
DevOps : Continuous Integration and Continuous
Deployment applied

A Degree Thesis
Submitted to the Faculty of the

Escola Tècnica d’Enginyeria de Telecomunicació de
Barcelona

Universitat Politècnica de Catalunya

by
Héctor Pascual Haba

In partial fulfilment of the requirements for the degree in
TELECOMMUNICATION TECHNOLOGIES AND

SERVICES ENGINEERING

Advisor: Israel Martín

Barcelona, June 2020

Abstract

DevOps is a trending concept in the SW industry introduced and popularized
during the last decade, this thesis goes deep into the concept, the culture and fields
related to it which are present in almost each project and company nowadays. The
research model followed in the thesis basically consists in getting in contact with
the DevOps culture by designing, developing and implementing a Python tool with
some Continuous Integration and Continuous Deployment features. Basically this
tool consists on a back-end REST API capable of creating and automating builds
on any connected slave node to the tool, similar to traditional DevOps tools logic
such as Jenkins or TeamCity, but in a lightweight, portable and OS independent
solution, also a front-end is developed in order to make the tool easier and simpler
to use. In order to demonstrate the power and the capabilities of the tool we will
containerize a build environment with Docker and automate its build process with
the tool as well as deploying the binaries resulting from the build process.

1

Resum

DevOps és un concepte de tendència a la indústria del SW, introduït i popular-
itzat durant la darrera decada, aquesta tesi aprofundeix en el concepte, la cultura
i aspectes relacionats, que son present a la majoria de projectes i empreses avui
en dia. El model d’investigació a seguir durant la tesi es basa en entrar en con-
tecte directe amb la cultura de DevOps dissenyant, desenvolupant i implementant
una eina en Python amb característiques tant d’Integració Continua com de De-
splegament Continuu. En resum, l’eina consisteix en un backend REST API que
permet la creació i automatització de construccions de projectes en qualsevol node
esclau conectat a l’eina, de manera semblant a eines tradicional de DevOps com
són Jenkins o Teamcity pero d’una manera lleugera, portable i independent del
sistema operatiu. Tambe s’ha desenvolupat un frontend per facilitar l’ús de l’eina.
Finalment, per a demostrar el funcionament i la capacitat de l’eina crearem un en-
torn de construcció amb docker del qual automatitzarem el procés de construcció
amb l’eina a més de desplegar els binaris resultants del procés.

2

Resumen

DevOps es un concepto de tendencia en la industria del SW introducido y popu-
larizado durante la última década, esta tesis profundiza en el concepto, la cultura
y los campos relacionados que están presentes en casi cada proyecto y empresa en
la actualidad. El modelo de investigación seguido en la tesis consiste básicamente
en ponerse en contacto con la cultura DevOps mediante el diseño, desarrollo e
implementación de una herramienta Python con algunas características de inte-
gración continua y despliegue continuo. Básicamente, esta herramienta consiste
en una API REST de back-end capaz de crear y automatizar compilaciones en
cualquier nodo esclavo conectado a la herramienta, similar a la lógica de her-
ramientas DevOps tradicionales como Jenkins o TeamCity, pero en una solución
ligera, portátil e independiente del sistema operativo, también un front-end se ha
desarrollado para hacer que la herramienta sea más fácil y simple de usar. Para
demostrar el poder y las capacidades de la herramienta, contenerizaremos un en-
torno de compilación con Docker y automatizaremos su proceso de compilación
con la herramienta, así como desplegaremos los binarios resultantes del proceso
de compilación.

3

Acknowledgments

I would first like to thank my thesis advisor Israel Martin of the ETSETB at
Politechnics University of Catalonia, due to his instant e-mail answers when I ran
into a trouble spot or had a question about my research or writing. He consis-
tently allowed this thesis to be my own work, but guided me in the right the
direction whenever he thought I needed it.

I would also like to thank my supervisor Oscar Alonso from TTTech Auto
Iberia, the company I was when this project was carried out, due to his cor-
rections and document validations as well as technical support. Also DevOps
department colleagues which were always available for technical issues and give
me a hand when I needed it. It is always good to have a technical support when
you are entering and discovering a new field on research.

Finally, I must express my very profound gratitude to my parents for providing
me with unfailing support and continuous encouragement throughout my years
of study and through the process of researching and writing this thesis. This
accomplishment would not have been possible without them.

Thank you all who have helped in one way or another to make this project
possible.

4

Revision history and approval record

Revision Date Purpose

0 20/04/2020 Document Creation

1 22/05/2020 Minor corrections proposed by tutor

2 06/06/2020 Minor corrections proposed by tutor

3 29/06/2020 Final version corrections

Table 1: Revision history and approval record

Name e-mail

Héctor Pascual rcpascualhector@gmail.com

Israel Martín israel.martin@upc.edu

Óscar Alonso oscar.alonso@tttech-auto.com

Table 2: Document distribution list

Written by : Reviewed and approved by :

Name Hector Pascual Oscar Alonso and Israel Martín

Position Project Author Project Supervisor and Advisor

Table 3: Approval Record

5

Contents

Abstract 1

Resum 2

Resumen 3

Acknowledgments 4

Table of Contents 6

List of Figures 8

List of Tables 9

1 Introduction 10
1.1 Statement of purpose . 10
1.2 Requirements and specifications 10
1.3 Project Background . 11
1.4 Work plan . 12
1.5 Deviations from the initial plan and incidences 16

2 State of the art of the technology used or applied in this thesis 17

3 Methodology/Project Development 21
3.1 Design . 21
3.2 Implementation, dependencies and toolchain 22

3.2.1 APSCHEDULER . 22
3.2.2 SQLITE . 23
3.2.3 SQLALCHEMY . 23
3.2.4 PARAMIKO . 24
3.2.5 LOGGING . 25
3.2.6 GUNICORN . 25
3.2.7 FLASK . 26
3.2.8 REQUESTS . 27

3.3 Implementation, project architecture 27
3.3.1 Job . 28
3.3.2 Build . 28
3.3.3 Node . 28
3.3.4 Pipenv . 29

3.4 Testing . 32

4 Results 34
4.1 Bringing up the tool . 36

6

5 Budget 37

6 Conclusions and future development 38

Bibliography 39

Glossary 40

7

List of Figures

1 Work Package breakdown, self-elaboration. 12
2 GANTT diagram, self-elaboration. 16
3 DevOps loop, author: Kharnagy 19
4 Toolchain used, self-elaboration 22
5 Simple back-end jobs structure, self-elaboration 27
6 Action flow example, self-elaboration 31
7 HTTP GET example performed with Postman, self-elaboration . 33
8 HTTP POST example to be performed with Postman, self-elaboration 33
9 / . 35
10 /jobs . 35
11 /create_job . 36
12 /create_build/<int:build_id> . 36

8

https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

List of Tables

1 Revision history and approval record 5
2 Document distribution list . 5
3 Approval Record . 5
4 WP 1.1 . 12
5 WP 1.2 . 13
6 WP 1.3 . 13
7 WP 1.4 . 13
8 WP 2.1 . 13
9 WP 2.2 . 13
10 WP 2.3 . 13
11 WP 2.4 . 14
12 WP 2.5 . 14
13 WP 2.6 . 14
14 WP 3.1 . 14
15 WP 3.2 . 14
19 WP 4.3 . 15
16 WP 3.3 . 15
17 WP 4.1 . 15
18 WP 4.2 . 15
20 Differences with initial planning 16
21 Software Deployment Frequency on diverse companies, source : The

Phoenix Project . 18
22 DevOps toolchain . 19
23 Log levels used in the tool, source : Python docs 25
24 Back-end REST API documentation, source : Python docs 34
25 Front-end routes documentation, source : Python docs 35
26 Project budget . 37

9

1 Introduction

The project is carried out at TTTech Auto Iberia an automotive company which
works with embedded projects and big build environments that can be automa-
tized in different ways, during my stay in the company I have got in touch with
DevOps related concepts such as automatizing infrastructure deployment, con-
tainerizing build environments, designing Continuous Integration pipelines, be-
tween other. I have taken all this knowledge learnt and decided to focus my thesis
on creating an own CI and CD tool capable of doing most of the common CI/CD
features such as automatizing builds, taking as input pipeline files, storing arti-
facts resulting from builds, capability of scheduling jobs through cron expressions
and so on.

1.1 Statement of purpose

Along this project I will go deep into the DevOps culture and the trending concepts
related to it, which are present in almost each project and company nowadays by
designing, developing and implementing a Python tool with some CI and CD fea-
tures.

The project main goals are:

• Get involved with trending DevOps technology.

• Get a deep knowledge on DevOps culture and its related concepts.

• Develop a CI / CD (Continuous Integration / Continuous Deployment) tool
with features based on other CI tools.

• Containerize a build environment and automate its build process as an ex-
ample.

1.2 Requirements and specifications

The requirements for the project are strictly related with the tool developed and
with the coverage of all DevOps concepts that are connected to the tool imple-
mentation.

• The project should cover in deep all the DevOps related concepts mentioned
in the sections.

• The project should contain reflections on different ways to perform automa-
tion of processes.

• The development of the tool should be submitted to constant commits to a
VCS (git for this project).

• The tool should be able to automatize any process that can be done manually
via shell commands.

10

• The tool should be able to schedule jobs periodically through cron expres-
sions.

• The tool should be able to describe the processes to automatize through
pipelines.

• The tool should be able to store binary artifacts after a successful build.

Referring to the specifications:

• The project will contain technical examples when an automation process is
described (i.e: Wrapping up a build environment with Docker and deploying
it with Ansible to multiple physical hosts.)

• The tool will be able to be hosted on any OS system connected to a network.

• The tool will be accessible through a REST API developed on Python.

• The tool will be also accessible through a Front-end which interacts directly
with the REST API back-end in order to ease its use.

• The Python version used on development will be at least Python 3.6 due to
the constant usage of formatted string literals included in version 3.6 (see
PEP-498).

1.3 Project Background

This project is conceived as an abstraction wrap up and continuation of all the
work I have been doing in the company during last year and a half and also a deep
analysis and practical implementation of concepts related to DevOps culture that
I had to learn in order to proceed. With abstracted I mean that no confidential
data will be present on any document. The only way I will be using all the work
done internally in the company is as base knowledge and start point to develop
this project.

11

1.4 Work plan

The structure of the project tasks follows the next order :

Major constituent →Work Package →Sub Tasks (if any)

Conceiving a work package as a single well-defined structure (not general or ab-
stract as Major Constituents are) containing a notable amount of work which
could include sub-tasks, as it is shown in the following diagram and in below
tables with work packages definitions :

Figure 1: Work Package breakdown, self-elaboration.

WP Name: Define requirements WP ref: 1.1
Major constituent: Tool Design -
Short description: Define specific requirements
based on DevOps real world culture and concepts

Planned start date: 16/Feb/2020
Planned end date: 19/Feb/2020

Table 4: WP 1.1

12

WP Name: Define data models WP ref: 1.2
Major constituent: Tool Design -
Short description: Think about data models
that will define the tool and its DB representation.

Planned start date: 24/Feb/2020
Planned end date: 26/Feb/2020

Table 5: WP 1.2

WP Name: Define tool flow and interaction WP ref: 1.3
Major constituent: Tool Design -
Short description: Define the application flow
of the application and how the models will
interact between them.

Planned start date: 26/Feb/2020

Planned end date: 27/Feb/2020

Table 6: WP 1.3

WP Name: Define specific technologies and depen-
dencies

WP ref: 1.4

Major constituent: Tool Design -
Short description: Define programming
languages involved, general dependencies and
technologies that will be used.

Planned start date: 25/Feb/2020

Planned end date: 25/Feb/2020

Table 7: WP 1.4

WP Name: Data objects development WP ref: 2.1
Major constituent: Tool Implementation -
Short description: Represent the data models
in Python class and the database models as well.

Planned start date: 02/Mar/2020
Planned end date: 05/Mar/2020

Table 8: WP 2.1

WP Name: API Developments WP ref: 2.2
Major constituent: Tool Implementation -
Short description: Development of the API in
order to make the models accessible from a client.

Planned start date: 09/Mar/2020
Planned end date: 24/Mar/2020

Table 9: WP 2.2

WP Name: Database Implementation WP ref: 2.3
Major constituent: Tool Implementation -
Short description: Implement the logic for
accessing to the SQL database using Python.

Planned start date: 03/Mar/2020
Planned end date: 10/Mar/2020

Table 10: WP 2.3

13

WP Name: Controller logic implementation WP ref: 2.4
Major constituent: Tool Implementation -
Short description: Develop the logic for using
the data models and giving capabilities for user
interaction through the API.

Planned start date: 08/Mar/2020

Planned end date: 29/Mar/2020

Table 11: WP 2.4

WP Name: CI and CD Features WP ref: 2.5
Major constituent: Tool Design -
Short description: Basing on the research done
in parallel in WP 4.1 implement features.

Planned start date: 30/Mar/2020
Planned end date: 22/Apr/2020

2.5.1 Cron scheduling: Implementing capability to schedule jobs periodically with
cron expressions
2.5.2 Archiving artifacts: Implementing capability to store binaries and outputs
from build executions
2.5.3 Pipeline support: Implementing capability to define builds through YAML
pipelines.

Table 12: WP 2.5

WP Name: Implement Client WP ref: 2.6
Major constituent: Tool Implementation -
Short description: Implement a client with GUI
in order to interact with the API.

Planned start date:24/Apr/2020
Planned end date: 24/May/2020

Table 13: WP 2.6

WP Name: Define test cases from requirements WP ref: 3.1
Major constituent: Tool Testing -
Short description: Define test cases based on
the requirements defined on WP 1.1

Planned start date: 21/May/2020
Planned end date: 25/May/2020

Table 14: WP 3.1

WP Name: Unit tests WP ref: 3.2
Major constituent: Tool Testing -
Short description: Write unit tests for each
module and function that is critical.

Planned start date: 25/May/2020
Planned end date: 27/May/2020

Table 15: WP 3.2

14

WP Name: Research about Docker, Ansible and its
relation with DevOps

WP ref: 4.3

Major constituent: Knowledge development and
research

-

Short description: Research and write ways in
which these technologies can be used and applied.

Planned start date: 14/May/2020
Planned end date: 02/Jun/2020

Table 19: WP 4.3

WP Name: Integration Testing WP ref: 3.3
Major constituent: Tool Testing -
Short description: Write integration tests
checking overall tool functionality.

Planned start date: 27/May/2020
Planned end date: 29/May/2020

Table 16: WP 3.3

WP Name: Research on concepts and features to
apply on the tool

WP ref: 4.1

Major constituent: Knowledge development and
research

-

Short description: Read books and articles
trending on the topic to conclude features that
might fit on the tool.

Planned start date: 10/Mar/2020

Planned end date: 04/Jun/2020

Table 17: WP 4.1

WP Name: Research about automating build envi-
ronments

WP ref: 4.2

Major constituent: Knowledge development and
research

-

Short description: Strictly related to 4.3, get
conclusions on this topic and write thoughts.

Planned start date: 11/May/2020

Planned end date: 01/Jun/2020

Table 18: WP 4.2

15

1.5 Deviations from the initial plan and incidences

Below you can see the current GANTT which slightly differs from the initial
planning :

Figure 2: GANTT diagram, self-elaboration.

The differences with the initial GANNT are the following :

WP Reason

WP 2.6 Client implementation duration has been extended by 4 days, developing front-
end has been a challenge for me, as a Software Developer my skills are more
related to back-end technologies, then I needed more time to complete the task.

WP 3.4 Automated testing task has been deleted, for the sake of simplicity while devel-
oping I decided to not automate the tests (with an external tool), but simply run
them after every commit with a simple bash script that run the tests and then
perform the commit if tests has passed. This could be considered in some way
automated testing but still has a manual part.

WP 4.1 In April the priority for this work package upgraded and I started dedicating more
hours per week due to the reason that I was spending less time to researching on
concepts and developing the knowledge on DevOps than developing the tool.

Table 20: Differences with initial planning

16

2 State of the art of the technology used or applied in this
thesis

Before getting into DevOps state on nowadays SW industry I will talk about an
even more important concept, which is the basis of everything related to DevOps,
this concept is automation, conceived as "the technology by which a process or
procedure is performed with minimal human assistance", automation is the key
for speeding and improving any process related to software, it allows all of the
common tasks involved in the creation and deployment of software to be per-
formed by developers, testers, and operations personnel, at the push of a button.
Automation tools reduce labor, energy, and materials used to improve quality and
accuracy of outcomes.
In the field of software we can distinguish between different types of automation :

• Server Installation : Consists on setting up and configuring servers through
automation.

• Infrastructure Automation : Basically, this consists in what is conceived as
IaC, an IT paradigm oriented to provision and deploy infrastructure with
code, just as the rest of your software. Tools such as Ansible have this
purpose as a goal.

• Test and Build Automation : This is the field the thesis mainly focuses on,
test and build automation tools make possible to keep developing without
having our work laptop frozen due to RAM or CPU run out when compiling
a big project, this kind of tools make possible to connect slave nodes in
which the builds will take place so the developers don’t have to run the
build processes locally on their computers. Also is a good practice for having
centralized all the builds of a project as well as its resulting binary artifacts,
and opens the door to DevOps world. There are also different types of build
and tests automation which will be seen along the thesis :

– On-demand automation : In this case the build is triggered by the user.
– Scheduled automation : This kind of automation gives rise to the known
nightly builds, the builds are scheduled often through Cron Expressions,
this makes possible running builds when no-one is working on the project
in order to build all the changes commited by the developers along the
day.

– Triggered automation : This is strictly related to VCS such as Git or
Svn, this kind of automation trigger builds depending on the workflow
followed, for example if the project follows a feature branching git model,
builds or tests can be triggered when pull requests to master are merged,
or even with every commit performed by the developers.

17

Let’s introduce the DevOps concept itself with an example, imagine your first
days as a developer in a company on a field you have already experience in, you
get your laptop with the propper development environment setup. After you write
some new code you perform a commit and these changes are queued to be built
and tested against a server which contains the build environment setup, if tests
passes now you have a certain degree of confidence that the new code is correct
and you can decide (depending on the complexity and other factors) whether to
open a Pull Request, which will be submitted to a code review, in order to bring
these changes to production environment.

The duration of all this processes can vary depending on the project size, it is
so common that can be done more than 5 times a day per developer (see in
the following table typical deployment frequencies) so the steps followed must
be efficient and well structured. The wrap up of all this processes is conceived
as Pipeline or DevOps pipeline, a pipeline consists of a set of tools, flows, and
automated processes, enabling teams to to build and deploy software efficiently,
and includes Continuous Integration and Continuous Deployment.

Company Deployment Frequency

Amazon 23,000 per day

Google 5,500 per day

Netflix 500 per day

Facebook 1 per day

Twitter 3 per week

Typical Company 1 every 9 months

Table 21: Software Deployment Frequency on diverse companies, source : The Phoenix Project

DevOps is not just another software development methodology, is a way of think-
ing and operating that enable teams to deploy software in efficient and lasting
ways, it is part of the culture that shapes how and why we work, a philosophy
of close collaboration between traditionally distinct disciplines, the Development
team and the Operations team.

A merge of Development and Operations teams conceiving the DevOps team, be-
comes a requirement on most of nowadays projects and companies on the software
field, in order to avoid deployment failures produced by the increase of complexity:

A key factor that has led to the high level of deployment failures we see
today is a corresponding increase in software and infrastructure com-
plexity over time ... Overcoming all this complexity requires a tremen-
dous amount of coordination and communication.

(Collaborative DevOps with Rational and Tivoli, 2011 IBM)

18

Moving into more specific DevOps related concepts, Pipelines, Continuous Inte-
gration and Continuous Deployment will be defined more in detail. The following
image describes the steps of a general DevOps loop cycle or pipeline:

Figure 3: DevOps loop, author: Kharnagy

All the steps in the image above are simple and easy to understand, but are also
complex when it refers to proceed with a project, each of them implies the usage
of certain tools, going step by step some will be mentioned :

D

E

V

O

P

S

Step Tool

Plan Jira, VersionOne

CI Create PyCharm, Visual Studio Code

Verify JUnit, Selenium

CD

Package Artifactory, Docker Hub

Release Docker, AWS

Configure Ansible, Chef

Monitor Datadog

Table 22: DevOps toolchain

Continuous Integration is conceived as a software development practice where
project members integrate their work often, where the frequency can go up to
multiple integrations per day. With CI, code changes are integrated into a central
repository several times a day. As a result, merging the different code changes
from each developer becomes easier and less time-consuming. Bugs will also be
encountered early and this will make it easier to resolve them. Referring to above
pipeline model Continuous Integration would include the whole Create step, which
can be splitted into code and build and also would include the Verify step.

Continuous Deployment is the process of deploying changes into production en-
vironment by minimizing the risk of failure, having passed a set of tests. You
increase the frequency of releasing new features. Consequently, it enhances the
customer feedback loop, hence creating the opportunity for better customer in-
volvement. Regarding the pipeline model defined above, it would include the
Package, Release and Configure steps.

19

https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

Focusing on the tool that has been developed along this thesis, it is mainly writ-
ten in Python, which I had to learn in order to proceed, chosen due to its huge
amount of frameworks that eases the development and its learning curve. The
minimum Python version required for running the tool is Python v3.6 as specified
in the requirements.

Web frameworks was the main focus for developing the tool, as a back-end
REST API was one of the requirements, a web framework is a code library that
makes web development faster and simpler by providing common patterns for
building reliable and maintainable web applications. A REST API simply consists
on building a service by specifying a set of operations on top of HTTP Protocol
by using its methods (GET, POST, PUT and DELETE). The web framework
chosen in order to proceed with the tool development is Flask, the reasons will be
detailed in Methodology/Project Development section.

Also database related concepts had to be studied in order to carry out the tool
development, as the tool itself requires the capability to store jobs and builds, I
decided to focus the research only on relational type databases, avoiding NoSQL
databases such as MongoDB for sack of simplicity at the moment of linking and
creating relations between tables, and also because the database structure was
clear and well defined from the beginning of the project. Finally, sqlite was the
RDBMS chosen over other SQL database engines since sqlite is not a client-server
database, it is embedded into the end application.

In order to schedule jobs periodically inside the tool, which is a requirement, I
decided to use cron expressions, as I am familiar with Unix systems, so I had to
find a way to schedule code execution on Python using cron expressions. Even-
tually, one the libraries which allows this kind of code scheduling on Python is
called Advanced Python Scheduler.

Regarding the front-end, the requirement was to ease the usage of the tool, then
something simple and lightweight was necessary. A single page app was created
with Flask, the content of which changes dinamically, by performing queries to
the back-end REST API, and by using a web template engine called Jinja and
JQuery.

20

3 Methodology/Project Development

3.1 Design

Along this section the methodologies and the practices used in the tool develop-
ment and the project research will be described in detail.

The first weeks of the project it was under a design phase in which I created
the whole specification for the tool development, the requirements exposed at the
beginning of the thesis, and also the toolchain which would be used. Basically I
wanted to create a lightweight, portable, easy to deploy and OS independent tool
with CI and CD features.

The tool is an automation server that allows the user to schedule builds on-
demand and get the build outputs, consisting on a back-end designed under an
MVC pattern an a simple front-end in order to speed up the usage of the tool.

The CI features the tool has are the following :

• Job Scheduling : The tool is capable of scheduling periodically builds using
cron expressions.

• Pipeline support : The commands that will be run in a build can be
contained in a YAML file ordered by stages in order to have a clear order
and sense of the what will be happening in the build.

These features are grouped into Continuous Integration because they ease the
process of testing a project and increases the build frequency in order to find bugs
in less time, apart from automating the whole process.

Regarding the CD features of the tool :

• Artifacts archiving : The tool is capable of storing binaries or any kind of
output that a build produces, selectable by the user, for example after the
build of a C project you can store all *.o and *.ar files.

This Continuous Deployment is a must in any DevOps tool, as it closes the
loop, after the build is automated and the outputs are stored, we can deploy or
deliver this output to the client, flash it to some hardware, monitor parameters.
Hence, joining the CI and the CD features the DevOps loop is closed efficiently
with the usage of the tool.

21

3.2 Implementation, dependencies and toolchain

In this section we will see in detail the tool by reviewing the use cases for each
dependencies and also an architecture overview that will be related with the pre-
vious dependencies explanation in order to fully understand the tool purpose and
usage.

The tool has been developed with git as VCS in order to keep a clean change
history, apart from the local index (where I stored all the changes), a github re-
postiory has been used as platform in some cases to push the changes (when I
needed to share the work to another computer or work station). There is one
repository for the frontend : https://github.com/HectorPascual/ci-cd-client and
another one for the backend : https://github.com/HectorPascual/ci-cd-tool.

The tool has been implemented in Python using libraries and frameworks that
have eased the process of development, in the following diagram you will see the
toolchain used :

Figure 4: Toolchain used, self-elaboration

The dependencies in the diagram will be briefly explained and justified for the
use case :

3.2.1 APSCHEDULER

Is a Python library that lets you schedule code pieces defined as jobs, in concrete
I am using an instance of the object BackgroundScheduler in order to run pieces
of code in background while running the application.

22

The following piece of code schedules a build, the piece of code scheduled is
contained in create_build function, parsed as first argument, then we use kwargs
in order to pass the arguments regarding the create_build function, with trigger
parameter we specify the type of trigger, in the case of our tool we want to use
cron expresions, then we specify the cron parameters (minute, hour, day, month
and day of week) finally an id that will identify the job and then we start the
scheduler:

1 scheduler.add_job(func=create_build , kwargs=kwargs , trigger="cron",
2 minute=minute , hour=hour , day=day_month , month=month ,
3 day_of_week=day_week , id=cron_key)
4 scheduler.start()

3.2.2 SQLITE

Is a very lightweight and easy to include type of database and I decided to use
it on the tool, the database is automatically created if there’s none on the base
directory of the tool.

3.2.3 SQLALCHEMY

SQLAlchemy is a framework that eases Python management of SQL databases,
on our main app file we create a database object using SQLAlchemy constructor,
this will allow us to perform operations and define schemas for the database.

1 from flask_sqlalchemy import SQLAlchemy
2 # ...
3 # app object initialization
4 # ...
5

6 # specify db path
7 app.config[’SQLALCHEMY_DATABASE_URI ’] = ’sqlite :///’ + os.path.join(
8 os.path.dirname(os.path.dirname(__file__)), ’app.db’)
9 # db object initialization

10 db = SQLAlchemy(app)

We use the db object mainly for defining the schemas (models) for the data
types that will be stored in the database, for instance, a job is represented the
following way in the database :

1 import datetime
2 from src.app import db
3

4

5 class Job(db.Model):
6 id = db.Column(db.Integer , primary_key=True)
7 title = db.Column(db.Text)
8 description = db.Column(db.Text)
9 created_date = db.Column(db.DateTime , default=datetime.datetime.utcnow)

10

11 builds = db.relationship(’Build ’, backref=’job’, lazy = False)
12 # ...

Basically the models consists of a primary key, which is the id, the properties
and then we are taking profit of SQL relationships between tables, a Job can
contain multiple builds.

23

Note that we are not taking profit of lazy loading capability of SQLAlchemy,
we are using Eager loading which specifies that you always want to retrieve the
relationship, not only when the object is being accessed.

3.2.4 PARAMIKO

Paramiko is the SSH Python library by reference, it contains an SSH client and
server implementation and allows you to perform all SSH operations through
Python code. The use case for the tool is basically creating SSH connections to
nodes where the builds can be executed.
Not only I am taking profit of the SSH connection for executing commands but
also sharing files between the slave node and the master (which is the one that
hosts the tool) in order to retrieve binary files and results of certain builds, by
using SFTP protocol over SSH.
In the tool architecture, which will be seen in the next subsection, the concept
of Runner appears, which is an object that allows a node to run commands and
perform SSH operations. Its definition using Paramiko is as follows :

1 class RunnerSSH ():
2 def __init__(self , node):
3 self.node = node
4 self.ssh_client = paramiko.SSHClient ()
5 self.ftp_client = None
6

7 def connect(self):
8 try:
9 self.ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy)

10 self.ssh_client.connect(self.node.ip_addr , self.node.port , self.node.
user , self.node.password)

11 logging.info("[SSH] Connection established successfully")
12 except Exception as e:
13 logging.warning(f’[SSH] There was an error while establishing

connection {e}’)
14

15 def run_commands(self , commands):
16 output = ""
17 cmd_list = commands.split(’;’)
18 status = "passed"
19 for cmd in cmd_list:
20 logging.info(f"Executing shell command : {cmd}")
21 _ , stdout , stderr = self.ssh_client.exec_command(f"cd {self.node.

workspace };{cmd}")
22 output += stdout.read().decode("utf -8") + stderr.read().decode("utf

-8") + ’\n’
23 if stderr.channel.recv_exit_status () != 0:
24 status = "failed"
25 return output , status
26

27 def get_files(self , artifacts , local_path , workspace):
28 # Create local path if doesn’t exist
29 Path(local_path).mkdir(parents=True , exist_ok=True)
30

31 # Init sftp session if not existing yet
32 if not self.ftp_client:
33 self.ftp_client = self.ssh_client.open_sftp ()
34 # Logic for obtaining files ...
35 # ...

24

The SSH Runner class allows connecting to a node, running commands on the
node as well as setting a failed build status in case any command returns an error
code, and getting files on a certain workspace using wildcards and specifying the
file extension.

3.2.5 LOGGING

Python’s logging module is included in the standard library, and is such a pow-
erful tool for emitting different kind of messages through configuring different log
handlers and a way of routing log messages to these handlers on scripts and ap-
plications.

The use case for the tool is basically having different levels of logging, so the
output of the app is more traceable and readable. Logging module also allows
to configure the format of the messages and select which is the default level of
the mentioned below. The app will ignore any message with less level than the
selected one.

Level Numeric value

ERROR 40

WARNING 30

INFO 20

DEBUG 10

Table 23: Log levels used in the tool, source : Python docs

3.2.6 GUNICORN

The tool can be directly launched with Flask, but according to Flask documen-
tation : "This launches simple builtin server, which is good enough for testing
but probably not what you want to use in production". Even though the builtin
server is good for demos and testing, I decided to go deeper into this topic and
use a real WSGI.

As I am a UNIX environments user I chose Gunicorn for my productive envi-
ronment, but any other WSGI such as mod_wsgi from apache or uWSGI can be
used.

Gunicorn is an HTTP Server that meets WSGI specification an allows serving
Flask applications with multiple workers in order to increase the performance of
our application.

25

In the tool deployment I am using the most basic workers type, a synchronous
worker, that handles a single request at a time. But this does not mean poor
requests handling per second, as it is bound to the CPU, with good hardware it
can handle even hundreds or thousands requests per second with between 4 and
12 workers.

For instance, in order to run the backend we use the following bash cmd :
1 $ gunicorn -b localhost :5000 -w 4 src.app:app

Where -b flag is used to bind a server socket in this case we are deploying to
localhost in port 5000.

3.2.7 FLASK

Flask is the basis for both the front-end and the back-end, it allows to prototype
a REST API well defined relatively fast and the usage of blueprints eases the
creation of a modular application.

Basically the whole tool spins around the app object, defined in the main app
module :

1 from flask import Flask
2 from src.api import api_blueprint
3

4 app.register_blueprint(api_blueprint)
5 app = Flask(__name__)

The blueprint allow to define routes in other modules. For instance, the module
which contains all the routes in the back-end looks as follows :

1 from flask import Blueprint , Response , request
2 import logging
3

4 logger = logging.getLogger(’root’)
5

6 api_blueprint = Blueprint(’api’, __name__)
7

8 @api_blueprint.route(’/jobs’, methods =(’GET’, ’POST’))
9 def jobs():

10 # ...
11

12 @api_blueprint.route(’/jobs/<int:job_id >’, methods =(’GET’, ’DELETE ’))
13 def job(job_id):
14 # ...
15

16 @api_blueprint.route(’/jobs/<int:job_id >/ builds ’, methods =(’GET’, ’POST’))
17 def builds(job_id):
18 # ...
19

20 @api_blueprint.route(’/nodes ’, methods =(’GET’, ’POST’))
21 def nodes():
22 # ...

As it is shown above, the blueprint allows to define routes in a different module,
the API methods will be seen in detail in the following subsection.

26

3.2.8 REQUESTS

Requests is an elegant and simple HTTP Python library, the use case for the tool
is widely found on the front-end code, in order to perform REST API operations
agains’t the backend.

For instance, in the next piece of code from the front-end code, the handler for a
build route can be seen, basically it performs an operation agains’t the backend
and gets the required data, finally renders the template with the data fulfilled.

1 @app.route(’/jobs/<int:job_id >/ builds/<int:build_id >’)
2 def build(job_id , build_id):
3 build = requests.get(f’http :// localhost :5000/ jobs/{ job_id }/ builds /{ build_id}’

).json()
4 node_id = build[’node_id ’]
5 node = requests.get(f’http :// localhost :5000/ nodes/{ node_id}’).json()
6 return render_template("index.html", node=node , build=build)

3.3 Implementation, project architecture

Basically the tool consists on a front-end and a back-end which runs independently
with different sockets bound, this decision was taken for being able to bring up
the client locally in any machine and connect it to a centralised back-end that can
be hosted on a dedicated server or virtual machine.

The back-end consists on a REST API capable of automating builds with the
following structure defined :

Figure 5: Simple back-end jobs structure, self-elaboration

Above diagram leads to the definition of the concepts mentioned :

27

3.3.1 Job

A job in the tool is conceived as a folder or way to group builds of a same project
with a similar purpose. For instance, we could have a job which contains nightly
builds and run tests on a project. I have given jobs the only purpose to serve as
containers of different kind of builds, so a same job could store compiling builds
and test builds.

3.3.2 Build

A build stores the configuration and description of a set of commands that might
accomplish a purpose on a project (i.e : run tests, build project ...), in the tool
there are two kinds of builds, the regular ones and the cron builds, this last type
allows to schedule the build to be repeated based in a Cron Expression. Every
build has a status which can be passed or failed depending on the return code
returned by the commands run.

As explained, builds are based on a set of commands, but there are two ways in the
tool to specify this commands, the first one consists on passing all the commands
in the following format :

command1;command2;...;commandN

The second way of passing commands consists of a Pipeline, a YAML file the
structure of which is defined by stages, a stage is a group of commands which can
have a name that gives a generic reference of what are these commands doing, so
the overall set of commands is much easier to read and understand. A pipeline
example looks as follows :

1 ---
2 − s tage :
3 name: Ch e c k ou t
4 commands :
5 - g i t c l one https : // g i t h u b . com / H e c t o r P a s c u a l / c i _ c d _ t o o l . g i t
6 - echo ’ h e l l o ’
7

8 − s tage :
9 name: B u i l d

10 commands:
11 - pwd
12 - l s
13 - time
14 - echo bye
15

16 − arch ive : ’ ci - cd - t o o l /*. py ’
17 − arch ive : ’ *. key ’
18 ---

3.3.3 Node

A node is where the builds takes place, basically a machine, the tool is capable of
running builds on two types of nodes, the localhost node and SSH nodes. Local-
host node is basically the machine where the tool is hosted, and the SSH nodes

28

is any machine that has SSH capabilities (internet connection and an SSH pro-
tocol implementation), for testing purposes with the tool I used virtual machines.

The back-end software architecture is based on an MVC pattern, see the backend
structure :

1 |---- app.db
2 |---- artifacts/
3 +---- job_2/
4 |---- build_39/
5 +---- build_40/
6 |---- Pipfile
7 |---- Pipfile.lock
8 |---- README.md
9 |---- src/

10 |---- app.py
11 |---- runner.py
12 |---- api/
13 |---- api_routes.py
14 +----__init__.py
15 |---- controller/
16 |---- build_controller.py
17 |---- cron_controller.py
18 |---- __init__.py
19 |---- job_controller.py
20 +---- node_controller.py
21 |---- __init__.py
22 +---- schemas/
23 |---- build.py
24 |---- cron_build.py
25 |---- __init__.py
26 |---- job.py
27 +---- node.py
28 +---- tests/
29 +---- test.yaml

First of all, we find the sqlite database where the data of the tool is stored,
then an artifacts folder where all the artifacts archived from a build are stored
with the job structure in order to clarify the origin of each artifact, then we find
the Pipfile and the Pipfile.lock, which will be described in detail :

3.3.4 Pipenv

In order to run the tool in a fast an easy way on any environment and not wor-
rying about dependency installation, we are using Pipenv, which automatically
creates and manages a virtual environment,by removing or adding packages from
the Pipfile as you install uninstall packages inside the virtual environment. It also
generates a Pipfile.lock, which is used to produce deterministic builds by storing
hash codes and relevant data about the dependencies versions.

Installing all the dependencies of the tool with pipenv is as fast as typing the
following command in the project directory :

1 $ pipenv install

For instance, in order to enter the virtual environment and bring up the back-
end the procedure would be the following :

29

1 $ pipenv shell
2 $ gunicorn -b localhost :5000 -w 4 src.app:app

Following the tree, we get to the src/ folder where all the source code is contained,
the app.py which is the main file where the db object and the app object are ini-
tialized and the runner.py (already referenced before), where all regarding node
SSH connections and node localhost are described. Also 3 directories are present,
api/ which is where all the routes are defined using Flask blueprints (would fit the
View part on an MVC pattern), the controller/ and finally the schemas (which
would fit the model part on an MVC pattern).

Controller files contains the logic for accessing the database and handling the data
based on the models defined in the schemas. For instance, build_controller.py
contains the following functions :

1 def get_builds(job_id , build_id=None):
2 # ...
3

4 def create_build(job_id , commands , node_id , description , artifacts=’’):
5 # ...
6

7 def delete_build(job_id , build_id):
8 # ...
9

10 def parse_yaml(cmd_file): # Pipeline parser (utility function)
11 # ...

Schemas files contains the database columns definition for every type of struc-
ture, also functions for parsing the object to string and to a Python dictionary,
for instance Job schema looks as follows :

1 import datetime
2 from src.app import db
3

4 class Job(db.Model):
5 id = db.Column(db.Integer , primary_key=True)
6 title = db.Column(db.Text)
7 description = db.Column(db.Text)
8 created_date = db.Column(db.DateTime , default=datetime.datetime.utcnow)
9

10 builds = db.relationship(’Build ’, backref=’job’, lazy = False)
11

12 def to_dict(self):
13 return {
14 ’id’ : self.id,
15 ’title ’ : self.title ,
16 ’description ’: self.description ,
17 ’created_date ’: self.created_date.strftime("%m/%d/%Y, %H:%M:%S")
18 }
19

20 def __repr__(self):
21 return f"<id {self.id}, description : {self.description}>"

The front-end consists on a single page flask application, which renders HTML
code dynamically using Jinja2 and request python lib for performing HTTP op-
erations agains’t the back-end.

1 |---- app.py
2 |---- Pipfile

30

3 |---- Pipfile.lock
4 |---- static
5 |---- css
6 +---- index.css
7 +---- js
8 +---- index.js
9 +---- templates

10 +---- index.html

Front-end repository structure is quite simple, we have (as before) the app.py
where this time we also have the routes (no use of blueprints) for sack of simplic-
ity, the Pipenv related files for the virtual environment and the dependencies, and
then a static folder, where all the static files that will be served by the application
are stored (for instance, the css code but also images or icons). The templates
folder contains the main HTML file which not only contains HTML code but also
is plenty of Jinja2 syntax in order to render the template.

In order to understand how the front-end renders the data an example regarding
nodes is going to be exposed. First, the route is defined in the app.py module :

1 @app.route(’/nodes’)
2 def nodes():
3 nodes = requests.get(’http :// localhost :5000/ nodes ’).json()
4 return render_template("index.html", nodes=nodes)

As it can be seen, the render_template function is used to server a static page
with dynamic content (keyword arguments) by providing the name of the template
and the variables you want to pass to the template engine as keyword arguments.

Then in the template we can handle the nodes variable using Jinja syntax, for
instance :

1 {% if nodes %}
2 {% for node in nodes %}
3
4 <div class="item">
5 {{ node.id }} {{ node.workspace }} {{ node.ip_addr }} {{ node.user }}
6 </div>
7
8 {% endfor %}
9 {% endif %}

The flow of an action would be, a user clicks on the front-end on a button, then
a GET method is performed agains’t /nodes route on the front-end, inside the
route handler the data is queried to the back-end and the template is rendered
by passing the nodes variable, once in the template with the usage of Jinja we
display a list of nodes. Graphically, the flow simplified looks as follows :

Figure 6: Action flow example, self-elaboration

31

3.4 Testing

Testing is a fundamental part on any application development, so basic that many
companies nowadays are switching their development strategies to the usage of
TDD (Test Driven Development) which consists on creating tests from a devel-
oper’s perspective, this is the case of Thoughtworks, they got many articles on
their website sharing thoughts about practices on TDD 1. This methodology fo-
cuses specifically on unit tests based on the requirements, then the code is written
by the developer to pass those test cases.

The development of this tool can’t be considered fully that it has been under
a TDD methodology, but I have shared some of the principles of it, such as think
test cases from the requirements at the design part and test each case passes
successfully once the development finished, the difference with TDD though, is
that the even the cases were planned at design part, they were defined after the
development part was over.

Testing can be split into 2 big groups, functional testing, which ignores internal
parts and focuses only on the output, and non-functional testing which focuses on
testing non-functional requirements such as Load Testing, Stress Testing, Secu-
rity, Volume. Between these 2, groups we can distinguish a big variety of testing
procedures.

The tests performed on the tool are basically integration and unit tests (both
types are functional tests). The difference between those two types of tests is sim-
ple and fundamental, unit tests are designed for testing small and specific parts
of the tool, while integration testing is done to demonstrate that different pieces
of the tool work together.

The main focus for the tests was the back-end REST API, tested using Post-
man, which is an API client designed for testing and speed up the building of
API’s. With Postman you can easily store your HTTP requests ordered by col-
lections, and compare the responses with the responses you expect, as well as
checking correct behavior and testing some specific behaviors of your application
under wrong requests or rare uncommon cases. In the following images, it can
be seen an HTTP GET example and an HTTP POST example performed with
Postman.

1Thoughtworks article about TDD https://www.thoughtworks.com/insights/blog/
test-driven-development-best-thing-has-happened-software-design.

32

https://www.thoughtworks.com/insights/blog/test-driven-development-best-thing-has-happened-software-design
https://www.thoughtworks.com/insights/blog/test-driven-development-best-thing-has-happened-software-design

Figure 7: HTTP GET example performed with Postman, self-elaboration

Figure 8: HTTP POST example to be performed with Postman, self-elaboration

33

4 Results

The results of this thesis basically consist on a REST API (the back-end) capable
of automating jobs with CI and CD features and a basic client whose purpose is
to ease the usage of the back-end. In the following table all the API entries are
shown :

Route Method Description

/jobs GET Returns a list of all the jobs

/jobs POST Creates a job
Params: Title, Description

/jobs/<int:job_id> GET Returns a job with all info dis-
played

/jobs/<int:job_id> DELETE Deletes a job

/jobs/<int:job_id>/builds GET Returns a list with all the builds
contained on a job

/jobs/<int:job_id>/builds POST Creates a build
Params: node, description,
commands, cron_exp, cron_key,
commands_file

/jobs/<int:job_id>/builds/<int:build_id> GET Returns a build with all info dis-
played

/jobs/<int:job_id>/builds/<int:build_id> DELETE Deletes a build

/nodes GET Returns a list of all the nodes

/nodes POST Creates a node
Params: workspace, ip_addr,
port, user, password

/nodes/<int:node_id> GET Returns a node with all info dis-
played

/nodes/<int:node_id> DELETE Deletes a node

/cron_builds GET Returns a list with all the Cron
Builds stored in the db

/cron_build/<cron_key> GET Returns a Cron Build with all
info displayed

/cron_build/<cron_key> DELETE Deletes a Cron Build

Table 24: Back-end REST API documentation, source : Python docs

34

Regarding the front-end, routes are similar to the back-end but with slight
differences, such as that there are specific routes for displaying the forms for job
creation, build creation, etc.

Route Method Description

/ GET Displays the index page, showing
the menu and nav bar

/jobs GET Display the list of jobs

/jobs POST Internal route called from
creat_job in order to perform an
operation against the back-end

/jobs/<int:job_id> GET Displays the job info and all the
builds contained in the job

/jobs/<int:job_id> POST Internal route called from cre-
atin order to perform an opera-
tion against the back-end

/jobs/<int:job_id>/builds/<int:build_id> GET Returns a build with all info dis-
played

/nodes GET Returns a list of all the nodes

/create_job GET Displays the job creation form

/create_build/<int:build_id> GET Displays the build creation form

Table 25: Front-end routes documentation, source : Python docs

Some screenshots regarding above routes are attached in order to improve the
comprehension of the routes :

Figure 9: / Figure 10: /jobs

35

Figure 11: /create_job

Figure 12: /create_build/<int:build_id>

4.1 Bringing up the tool

In order to bring up the tool we have to start the back-end and the front-endWSGI
bound to the ports desired, this is as easy as placing on the repository directory
and execute gunicorn the following way using pipenv as explained before in detail:

1 $ cd ci-cd -tool
2 $ pipenv shell
3 $ gunicorn -b localhost :5000 -w 4 src.app:app
4 $ cd ../ci -cd-tool -client
5 $ pipenv shell
6 $ gunicorn -b localhost :8000 -w 4 app:app

That way, we could access the client (front-end) by entering http://localhost:8000
URL on our browser, and we could perform calls to the REST API (back-end) to
the localhost:5000 address.

36

5 Budget

This project consisted mainly in two big tasks, research and development, hence
the budget is adjusted to the cost of these two activities, regarding licenses and
tools used for the development I have only used Open Source and free community
licenses.

The resulting costs based on above explanations are set by the amount of hours
worked, 542 hours of dedication in total, setting a price per hour of 9 €/h which
is the minimum stablished by the ETSETB for a degree student under a work
agreement between a company and the university for 2019/2020 school season,
the budget of this project is :

Hours (h) Price per hour (€/h) Total (€)

542 9 4878

Table 26: Project budget

37

6 Conclusions and future development

DevOps is guiding companies through a transformation in the way of proceeding
with software development and software delivery processes, this is the main reason
why I wanted to get in touch first hand with this field in order to learn as much
as possible about the culture. Regarding the general topic of the thesis, DevOps
itself, it became very trending in the last decade and has a bright future granted
along the lines of innovation and automation, due to the possibility of efficiently
treating every project according to its own characteristics.

Designing a DevOps tool with CI and CD features has allowed me to directly
get involved with a big part of the relevant concepts as well as strengthening my
knowledge and thoughts on the topic and answering the questions I had before
getting deeper on the research, by comprehending the DevOps loop putting it in
practice with the tool development.

This thesis aims to contribute on automating project tasks in what refers to CI
and CD processes. Referring to the future development of the tool, as it will be
used for some projects, different instances of the repository will be created with
specific features required by each project, even though it is designed for being as
much general as possible. Also, some general features are thought to be imple-
mented in a future such as direct git and other tools integration, by using a DSL
(Domain Specific Language), which allows performing common operations such as
working on the file-system or cloning repositories, etc, by using DSL commands
on the pipelines. The goal of the tool is not to replace any other automation tool
but to allow the parallel usage along with other services and reduce complexity,
as this tool is easy to deploy and very lightweight.

On a personal note, the development of this thesis and my previous experience
on the field has led me to focus my professional and labor career on DevOps, as
it is a field where you can always learn new techniques of automation, new tools
to work with, and there are also lot of events held annually regarding the topic
in addition to the investment that big companies (such as Redhat or Amazon)
and big open source projects (such as Docker or Kubernetes) are doing in order
to stimulate, encourage and standardize the DevOps culture.

Researching and reading authors thoughts on the topic along these months
have been very satisfying, I hope the reading of the thesis is also didactic for
everyone who has not been introduced yet to DevOps culture, so you can get the
basics on the topic and hopefully develop interest on the field, as I said before,
there is a bright future on this field and companies are starting to compete for
hiring DevOps engineers.

38

Bibliography

Brenn (Feb. 2019). Noobs Guide: Continuous Integration Continuous Delivery. Medium. url:
https : / / medium . com / @brenn . a . hill / noobs - guide - continuous - integration -
continuous-delivery-continuous-deployment-d26ac4f2beeb (visited on 06/29/2020).

Daniels, Jennifer Davis Ryn (2016). Effective DevOps. O’REILLY. isbn: 978-1-491-92630-7.

DevOps: What It Is and Why It Matters (2017). Toptal Insights Blog. url: https://www.
toptal.com/insights/innovation/what-is-devops.

Farley, Jez Humble David (2010). Continuous Delivery - Reliable Software Releases Through
Build, Test And Deployment Automation. Addison-Wesley. isbn: 978–0–321–60191–9.

Geerling, Jeff (2018). Ansible for DevOps. Leanpub. isbn: 978-0-9863934-0-2.

Gene Kim, Kevin Behr George Spafford (2013). The Phoenix Project. IT Revolution Press. isbn:
978-0-988-26250-8.

Gene Kim Jez Humble, Patrick Debois and John Willis (2016). The DevOps handbook. IT Rev-
olution Press. isbn: 978-1-942788-08-9.

Hüttermann, Michael (2012). DevOps for Developers. Apress. isbn: 978-1-4302-4570-4.

Kevin Behr Gene Kim, George Spafford (2005). The Visible Ops Handbook. Information Tech-
nology Process inst. isbn: 978-0-9755-6861-3.

Michel Goossens, Frank Mittelbach Alexander Samarin (2011). Collaborative DevOps with Ra-
tional and Tivoli. IBM Corporation.

Moe, Myint Myint (2019). Comparative Study of Test-Driven Development (TDD), Behavior-
Driven Development (BDD) and Acceptance Test–Driven Development (ATDD). University
of Computer Studies, Hpa-An, Kayin State, Myanmar.

MongoDB vs SQLite: What are the Differences? (Dec. 2019). CodeClouds. url: https://www.
codeclouds.com/blog/the-differences-between-mongodb-and-sqlite/ (visited on
06/29/2020).

Ohara, Dave (2012). Continuous delivery and the world of devops. GigaOM Pro.

PEP 8 – Style Guide for Python Code (2013). Python.org. url: https://www.python.org/
dev/peps/pep-0008/.

Types of Software Testing - GeeksforGeeks (Aug. 2017). GeeksforGeeks. url: https://www.
geeksforgeeks.org/types-software-testing/.

Types of Software Testing: 100 Examples of Different Testing Types (Sept. 2019). Guru99.com.
url: https://www.guru99.com/types-of-software-testing.html.

What Is DevOps? (Jan. 2019). the agile admin. url: https://theagileadmin.com/what-is-
devops/.

Wright, Graham (July 2018). Continuous Integration (CI). Medium. url: https://medium.
com/@gwright_60924/continuous-integration-ci-e81032bb8502 (visited on 06/29/2020).

39

https://medium.com/@brenn.a.hill/noobs-guide-continuous-integration-continuous-delivery-continuous-deployment-d26ac4f2beeb
https://medium.com/@brenn.a.hill/noobs-guide-continuous-integration-continuous-delivery-continuous-deployment-d26ac4f2beeb
https://www.toptal.com/insights/innovation/what-is-devops
https://www.toptal.com/insights/innovation/what-is-devops
https://www.codeclouds.com/blog/the-differences-between-mongodb-and-sqlite/
https://www.codeclouds.com/blog/the-differences-between-mongodb-and-sqlite/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.geeksforgeeks.org/types-software-testing/
https://www.geeksforgeeks.org/types-software-testing/
https://www.guru99.com/types-of-software-testing.html
https://theagileadmin.com/what-is-devops/
https://theagileadmin.com/what-is-devops/
https://medium.com/@gwright_60924/continuous-integration-ci-e81032bb8502
https://medium.com/@gwright_60924/continuous-integration-ci-e81032bb8502

Glossary

API Acronym for Application Programming Interface. 11

CD Acronym for continuous deployment, a software practice which consists in
making automatic continuous deployments of a project. 10

CI Acronym for continuous integration, a software practice which consists in mak-
ing automatic continuous integration of a project. 10

DSL Acronym for Domain Specific Language, a language specialized only for an
application domain. 38

IaC Acronym for Infrastructure as Code, process of managing infrastructure
through definition files. 17

RDBMS Acronym for Relational Database Management System. 20

SQL Acronym for Structured Query Language, a domain specific language for
managing relational database systems. 23

SSH Acronym for Secure Shell, a protocol for accessing machines remotely. 24

SW Acronym for Software. 1

TDD Acronym for test driven development, consists on creating tests from a
developer’s perspective and write code in order to make tests work. 32

VCS Acronym for Version Control System. 17

WSGI Acronym for Web Server Gateway Interface, a calling convention for web
servers to forward requests to web applications. 25

40

	Abstract
	Resum
	Resumen
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Statement of purpose
	Requirements and specifications
	Project Background
	Work plan
	Deviations from the initial plan and incidences

	State of the art of the technology used or applied in this thesis
	Methodology/Project Development
	Design
	Implementation, dependencies and toolchain
	APSCHEDULER
	SQLITE
	SQLALCHEMY
	PARAMIKO
	LOGGING
	GUNICORN
	FLASK
	REQUESTS

	Implementation, project architecture
	Job
	Build
	Node
	Pipenv

	Testing

	Results
	Bringing up the tool

	Budget
	Conclusions and future development
	Bibliography
	Glossary

