l
f  represent the specific heat, the latent heat and liquid fraction, respectively. All material 
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properties are assumed constant for simulation simplicity. We search for the temperature at 

time 0t t+ ∆  by assuming the initial conditions: 
 

( ) ( )0 0
, ;T t T= ∈ Ωp p p ; ( ) ( )0 0

, ;
s s

f t f= ∈ Ωp p p  (2) 

 

(where p represents  the position vector) and Neumann boundary conditions: 
 

( ) ( ) 0 0
, , ; ,

T
t F t t t t t

∂
= ∈Γ < ≤ + ∆

∂
p p p

n

 (3) 

 

where n represents the normal on Γ  and 0T , 0s
f , F  represent known function. 

2.1.2 Species diffusion 

The solution of the heat transfer equation is followed by the solution of the solute transfer 

equation. The governing equation for the solute transfer in both solid and liquid phases is 

formulated in terms of mixture concentration [8]: 
 

( )1
s s s l

c f c f c= + −  (4) 

( ) ( )1 s

p

fc
D c c k

t t

∂∂
= ∇ ⋅ ∇ − −

∂ ∂
 (5) 

 

where D  stands for solute diffusion coefficient, defined as ( )1s s s lD f D f D= + − with 
s

D  and 

l
D  defining the solute diffusion coefficients in solid and liquid, respectively. It is assumed 

that the concentrations of solid and liquid at the interface are in equilibrium i.e. 
s p l

c k c=  

where 
p

k , 
s

c  and 
l

c  are the partition coefficient, concentration in the solid and liquid phase, 

respectively. We search for the concentration c  at time 0t t+ ∆  by assuming the initial and 

Neumann boundary conditions: 
 

( ) ( )0 0
, ;c t c= ∈ Ωp p p  (6) 

( ) ( ) 0 0
, , ; ,

c
t F t t t t t

∂
= ∈ Γ < ≤ + ∆

∂
p p p

n

 (7) 

 

2.2  Solid fraction calculations 

2.2.1 Interface undercooling 

The phase change situation can be achieved by undercooling a liquid below its liquid 

temperature. When a solid seed is placed in such an undercooled melt, solidification will be 

initiated. Due to crystal anisotropy and perturbations in the system, the growth of the solid 
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from the seed will not be uniform and an equiaxed dendritic crystal will form. The solid liquid 

interface is undercooled to the temperature 
f

T  defined as [9]: 
 

( )0f l l
T T m c c K= + − − Γ  (8) 

 

where Γ , K , m  are the Gibbs-Thomson coefficient, the interface curvature and the liquidus 

slope, respectively. 

2.2.2  Growth velocity 

The growth process is driven by the local undercooling. The interface growth velocity is 

given by the classical sharp model [10]: 
 

( ) ( )( )
*

,, , ;g K f s lV t T T t= − ∈ Γp p pµ  (9) 

 

where gV
∗ , 

K
µ , ,s l

Γ  are the growth velocity, interface kinetics coefficient and the solid liquid 

interface, respectively. Dendrites always grow in the specific crystallographic orientations. 

Therefore it is necessary to consider anisotropy in either the interfacial kinetics or surface 

energy (or both). The present model accounts for the anisotropy in both kinetics. 

2.2.3 Thermodynamic anisotropy 

The Gibbs-Thomson coefficient can be evaluated by taking into account the 

thermodynamic anisotropy related to the crystal orientation and type as follows: 
 

( )1 cos
t def

S  Γ = Γ − −  δ θ θ  (10) 

where S , θ , 
def

θ ,
t

δ , Γ represent factors which control the number of preferential directions 

of the material’s anisotropy ( 0S =  for the isotropic case, 4S =  for four fold anisotropy and 

so on), growth angle (angle between the y coordinate and the line that connects the centre of 

the mass of the dendrite and point at ,s l
Γ ), the preferential crystallographic orientation, 

thermodynamic anisotropy coefficient and the average Gibbs-Thomson coefficient, 

respectively. 

2.2.4 Kinetic anisotropy 

The crystal growth velocity is calculated according to the crystal orientation by taking into 

the consideration the crystal growth direction θ  and the preferred orientation
def

θ . The crystal 

growth velocity follows: 
 

( ) ( )( )
*

, 1 cos
g k def

V V t S = + − p δ θ θ  (11) 

 

where 
k

δ  represents the degree of the kinetic anisotropy. 
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3 COUPLING 

The represented numerical model consists of two schemes: FDM for evaluating the heat 

and mass transport (Section 2.1) and a novel PA method for simulating the phase change 

kinetics (Section 2.2). The calculation domain is divided into FDM nodes used for the 

calculation of the temperature and solute profiles and random PA points to calculate the solid 

fraction field. Each four regularly spaced FDM nodes include one random point between them 

(or a CA cell located in the center between them), see Figure 1. The number of points in FDM 

mesh in x  and y  directions is N . At one time step, heat and solute fields are first calculated 

for the FDM nodes. These values need to be interpolated from the FDM nodes to PA points 

(or CA cells in case of the CA method). Then, based on the obtained profiles, the local 

undercooling and the growth velocity of the interface are calculated using Equations 8 and 9. 

Afterwards, a new solid fraction 
s

f  for PA points (or CA cells in case of CA method) is 

calculated. At the end of the time step are the temperature field and solute field are updated, 

based on the new solid fraction profile. The procedure is repeated in the next time step by 

using the calculated temperature, concentration, and solid fraction fields as initial data. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Scheme of the dendritic growth 

3.1  Solution of temperature and concentration field 

The solution of the temperature field is performed by the simple explicit FDM scheme 

through the following discretised equation: 
 

( ) ( ) ( ) ( )

( )

2 2

, 0 , 0 1, 0 , 0 1, 0 , 1 0 , 0 , 1

, 0 ,

( 2 / 2 /i j i j i j i j i j i j i j i j

p

s i j s i j

p

t
T T T T T x T T T y

c

L
f f

c

− + − +

∆    = + − + ∆ + − + ∆ +   

+ −

λ

ρ
 

 

for 2,3,..., 1i N= −  and 2,3,..., 1j N= − , where t∆ , 0 ,s i j
f , 0 ,i j

T , 0 1,i j
T

+
, 0 1,i j

T
−

, 0 , 1i j
T

+
, 0 , 1i j

T
−

 

ρ  h  λ represent the time step, initial solid fraction, initial temperature in the FDM central, 

east, west, north and south nodes, material density, specific enthalpy and thermal 

conductivity, respectively. The solution of the concentration field is performed by the simple 

explicit FDM scheme through the following discretised equation: 
 

Γ

,s l
Γ

p

x

y

liquid

defθθ

 

Ω  
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( ) ( ) ( ) ( )

( ) ( )

2 2

, 0 , 0 1, 0 , 0 1, 0 , 1 0 , 0 , 1

0 , , 0 ,

( 2 / 2 /

1

i j i j i j i j i j i j i j i j

i j p s i j s i j

c c tD c c c x c c c y

c k f f

− + − +
   = + ∆ − + ∆ + − + ∆ −   

 − − − 
 

 

for 2,3,..., 1i N= −  and 2,3,..., 1j N= − , where t∆ , 0 ,s i j
f , 0 ,i j

c , 0 1,i j
c

+
, 0 1,i j

c
−

, 0 , 1i j
c

+
, 0 , 1i j

c
−

 

are the time step, initial solid fraction, initial concentration in the FDM central, east, west, 

north and south nodes, respectively. The obtained values of concentration on regular FDM 

grid are in each time step transferred to random PA grid (or regular CA grid). The rejected 

solute amount 
l p l

c c k c∆ = −  is added to the liquid points in the surrounding neighbors which 

fall into the circle of _C H
R = 20 a , where a  represents the typical mesh distance for each cell 

(point) separately. Thus, the overall solute in the domain can be kept consistent. A detailed 

description of FDM-PA (FDM-CA) transfer of temperature and PA-FDM (CA-FDM) transfer 

of solid fraction from the regular to the random grids and vice versa is elaborated in [1]. The 

same algorithms are used in the present paper. 
 

 

 

 

 

 

 

 
 

 

Figure 2: Scheme of space discretization: (left) FDM nodes with 21N = , (middle), CA cells with 20n = , 

(right) PA nodes with 20n =  

3.2  Interface curvature calculations 

The interface curvature is approximated by the counting cell procedure developed by 

Sasikumar and Sreenivasan [11]. The expression for PA is derived from the expression of the 

CA method by assuming the average node distance a  instead of the  regular node distance a .  

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

Figure 3: A scheme of curvature calculation in the PA method with 2
c

R a=  (example with: 7
s PA

N =  and 

11
t PA

N = ) 
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The expression for curvature K  is given by the formula


21
1

s PA

t PA

N
K

Na

 
= −  

 
 

 

where 
s PA

N  and 
t PA

N  are the number of random points whose centres fall inside the circle of 

assumed radius 
c

R  and the total number of points whose centres fall inside the circle, 

respectively. 

Some fluctuations need to be introduced into the calculations in order to avoid the symmetric 

shape of the dendrite in the conventional CA approach. Thermal noises are usually presented 

by putting the random fluctuations into the calculations of latent heat, undercooling 

temperature or velocity [12]. In the present study it is not necessary to put any thermal 

fluctuations in the PA method. The random node arrangements in the PA method replace the 

thermal fluctuations of the CA method
In the CA approach only the closest, Moore neighbourhood configuration [3] has been 

analysed. In the PA method, solid grows with respect to the ‘neighbourhood’ configuration 

which is now associated with the position of the neighbouring PA nodes which fall into a 

circle with radius
H

R  [2]. The radius of neighbourhood should be kept at a minimum of 1.5 

m in case of 0.5a = m. For smaller values the dendritic shapes become distorted and the 

preferred orientations are lost.  

 

4 NUMERICAL EXAMPLE 

4.1 Definition of test case 

A dendritic growth of Fe-0.6% C steel solidifying into an undercooled melt is simulated. 

The square computational domain with length 350m is divided into 701x701 FDM nodes 

and 700x700 randomly located PA points. Each four FDM nodes involve one PA node 

(randomly located between the four FDM nodes). At the beginning of the simulation nucleus 

(es) is assigned with the preferential orientation(s) and start to growth with respect to above 

algorithm. The initial solid concentration for point is assumed to be 0s p
c k c=  with 

temperature 
l

T =1490 ° C at 0c =0.6 % wt. The nominal parameters used in all presented 

simulations are listed in Table 1. Varied data are presented in Table 2. In the numerical 

simulation the reference CA method has been used. The details of this method and numerical 

implementation are elaborated in [1]. 

4.2 Results 

The numerical examples in the present paper are solved by the FDM based temperature and 

concentration calculations and PA based solid fraction calculations. Our testing was primarily 

focused on the growth of the dendrite at different orientations by the novel PA method 

coupled with the heat and mass transfer calculations. To achieve the same length for primary 

and secondary dendrite arms in PA method as in the CA method, an empirical factor, which 
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multiplies the calculated velocity in the PA method, has to be introduced. It can be shown that 

putting a factor of 1.25 in the growth velocity calculations for PA, the branches will have the 

same length in both methods. Detailed discussion of model parameters was elaborated in [1]. 

The following numerical examples are shown: 

 

•  Case 1 and Case 2 represent the dendritic growth process simulated for Fe-0.6% C steel for 

undercooling of T∆ = 250 °C by the FDM-CA and FDM-PA methods. The calculation time 

of both methods is practically the same (Figure 5). 

•  From Case 3 to 4 the dendritic growth process is simulated for Fe-0.6% C steel for two 

different preferential orientations 
def

θ =15° and 
def

θ =32° by the FDM-PA method (Figure 6). 

• Case 5 represents six dendrites growing simultaneously simulated by the FDM-PA method. 

•   On Figure 4 the concentration profiles along the primary dendrite arms obtained by the 

FDM-CA method are depicted (for Case 1). (Figure 7). 
 

Table 1: Nominal parameters used in the calculations for Fe 0.6% C 

Symbol Value Unit 

ρ  7300 kg/m3 

l
T  1490 °C 

λ  30 W/mK 

pc  800 J/kgK 

L  2.7 x 10
-5

 J/kg 

s
D  5.0 x 10

-10
 m

2
/s 

l
D  2.0 x 10

-9
 m

2
/s 

0c  0.6 % 

pk  0.34 1 

t∆  7.65 x 10
-10

 s 

Γ  1.9 x 10
-7

 Km 

k
δ  0.75 1 

S  4 1 

c
R  1.5 m 

H
R  2 m 

K
µ  0.2 m/sK 

l  350 m 

n  700 
PA nodes/ 

CA cells 

N  701 FDM nodes 
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Table 2: Varied parameters in different cases 

Case Method angle T∆  

CASE 1 FDM-CA 0defθ = °  250T∆ = ° C 

CASE 2 FDM-CA 0defθ = °  250T∆ = ° C 

CASE 3 FDM-PA 15defθ = °  150T∆ = °C 

CASE 4 FDM-PA 32defθ = °  150T∆ = °C 

CASE 5 FDM-PA 4° , 14° , 33° , 28° , 43° , 8° , 0°  150T∆ = °C 

 

5 CONCLUSIONS 

In this paper the temperature and mass transfer equations are coupled with the novel PA 

method to calculate the solid fraction field in the dendritic growth. Advantages of the 

developed PA method are: 

- No need for mesh generation or polygonisation. Only the node arrangement has to be 

generated, but without any geometrical connection between the nodes. 

- In the new PA method is the microstructure evolution solved with respect to the 

location of the points (not polygons) on the computational domain.  

- The random grid PA method allows rotating dendrites in any direction since it has a 

limited anisotropy of the node arrangements. 

- PA method offers a simple and powerful approach of CA type simulations. It is 

shown that both methods are able to qualitatively and quantitatively model a diverse 

range of solidification phenomena in almost the same calculation time. 

- The dimension of the neighborhood radius and generation of the random node 

arrangement has to be chosen carefully in order to be able to rotate the dendrite. 

- Straightforward node refinement possibility. 

- Straightforward extension to 3-D. 
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Figure 4: Concentration profiles along the primary dendrites arms obtained by the FDM-PA method for different 
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[s]  (green line) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Solid fraction and concentration fields simulated by FDM-CA method (Case 1) and FDM-PA method 

(Case 2) for undercooling temperature 250T∆ = ° C after 0.76 x10
-5
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Figure 6: Solid fraction, temperature and concentration fields simulated by FDM-PA method for two different 

preferential orientations: Case 3 ( 15
def

θ = ° ) and Case 4 ( 32
def

θ = ° ) after 1.53x10
-5
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Figure 7: Seven dendrites growing simultaneously simulated by the FDM-PA method (Case 5) for 14°  (1), 0°  

(2),  28°  (3), 4° (4), 43° (5), 33° (6), 8°  (7) preferred orientations after 1.53x10
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