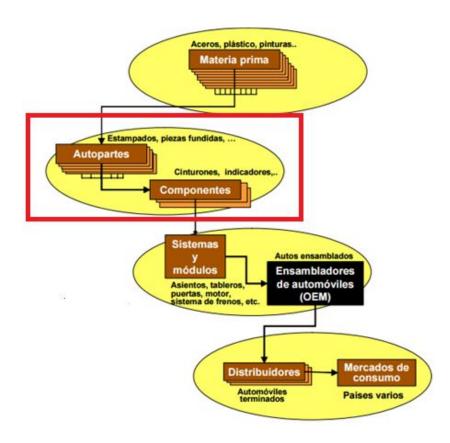
Estampación S.A.

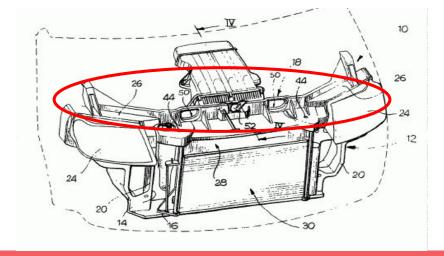

BC SAP

Víctor Bartolomé Angela Bordas Luisina Massa Ferran Noya Rodrigo Oliver Oscar Perez Manel Pujadas

Presentación

Estampación S.A. es una empresa dedicada a la estampación de materiales metálicos para la industria del automóvil. Especializada en la estampación de Bumper's (travesaños).

Fundada en 2005 con la finalidad de ofrecer productos acordes con las especificaciones de nuestros clientes a un precio competitivo.



El Producto

Los Bumper's fabricados por Estampación S.A. son fabricados a medida según especificaciones del cliente.

En estas piezas metálicas es donde se ensamblará el parachoques final. Pueden ser delanteros o traseros. A continuación se presenta un Bumper frontal.

Variantes del producto

Las variantes fabricadas son:

- largo 1743 mm
- largo 1774 mm
- 3 taladros en base derecha
- 3 taladros en base derecha y un taladro en base izquierda

Clientes

Proveedores

Materia prima:

Piezas parciales estampadas:

Ubicación

La empresa se sitúa en la localidad dels Monjos (Barcelona). El motivo principal se debe a que está bien comunicado por carretera para nuestros clientes finales:

- SEAT (Martorell)
- Ford (Almussafes)
- Opel (Figueruelas)
- Daimler (Vitoria)

Traslado de materia prima a la zona de producción

Se trasladan las bobinas de acero desde el almacén de materia prima hasta el inicio de la cadena de producción, mediante una grúa.

Traslado de materia prima a la zona de producción

Proceso de estampación

Proceso de Soldadura

Control de Calidad

Traslado de las piezas al almacén de salida

El proceso de estampación utiliza una única matriz para cortar, dar forma y agujerear el acero de forma automática, hasta obtener la pieza final.

Traslado de materia prima a la zona de producción

Proceso de estampación

Proceso de Soldadura Control de Calidad

Traslado de las piezas al almacén de salida

Las diferentes piezas resultantes del proceso de estampación, se ensamblan mediante soldadura utilizando brazos robotizados.

Traslado de materia prima a la zona de producción

Proceso de estampación

Proceso de Soldadura Control de Calidad

Traslado de las piezas al almacén de salida

De cada lote de fabricación se separan un cierto número de piezas para realizar un control de calidad mediante galgas de control.

Traslado de materia prima a la zona de producción


Proceso de estampación

Proceso de Soldadura Control de Calidad Traslado de las piezas al almacén de salida

Finalmente se trasladan las piezas al almacén de producto acabado.

Recursos

- Bobina de metal
- Prensa de estampación
- Soldadora/Robot
- Operarios
- Galga de Control

Normas

Las normas de aplicación son:

ISO 9001:2015 Sistemas de gestión de la calidad.

IATF 16949:2016 norma para la gestión de la calidad del sector de la automoción.

ISO 14001:2015 Sistemas de gestión ambiental.

OSHAS 18001 Sistema de gestión de Seguridad y Salud en el Trabajo

Y todos aquellos requisitos facilitados por cliente.

Plan de demanda & Gestión de RRHH

Datos demanda

Capacidad de producción

Días laborables en un año: 219

Fuentes de producción:

2 turnos de 22 operarios cada uno.

T1: 660u/día

T2: 484 u/día

Costes

Coste de mano de obra:

- 20/12/2016→ 6h por turno.
- Coste de un trabajador interno:
 15.96€/h
- Coste unitario T1: 4,25€/pieza
- Coste unitario T2: 5,80€/pieza

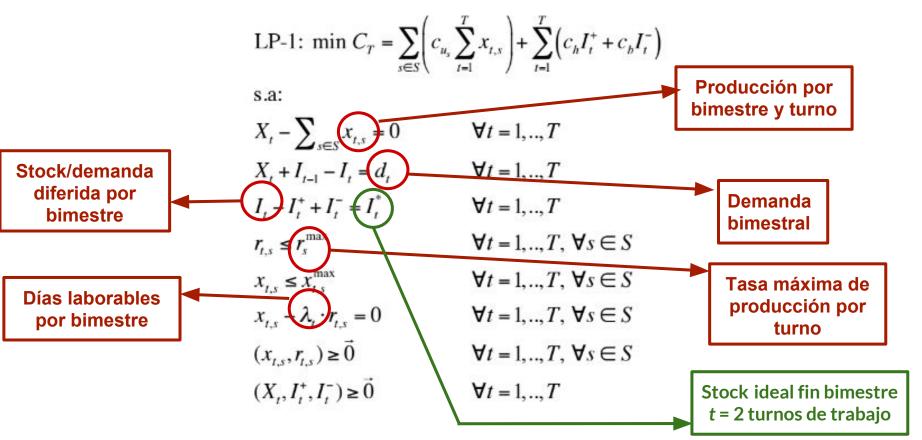
Coste de fábrica:

- Energía, mantenimiento de prensas, alquiler de nave industrial, personal indirecto, etc.
- Coste unitario : 5€/pieza

Coste de materia prima:

Bobina de acero 1500 €/ton.

Dim. de la lámina: 1800 x 250 x 0,8 mm


Coste promedio de las piezas: 4,23 €/pieza

Coste de posesión de stock:

alquiler+seguridad+asegurado+mantenimient o+energia: 1,1 € / mes·ud

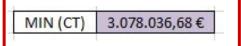
Coste de diferir demanda: inasumible (12 millones por día)

Modelo de Bowman básico-Planificación agregada

Parámetros

Periodo (t)	B1	B2	В3	B4	B5	B6	T
Demanda (dt)	32738	39285	43650	32738	32738	37103	218252

(rsmax)
660
484


Periodo (t)	B1	B2	В3	B4	B5	B6
Dias (λt)	37	41	43	25	40	33

Prod max (xstmax)	B1	B2	В3	B4	B5	B6
xs1tmax	24420	27060	28380	16500	26400	21780
xs2tmax	17908	19844	20812	12100	19360	15972

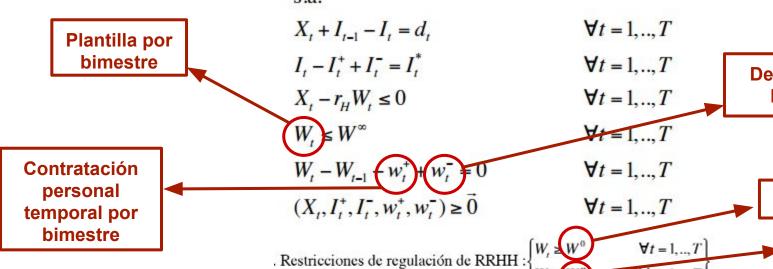
100			
	cu1	13,48	
	cu2	15,03	
	ch	1,1	
	cb		
		200	7

Variables

Producción (xst)	B1	B2	В3	B4	B5	B6
xs1t	24420	27060	28380	16500	26400	21780
xs2t	9462	12225	19408	12100	6338	15323
	33882	39285	47788	28600	32738	37103
Periodo (t)	B1	B2	В3	B4	B5	B6
Inventario (It)	1144,00	1144,00	5282,00	1144,00	1144,00	1144,00
Exceso stock (It+)	0,00	0,00	4138,00	0,00	0,00	0,00
Defecto stock (It-)	0,00	0,00	0,00	0,00	0,00	0,00

Prod dia (rst)	B1	B2	B3	B4	B5	B6
rs1	660,00	660,00	660,00	660,00	660,00	660,00
rs2	255,73	298,17	451,35	484,00	158,45	464,33

Demanda y Stock



Modelo de Bowman básico + RR HH

LP-4: min
$$C_T = \sum_{t=1}^{T} c_{u_t} X_t + \sum_{t=1}^{T} c_{h_t} I_t^+ + \sum_{t=1}^{T} c_{b_t} I_t^- + \sum_{t=1}^{T} c_{w_t}^+ w_t^+ + \sum_{t=1}^{T} c_{w_t}^- w_t^-$$

s.a:

Despidos por bimestre

Plantilla mínima

 $\forall t = 1,...,T$

Plantilla máxima

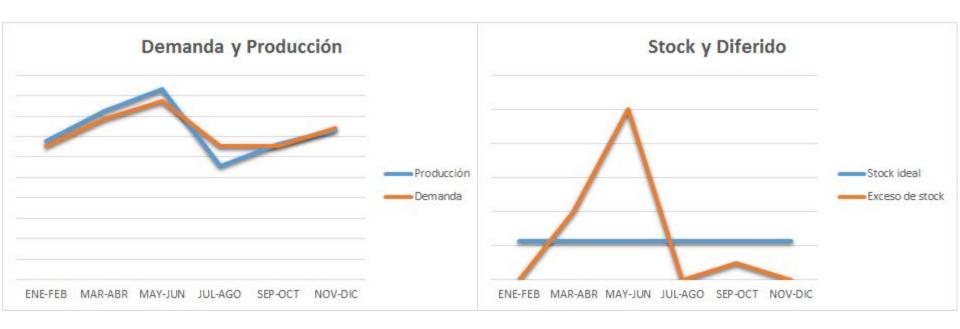
Parámetros

A los parámetros del modelo de Bowman básico se agregan:

Prod max dia (rsn	nax)	
rh1max	30	į,
rh2max	22	ı
wt max	30	
wt min	15	
contrato temporal	2000	
despido plantilla	8000	

Hipótesis: contratar empleados temporales disminuye el rendimiento en un 20% en el turno mañana y en un 25% en el turno tarde.

Variables


Producción (xst)	01-feb	03-abr	05-jun	07-ago	09-oct	11-dic
xs1t	22703,41	24600	26818,06	16200	25920	21384
xs2t	11179	16675	19849	11531	7291	15246
	33882	41275	46667	27731	33211	36630
Periodo (t)	01-feb	03-abr	05-jun	07-ago	09-oct	11-dic
Inventario (It)	1144	3134	6151	1144	1617	1144
Exceso stock (It+)	0	1990	5007	0	473	0
Defecto stock (It-)	0	0	0	0	0	0

Prod dia (rst)	01-feb	03-abr	05-jun	07-ago	09-oct	11-dic
rs1	29,50	30,00	29,98	30,00	30,00	30,00
rs2	21,20	21,69	21,98	21,96	8,68	22,00

Periodo (t)	01-feb	03-abr	05-jun	07-ago	09-oct	11-dic
PersonalT1 (wt)	26	25	26	27	27	27
ContratacionesT1 (wt+	26	0	1	1	0	0
DespidosT1 (wt-)	0	1	0	0	0	0
Personal T2(wt)	19	25	28	28	28	28
Contrataciones T2(wt+	19	6	3	0	0	0
Despidos T2(wt-)	0	0	0	0	0	0

MAINI (CT)	770440 0
MIN (CI)	779449,9

Demanda y Stock

Plantilla de Empleados

Variantes de producción, costes y plan de producción

Introducción

La dirección ha tomado la decisión de que el año que viene se fabricarán 3 de las 4 referencias de los productos. Para ello se necesitan individualmente los costes de fabricación, posesión y rotura de stocks.

Las diferentes variantes del producto a fabricar en el próximo año son:

- RFA: Largo 1743 mm y 3 taladros en base derecha
- RFB: Largo 1743 mm y 3 taladros en base derecha y un taladro en base izquierda
- RFC: Largo 1774 mm y 3 taladros en base derecha

Demanda por producto

La demanda prevista para este próximo año, habiendolo consultado con nuestros clientes, es la siguiente:

	ENE-FEB	MAR-ABR	MAY-JUN	JUL-AGO	SEP-OCT	NOV-DIC
RFA (uds)	11459	11785	17460	11458	14732	12986
RFB (uds)	13095	19643	13095	8184	14732	12986
RFC (uds)	8184	7857	13095	13096	3274	11131
TOTAL (uds)	32738	39285	43650	32738	32738	37103

Producción, stocks, costes y consumo

Producto	Producción (uds/dia)	Limitación stock (uds/mes)	Coste producción (€/pieza)	Coste Stock (€/pieza)	Coste Diferir (€/pieza)	Consumo (kg/pieza)
RFA	440	91800	4,15	0,27	27000*	2,74
RFB	440	91800	4,2	0,27	27000*	2,74
RFC	420	90000	4,3	0,28	30000*	2,79

El almacén tiene la capacidad de almacenar 22500 unidades del mix de producto mensual.

^{*}Precio del coche entero

Aprovisionamiento Inicial

Debido a problemas en el suministro (Bamesa), sólo nos podemos abastecer una vez al año de acero para la producción de los Bumper's.

Debido a ello, al inicio del año disponemos de 700000 kg de acero.

Producción mínima

Debido a compromisos contractuales con Ford, debemos suministrar cada año un mínimo de 5000 unidades del producto.

Aplicación del Algoritmo

Se trasladan los nuevos datos al departamento de planificación y se ejecuta el algoritmo de Bowman modificado para los 3 productos con demanda para un turno.

$$\min C_T = \sum_{i \in P} \sum_{t=1}^{T} c_{u_i} X_{i,t} + \sum_{i \in P} \sum_{t=1}^{T} \left(c_{h_i} I_{i,t}^+ + c_{b_i} I_{i,t}^- \right)$$

Solución

Producto (xst)	1-2	3-4	5-6	7-8	9-10	11-12
RFA	12032	11801	17902	11000	14896	12899
RFB	15680	18040	12768	7938	15059	12899
RFC	8593	7841	16453	10000	2783	11524

Producción dia - producto (rst)	1-2	3-4	5-6	7-8	9-10	11-12
RFA	325,19	287,84	416,32	440,00	372,39	390,87
RFB	423,79	440,00	296,92	317,54	376,49	390,87
RFC	232,248649	191,235366	382,62674	400	69,5725	349,20758

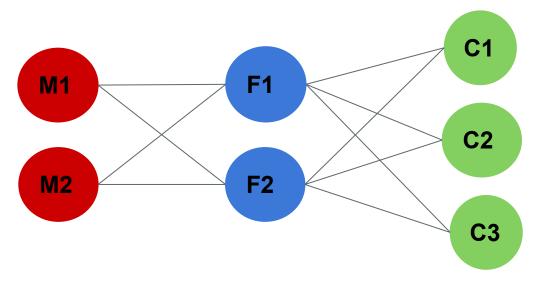
Coste mínimo de: **927.562,00** €

Solución

Tenemos stock de la RFA en el bimes 5-6, para la RFB en el primer bimes y finalmente para la RFC el bimes 5-6, respondiendo a los picos de demanda.

Periodo (t)	1-2	3-4	5-6	7-8	9-10	11-12
Inventario RFA	573	589	1031	573	737	649
Exceso stock (It+)	0	0	158	0	0	0
Defecto stock (It-)	0	0	0	0	0	0
Periodo (t)	1-2	3-4	5-6	7-8	9-10	11-12
Inventario RFB	2585	982	655	409	737	649
Exceso stock (It+)	1930	0	0	0	0	0
Defecto stock (It-)	0	0	0	0	0	0
Periodo (t)	1-2	3-4	5-6	7-8	9-10	11-12
Inventario RFC	409	393	3751	655	164	557
Exceso stock (It+)	0	0	3096	0	0	0
Defecto stock (It-)	0	0	0	0	0	0

Conclusiones


También se ha observado que el aprovisionamiento óptimo de acero al inicio para satisfacer demanda es de: 610119,5185 kg

Existe una diferencia de aproximadamente +90000 kg con el nivel de aprovisionamiento actual, por lo que ajustando el aprovisionamiento también sería posible ajustar los costes.

Modelo multicentro y multiproducto

Modelo multicentro y multiproducto

- Proveedores de materia prima:
- Gonvarri Steel (Navarra)
- Bamesa (Cataluña).
- 2 plantas de producción:
- Els Monjos (Barcelona)
- Noáin (Pamplona).
- 3 clientes:
- SEAT (Martorell)
- Opel (Figueruelas)
- Ford (Almussafes)

Demanda por cliente y producto

	Demanda 1° S	Demanda 2° S
SEAT	71232	63168
Ford	31482	27918
Opel	9409	8343

Pto.	Mix de ventas	Prod. 1° S	Prod. 2° S
RFA	0,35	39243	34800
RFB	0,25	28031	24857
RFC	0,25	28031	24857

Costes de producción

Producto	Coste Producción (€/pieza)	Coste Stock (€/pieza)	Coste Diferir (€/pieza)
RFA	4,15	0,27	27000
RFB	4,20	0,27	27000
RFC	4,30	0,28	30000

Proveedor	Costo de MP
Gonvarri Steel	1,95 €/kg
Bamesa	1,70 €/kg

Costes de transporte

	Els Monjos	Noáin
Gonvarri Steel	0,35 € /kg	0,05 € /kg
Bamesa	0,10 € /kg	0,45 €/kg

	SEAT	Opel	Ford
Els Monjos	1,7 €/u	2,65 €/u	3,06 €/u
Noáin	3,25 €/u	2,5 €/u	3,5 €/u

Restricciones

• Capacidad:

Els Monjos: 180.000 kg/6 meses

Noáin: 150.000 kg/6 meses

• Limitación de stock:

Els Monjos: 10.000 kg

Noáin: 3.000 kg

Pedido mínimo:

Gonvarri Steel: 500 kg

Bamesa: 1000 kg

Plan de producción: PL

- Horizonte: 1 año.
- Período de planeamiento: 6 meses.
- Función objetivo del modelo: Minimizar costes de producción.
- ST a restricciones de demanda, compra de MP y capacidad.

Plan de producción

	Compra de MP (kg)									dispuesta	
		Els Monjos	Noáin		a pagar 0,16 €/kg adicional de capacidad (hasta capacidad de 188355 kg).						
1°S	Gonvarri Steel	500	500	cap							
	Bamesa	260537,25	1000				Ο,				
		Els Monjos	Noáin	Las	plantas e	estaríar	n dispues	tas a pag	ar hasta	0,35 €/kg	
2°S	Gonvarri Steel	500	500	al r	roveedo	r Noái	n v 0.2 €	kg a G	onvarri S	Steel para	
	Bamesa	230811,21	1000		al proveedor Noáin y 0,2 €/kg a Gonvarri S que reduzcan sus requerimientos de compra						
				que	reduzca	II Sus re	querimie	entos de	comprai	nimima.	
	Producción (u)										
		A SEAT	A Ford	A Opel	B SEAT	B Ford	B Opel	C SEAT	C Ford	C Opel	
1°S	Els Monjos	24931	0	C	17808	4821	0	17808	0	0	
	Noáin	0	11019	3293	0	3050	2352	0	7871	2352	
		A SEAT	A Ford	A Opel	B SEAT	B Ford	B Opel	C SEAT	C Ford	C Opel	
2°S	Els Monjos	22109		(15792	1000000		0	6980	75	
65(11)	Noáin	0	0	2920	0	0	0	15792	0	2085	

Desagregación de los planes de producción

La dirección desea tener más información sobre los productos que forman el mix.

Por dicha razón desea que se desagreguen los planes de producción que se han presentado anteriormente y tener un control más específico por producto.

Con la información obtenida se pretende poder ser más competitivo en el mercado y alcanzar los objetivos más rápidamente

Demanda desagregada

La demanda de cada uno de los bumpers por bimestre se recoge en la siguiente tabla:

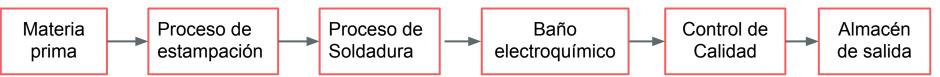
	ENE-FEB	MAR-ABR	MAY-JUN	JUL-AGO	SEP-OCT	NOV-DIC
RFA (uds)	11459	11785	17460	11458	14732	12986
RFB (uds)	13095	19643	13095	8184	14732	12986
RFC (uds)	8184	7857	13095	13096	3274	11131
TOTAL (uds)	32738	39285	43650	32738	32738	37103

No se permite diferir demanda

	Demanda					Stock de seguridad					
Mes	Global	RFA	RFB	RFC	Global	RFA	RFB	RFC	RFA(%)	RFB(%)	RFC(%)
1	32738	11459	13095	8184	1144	400	458	286	3,50	3,50	3,50
2	39285	11785	19643	7857	1144	343	572	229	2,91	2,91	2,91
3	43650	17460	13095	13095	1144	458	343	343	2,62	2,62	2,62
4	32738	11458	8184	13096	1144	400	286	458	3,50	3,50	3,50
5	32738	14732	14732	3274	1144	515	515	114	3,50	3,50	3,50
6	27391	3274	12986	11131	1144	137	542	465	4,18	4,18	4,18
	208540	70168	81735	56637	1144	382	381	381			

El stock de seguridad es igual a lo que producen 2 turnos.

		Demanda	corregida		Cuotas unitarias de producción			
Mes	Global	RFA	RFB	RFC	Global	RFA	RFB	RFC
1	32738	11477	13172	8089	1,000	0,351	0,402	0,247
2	39285	11728	19757	7800	1,000	0,299	0,503	0,199
3	43650	17574	12866	13209	1,000	0,403	0,295	0,303
4	32738	11401	8127	13210	1,000	0,348	0,248	0,404
5	32738	14846	14961	2931	1,000	0,453	0,457	0,090
6	27391	2896	13014	11481	1,000	0,106	0,475	0,419
	208540	69923	81896	56721	1,000	0,327	0,397	0,277


		Demanda	corregida		C	uotas teóricas	de producció	ón
Mes	Global	RFA	RFB	RFC	Global	RFA	RFB	RFC
1	32738	11477	13172	8089	32738	11477	13172	8089
2	39285	11728	19757	7800	39285	11728	19757	7800
3	43650	17574	12866	13209	43650	17574	12866	13209
4	32738	11401	8127	13210	32738	11401	8127	13210
5	32738	14846	14961	2931	32738	14846	14961	2931
6	27391	2896	13014	11481	27391	2896	13014	11481
	208540	69923	81896	56721	208540	69923	81896	56721

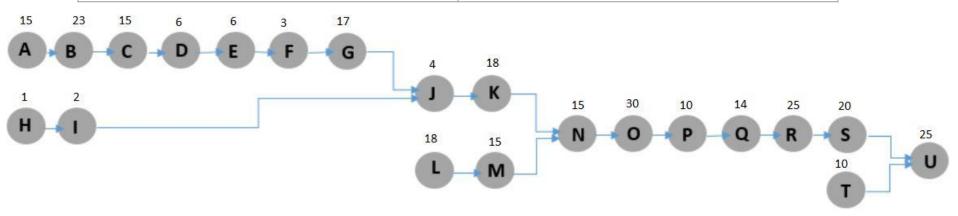
	С	uotas teóricas	de producció	ón		Produce	ción real	
Mes	Global	RFA	RFB	RFC	Global	RFA	RFB	RFC
1	32738	11477	13172	8089	32738	11518	13145	8075
2	39285	11728	19757	7800	39285	11769	19730	7786
3	43650	17574	12866	13209	43650	17615	12839	13196
4	32738	11401	8127	13210	32738	11442	8100	13196
5	32738	14846	14961	2931	32738	14887	14934	2917
6	27391	2896	13014	11481	27391	2937	12987	11467
	208540	69923	81896	56721	208540	70168	81735	56637

Equilibrado de la línea de montaje

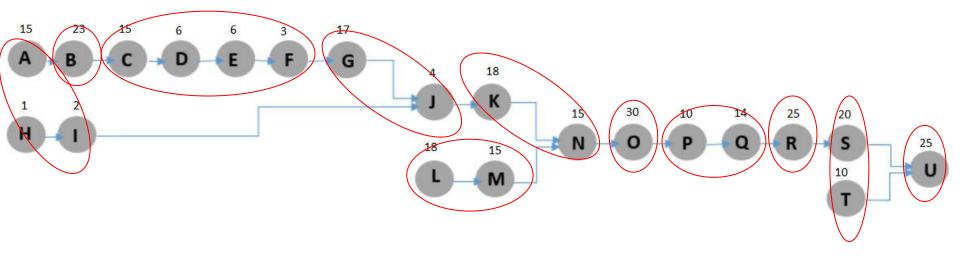
Definición tareas de ensamblado, tiempos de proceso y precedencias

Punto de partida: etapas del proceso

Demandas

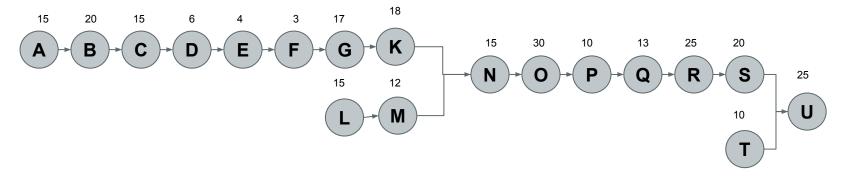

RFA: 36,6% **RFB:** 37,4% **RFC:** 26%

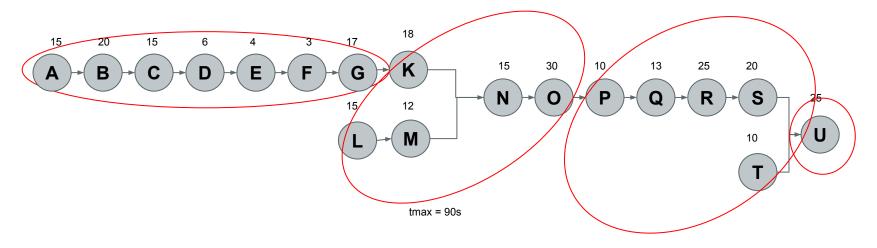
TAREA	DESCRIPCIÓN	PREC	RFA (seg)	RFB (seg)	RFC (seg)
Α	Montaje bobina de acero en máquina cortadora	-	15	15	15
В	Corte de la chapa	А	20	23	28
С	Transporte chapa cortada a matriz de estampado	В	15	15	15
D	Montaje chapa debajo de la matriz	С	6	6	6
E	Estampado	D	4	6	8
F	Retiro de la matriz	Е	3	3	3
G	Avance de la pieza estampada en cinta transportadora a zona de soldado	F	17	17	17
Н	Agarrar tornillo	-	-	2	2
ı	Posicionamiento del tornillo	Н	-	3	3
J	Soldado	G,I	-	4	10


K	Transporte pieza a zona de baño	J	18	18	18
L	Espera para aumento T del baño	-	15	20	20
М	Agregado líquido anticorrosivo	L	12	12	24
N	Sumergido de la pieza en el baño	K,M	15	15	15
0	Secado de la pieza	N	30	30	30
Р	Colocación pieza en carrusel	0	10	10	10
Q	Control visual de la pieza	Р	13	15	15
R	Colocación pieza en rack	Q	25	25	25
S	Transporte rack a zona de almacén	R	20	20	20
Т	Colocación etiqueta para trazabilidad de las piezas	_	10	10	10
U	Deposición en almacén	T,S	25	25	25

Línea de productos mixtos

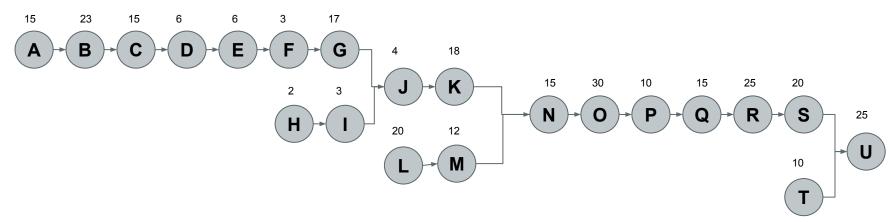
Tiempo ciclo requerido	33 segundos/ud
nº mínimo estaciones teórico	[8,84]+ → 9 estaciones
Eficiencia máxima ideal	98,31%

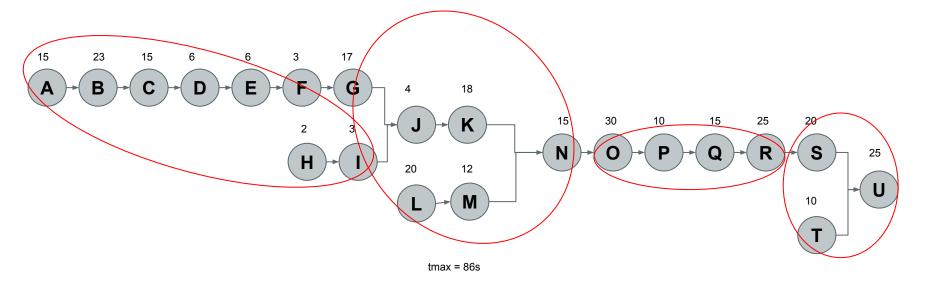

Tiempo total= 292 segundos


Tiempo ciclo requerido	33 segundos/ud
nº operarios	11 operarios
Tiempo improductivo	19,56%

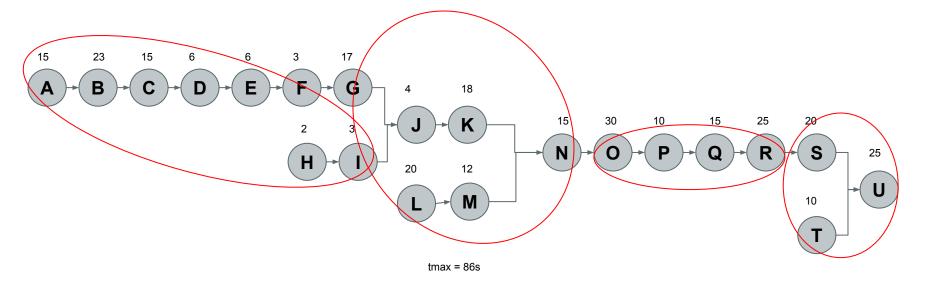
Línea de productos RFA

Tiempo ciclo requerido	90 segundos/ud
nº mínimo estaciones teórico	[3,033]+ → 4 estaciones
Eficiencia máxima ideal	75,83%

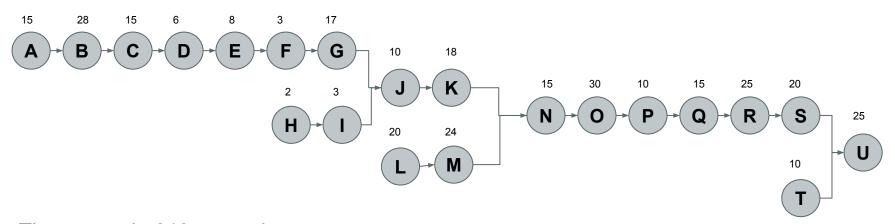

Tiempo total= 273 segundos

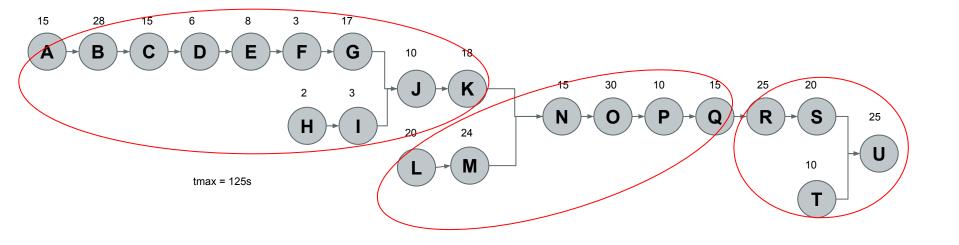

Tiempo ciclo requerido	90 segundos/ud
nº operarios	4 operarios
Tiempo improductivo	31,87%

Línea de productos RFB

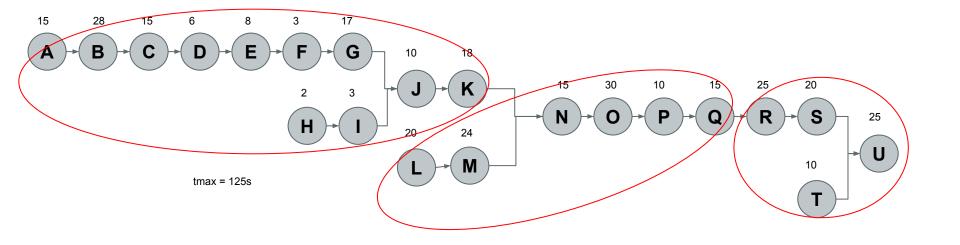

Tiempo ciclo requerido	88 segundos/ud
nº mínimo estaciones teórico	[3,34]+ → 4 estaciones
Eficiencia máxima ideal	83,52%

Tiempo total= 294 segundos


Tiempo ciclo requerido	88 segundos/ud
nº operarios	4 operarios
Tiempo improductivo	19,39%


Tiempo ciclo requerido	86 segundos/ud
nº operarios	4 operarios
Tiempo improductivo	17%

Línea de productos RFC


Tiempo ciclo requerido	127 segundos/ud
nº mínimo estaciones teórico	[2,51]+ → 3 estaciones
Eficiencia máxima ideal	83,72%

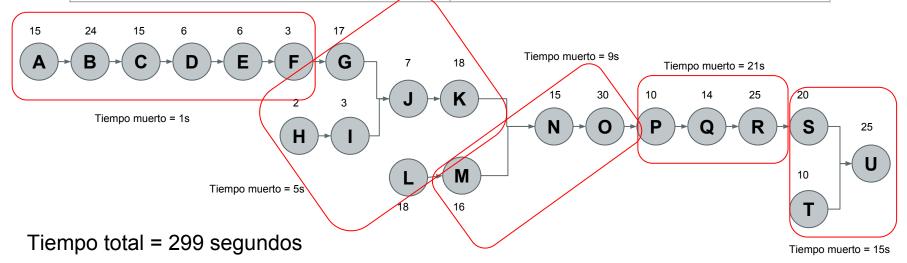
Tiempo total= 319 segundos

Tiempo ciclo requerido	127 segundos/ud
nº operarios	3 operarios
Tiempo improductivo	19,44%

Tiempo ciclo requerido	125 segundos/ud
nº operarios	3 operarios
Tiempo improductivo	17,55%

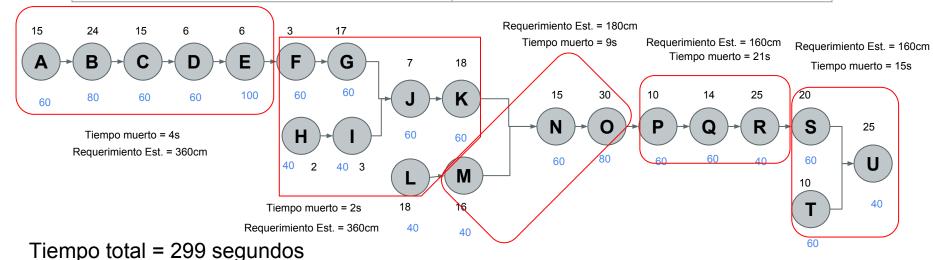
Tabla resumen

	Mixto	Líneas separadas
Estaciones	11	11 (3RFA+4RFB+4RFC)
Eficiencia	80,44%	77,41%

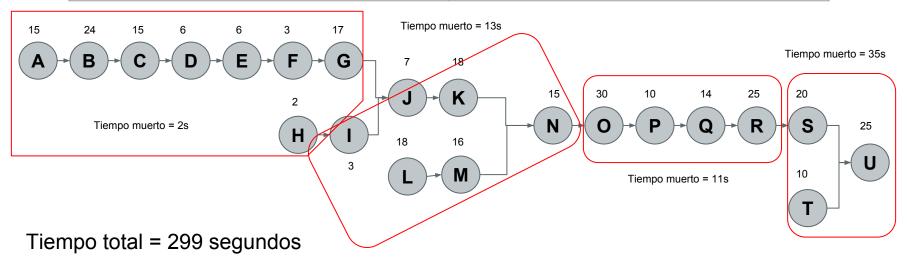

A igual número de estaciones, consideramos que la mejor opción es la de hacer una línea de montaje para cada uno de los productos.

TAREA	DESCRIPCIÓN	PREC	Tiempo medio proceso (s)	Requerimiento estanterías (cm)		
A	Montaje bobina de acero en máquina cortadora	-	15	60		
В	Corte de la chapa	Α	24	80		
С	Transporte chapa cortada a matriz de estampado	В	15	60		
D	Montaje chapa debajo de la matriz	С	6	60		
E	Estampado	D	6	100		
F	Retiro de la matriz	Е	3	60		
G	Avance de la pieza estampada en cinta transportadora a zona de soldado	F	17	60		
н	Agarrar tornillo	-	2	40		
ı	Posicionamiento del tornillo	Н	3	40		
J	Soldado	G,I	7	60		

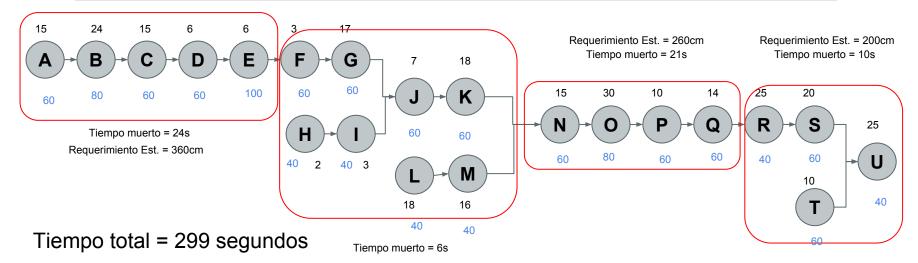
K	Transporte pieza a zona de baño	J	18	60
L	Espera para aumento T del baño	-	18	40
М	Agregado líquido anticorrosivo	L	16	40
N	Sumergido de la pieza en el baño	K,M	15	60
0	Secado de la pieza	N	30	80
Р	Colocación pieza en carrusel	0	10	60
Q	Control visual de la pieza	Р	14	60
R	Colocación pieza en rack	Q	25	40
S	Transporte rack a zona de almacén	R	20	60
Т	Colocación etiqueta para trazabilidad de las piezas	-	10	60
U	Deposición en almacén	T,S	25	40


Opción 1

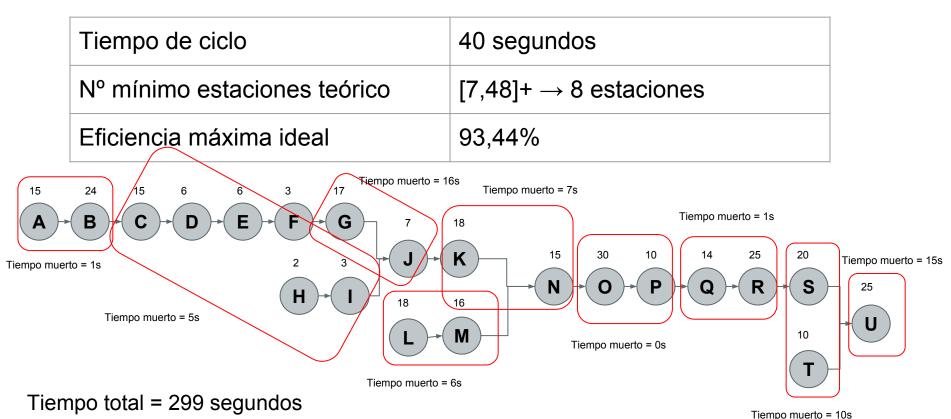
Tiempo de ciclo	70 segundos
Nº mínimo estaciones teórico	[4,27]+ → 5 estaciones
Eficiencia máxima ideal	85,43%


Opción 1 con Restricción desplazamiento

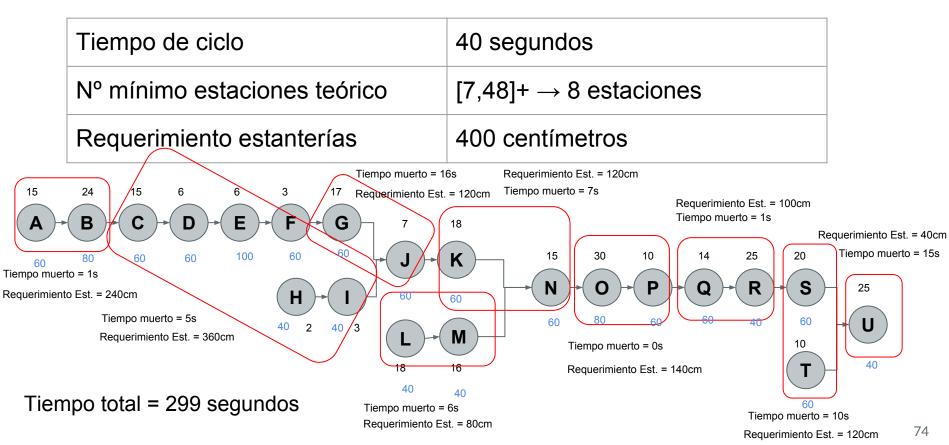
Tiempo de ciclo	70 segundos
Nº mínimo estaciones teórico	[4,27]+ → 5 estaciones
Requerimiento estanterías	400 centímetros


Opción 2

Tiempo de ciclo	90 segundos
Nº mínimo estaciones teórico	[3,32]+ → 4 estaciones
Eficiencia máxima ideal	83,06%


Opción 2 con Restricción desplazamiento

Tiempo de ciclo	90 segundos
Nº mínimo estaciones teórico	3,32]+ → 4 estaciones
Requerimiento estanterías	400 centímetros



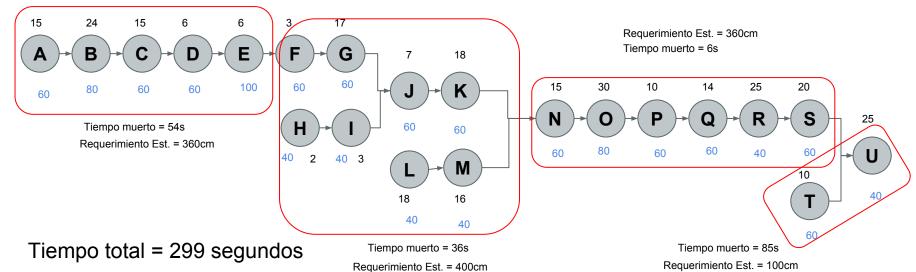
72

Opción 3



Opción 3 con Restricción desplazamiento

Opción 4


Tiempo de ciclo	120 segundos
Nº mínimo estaciones teórico	[2,49]+ → 3 estaciones
Eficiencia máxima ideal	83,06%

Tiempo total = 299 segundos

Opción 4 con Restricción desplazamiento

Tiempo de ciclo	120 segundos
Nº mínimo estaciones teórico	[2,49]+ → 3 estaciones
Requerimiento estanterías	400 centímetros

Secuenciación

En una misma línea de ensamblado se procesan los productos RFA, RFB y RFC. El lote de trabajo es de 10 unidades. En función de la demanda, el plan de producción está definido por la fabricación de dA unidades de tipo A, dB unidades de tipo B y dC unidades de tipo C.

$$d_A \Rightarrow \lambda_A = \frac{d_A}{T}$$
 $I = \{A, B, C\}$
 $T = 10$
 $d_B \Rightarrow \lambda_B = \frac{d_B}{T}$
 $d_C \Rightarrow \lambda_C = \frac{d_C}{T}$

CASO Minoritario

$$\lambda_A = 0.35$$

$$\lambda_B = 0.40$$

$$\lambda_C = 0.25$$

t	Óptimo Tentativo		Parte entera			Fracción			Resto	Óptimo			Secuencia	
	XA	XB	XC	$[\lambda_A t]$	$[\lambda_B t]$	$[\lambda_{\text{C}}t]$	RA	RB	RC	R	X*A	X*B	X*C	S
1	0,35	0,40	0,25	0	0	0	0,35	0,40	0,25	1	0	1	0	2
2	0,70	0,80	0,50	0	0	0	0,70	0,80	0,50	2	1	1	0	1
3	1,05	1,20	0,75	1	1	0	0,05	0,20	0,75	1	1	1	1	3
4	1,40	1,60	1,00	1	1	1	0,40	0,60	0,00	1	1	2	1	2
5	1,75	2,00	1,25	1	2	1	0,75	0,00	0,25	1	2	2	1	1
6	2,10	2,40	1,50	2	2	1	0,10	0,40	0,50	1	2	2	2	3
7	2,45	2,80	1,75	2	2	1	0,45	0,80	0,75	2	2	3	2	2
8	2,80	3,20	2,000	2	3	2	0,80	0,20	0,00	1	3	3	2	1
9	3,15	3,60	2,25	3	3	2	0,15	0,60	0,25	1	3	4	2	2
10	3,50	4,00	2,50	3	4	2	0,50	0,00	0,50	1	4	4	2	1

CASO Neutro

$$\lambda_A = 0.33$$

$$\lambda_B = 0.33$$

$$\lambda_C = 0.33$$

t	Óptimo Tentativo			Parte entera			Fracción			Resto	Óptimo			Secuencia
	X1	X2	Х3	$[\lambda_A t]$	$[\lambda_B t]$	$[\lambda_c t]$	r	r	r	R	X*1	X*2	X*3	S
1	0,33	0,33	0,33	0	0	0	0,33	0,33	0,33	1	1	0	0	1
2	0,67	0,67	0,67	0	0	0	0,67	0,67	0,67	2	1	1	0	2
3	1,00	1,00	1,00	0	0	0	1,00	1,00	1,00	3	1	1	1	3
4	1,33	1,33	1,33	1	1	1	0,33	0,33	0,33	1	2	1	1	1
5	1,67	1,67	1,67	1	1	1	0,67	0,67	0,67	2	2	2	1	2
6	2,00	2,00	2,00	1	1	1	1,00	1,00	1,00	3	2	2	2	3
7	2,33	2,33	2,33	2	2	2	0,33	0,33	0,33	1	3	2	2	1
8	2,67	2,67	2,67	2	2	2	0,67	0,67	0,67	2	3	3	2	2
9	3,00	3,00	3,00	2	2	2	1,00	1,00	1,00	3	3	3	3	3
10	3,33	3,33	3,33	3	3	3	0,33	0,33	0,33	1	4	3	3	1

CASO Mayoritario

$$\lambda_A = 0.10$$
 $\lambda_B = 0.30$
 $\lambda_C = 0.60$

t	Óptimo Tentativo			Parte entera			Fracción			Resto	Óptimo			Secuencia
	X1	X2	Х3	$[\lambda_A t]$	$[\lambda_B t]$	$[\lambda_c t]$	r	r	r	R	X*1	X*2	X*3	S
1	0,10	0,30	0,60	0	0	0	0,10	0,30	0,60	1	0	0	1	. 3
2	0,20	0,60	1,20	0	0	1	0,20	0,60	0,20	1	0	1	1	2
3	0,30	0,90	1,80	0	0	1	0,30	0,90	0,80	2	0	1	2	3
4	0,40	1,20	2,40	0	1	2	0,40	0,20	0,40	1	0	1	3	3
5	0,50	1,50	3,00	0	1	3	0,50	0,50	0,00	1	0	2	3	2
6	0,60	1,80	3,60	0	1	3	0,60	0,80	0,60	2	0	2	4	3
7	0,70	2,10	4,20	0	2	4	0,70	0,10	0,20	1	1	2	4	1
8	0,80	2,40	4,80	0	2	4	0,80	0,40	0,80	2	1	2	5	3
9	0,90	2,70	5,40	0	2	5	0,90	0,70	0,40	2	1	2	6	3
10	1,00	3,00	6,00	1	3	6	0,00	0,00	0,00	0	1	. 3	6	2

MUCHAS GRACIAS

