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Running head: 

Plant beetle networks of steppic environment 

 

ABSTRACT 

DNA barcoding facilitates many evolutionary and ecological studies, including the 

examination of the dietary diversity of herbivores. In this paper, we present a survey of 

ecological associations between herbivorous beetles and host plants from seriously threatened 

European steppic grasslands. We determined host plants for the majority (65%) of steppic 

leaf beetles (55 species) and weevils (59) known from Central Europe using two barcodes 

(trnL and rbcL) and two sequencing strategies (Sanger for mono/oligophagous species and 

Illumina for polyphagous taxa). To better understand the ecological associations between 

steppic beetles and their host plants, we tested the hypothesis that leaf beetles and weevils 

differ in food selection as a result of their phylogenetic relations (within genera and between 

families) and interactions with host plants. We found 224 links between the beetles and the 

plants. Beetles belonging to seven genera feed on the same or related plants. Their 

preferences were probably inherited from common ancestors and/or resulted from the host 

plant’s chemistry. Beetles from four genera feed on different plants, possibly reducing 

intrageneric competition and possibly due to an adaptation to different plant chemical 

defenses. We found significant correlations between the numbers of leaf beetle and weevil 

species feeding on particular plants for polyphagous taxa, but not for non-polyphagous 

beetles. Finally, we found that the previous identifications of host plants based on direct 

observations are generally concordant with host plant barcoding from insect gut. Our results 

expand basic knowledge about the trophic relations of steppic beetles and plants and are 

immediately useful for conservation purposes.  
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INTRODUCTION 

 

The recent development of the concept of barcoding enables examined specimens to 

be assigned to the appropriate species relatively simply and quickly (Hebert et al. 2003; 

Moritz & Cicero 2004; Pons et al. 2006). It also provides an opportunity for identifying the 

DNA of other organisms present inside the bodies of the examined specimens (Valentini et 

al. 2009a,b; Taberlet et al. 2012). This could facilitate many evolutionary and ecological 

studies, such as the examination of the dietary diversity of predators, fungi-eaters, and 

herbivores (Symondson 2002; Harper et al. 2005; Sheppard & Hardwood 2005; Valentini et 

al. 2009a,b; Taberlet et al. 2012). Previous methods used for the study of herbivores included 

the direct observation of feeding animals (Sandholm & Price 1962; Dieckmann 1980; Barone 

1998; Novotny et al. 2002, 2006; Dyer et al. 2007) and the analysis of feces (Holechek et al. 

1982; Johnson & Nicolson 2001) or gut content (Otte & Joern 1976; Fry et al. 1978) using 

morphological or chemical approaches (Dove & Mayes 1996; Dahle et al. 1998; Foley et al. 

1998). All of these methods have serious limitations with regard to their discriminatory 

power, as they rarely allow for the identification of host plants at the species level. In 

addition, these methods are time-consuming.  

 

In the last few years, significant progress has been made in the barcoding of 

associations between host plants and insects (Matheson et al. 2008). The majority of the 

pioneering studies in this field were performed on Coleoptera (Jurado-Rivera et al. 2009; 

Pinzón-Navarro et al. 2010; Kitson et al. 2013; Garcia-Robledo et al. 2013; Kishimoto et al. 

2013) and Orthoptera (Ibanez et al. 2013; Avanesyan 2014). Interactions between 

herbivorous beetles and flowering plants have been postulated as major drivers of beetle 

diversity (Farrell 1998), as 135,000 of 360,000 beetle species are phytophagous (Gillot 2005; 
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Zhi-Quiang 2013). So far, all host plant barcoding studies on beetles have been performed on 

the two most speciose groups: weevils (Curculionoidea; > 62,000 known species, Oberprieler 

et al. 2007) and leaf beetles (Chrysomelidae; around 35,000 known species; Jolivet & Verma 

2002). It is not surprising that all of these studies focused on species associated with tropical 

forests (Jurado-Rivera et al. 2009; Pinzón-Navarro et al. 2010; Kitson et al. 2013; Garcia-

Robledo et al. 2013; Kishimoto et al. 2013), as interactions between tropical insects and 

plants have been a target of many other studies, due to the extremely high diversity of both 

tropical plants and insects (e.g., Novotny et al. 2002; 2006; 2007). Similar studies should be 

performed in other areas and habitats, particularly those that sustain diverse assemblages of 

plants and herbivores, to expand our knowledge of the evolutionary interactions and 

ecological associations between herbivores and plants. The results of such studies could also 

be very valuable for conservation purposes in threatened environments. Previous studies have 

often had limitations as they were performed (i) on beetle samples collected from traps, 

highly reducing the success of barcode amplification, or (ii) without the development of a 

barcode database for local flora, which often limited identification to the family or genus 

level (Jurado-Rivera et al. 2009; Pinzón-Navarro et al. 2010; Kishimoto et al. 2013). Most of 

these studies also used single individuals for the identification of host plants, which could be 

problematic in polyphagous taxa (see Kajtoch 2014).  

 

In this paper, we focused on plant and beetle assemblages of steppic habitats—

xerothermic grasslands from Central Europe with an extrazonal threatened plant community 

closely related to the Eurasian steppes. An essential initial step of our study was to evaluate, 

using barcoding data, the accuracy of inferences about the feeding preferences of beetles 

based on direct observations as described in the literature (Szymczakowski 1960; 

Warchałowski 1991; Mazur 2001). The primary aim of this study was to test hypotheses that 
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could explain the ecological associations between herbivores and their host plants. We 

compared the diet of beetles on two taxonomic levels: inter-family (weevils vs. leaf beetles) 

and intrageneric. The purpose of a comparison on the family-level was to examine whether 

these two exophagous (as imago) groups of beetles differed in food selection (Mitter & 

Farrell 1991; Farrell 1998). We addressed this considering separately polyphagous taxa and 

non-polyphagous taxa to test the hypothesis that differences in food selection are dependent 

on feeding specialization. In other words, our hypothesis was that mono/oligophagous 

weevils and leaf beetles utilize different host plants as they consume plants selectively, but 

polyphagous beetles tend to favor similar plants (Bernays & Chapman 1994; Jolivet 1998). 

Intrageneric comparisons test the hypothesis that phylogenetically related species feed on the 

same or related host plants. We discuss these hypotheses in the context of macroevolutionary 

scenarios of insect-plant interactions (Jermy 1976; 1984; Futuyma & Mitter 1996; Janz et al. 

2006; Agrawal 2007): co-evolution, competition for food resources, and natural selection to 

improve insects’ ability to deal with host plant chemical defenses (Ehrlich & Raven 1964; 

Schultz 1988; Becerra 1997; Hartley & Jones 1997; Becerra & Venable 1999). Finally, our 

results are discussed in light of their relevance for the conservation of declining populations 

and the management of rare and threatened steppic habitats.  

 

METHODS 

 

Sampling sites and the development of a plant barcode database  

The sampling was performed in the steppic (xerothermic, calcareous) grasslands of 

Festuco-Brometea phytocoenoses located in Central Europe. This region sustains a network 

of relatively well-preserved steppic habitats with communities rich in plant and insect 
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species, including very diverse assemblages of beetles (e.g., Mazur 2001; 2002; Wąsowska 

2006; Mazur & Kubisz 2013).  

This type of habitat was chosen for several reasons: i) We have a good knowledge of 

steppic plants and beetles and their communities, as they have already been intensively 

studied in Central Europe (e.g., Preuss 1912; Kuntze 1931; Szymczakowski 1960; 1965; 

Ceynowa 1968; Warchałowski 1976; Mazur 2001; 2006; Wąsowska 2006; Chytrý 2007; 

Nazarenko 2009; Mazur & Kubisz 2013); ii) It contains all major types of steppic grasslands 

and associated species-rich communities of plants and beetles in Central Europe (Zając & 

Zając 2001; Mazur 2001; 2002; Matuszkiewicz 2005; Mazur & Kubisz 2013);  iii) It has a 

high level of threat and conservation needs—many steppic species are rare, threatened, or 

even endangered (Binot et al. 1998; Pawłowski et al. 2002; Holecová & Franc 2001; Farkač 

et al. 2005); iv) There is an availability of data about the diet of steppic beetles—some of 

them have been studied, but only on the basis of direct observations (e.g., Szymczakowski 

1960; Warchałowski 1991; Mazur 2001); and v) A multilocus database of barcodes for 

steppic plants from Central Europe has recently been developed (Heise et al. 2015), allowing 

for the direct, accurate, and efficient identification of host plants.  

A database of plant barcodes (trnL, rbcL, and matK) was developed in 2014 on the 

basis of steppic (xerothermic) plant sampling in Poland (Heise et al. 2015). The database 

includes trnL and rbcL sequences for 128 plant species and matK sequences for 115 plant 

species, constituting approximately 85% of the steppic plant species from Central Europe.  

 

Beetle sampling 

The target selected for this study was two groups of beetles: weevils (Curculionoidea: 

Anthribidae, Apionidae, and Curculionidae) and leaf beetles (Chrysomelidae). These are 

most species-rich in steppic habitats and were objects of many previous studies, both classical 
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zoogeographical and ecological (e.g., Mazur 2001; 2002; Wąsowska 2006; Mazur & Kubisz 

2013) as well as phylogeographic (e.g., Kajtoch et al. 2009; 2012; 2013; 2014a; Kubisz et al. 

2012; Mazur et al. 2014). There are around 114 known weevil species associated with steppic 

grasslands in Poland (approximately 11% of all weevils in the country; Mazur 2001; Wanat 

& Mokrzycki 2005) and 85 leaf beetle species inhabiting this environment (approximately 

17% of all leaf beetles in the country; Borowiec et al. 2011). The majority of steppic beetles 

are either known or assumed to feed on a few related species from a single family, on a single 

plant species or closely related members of the same genus, whereas less than a quarter of 

species feed on diverse plants from different taxonomic groups.  

 

We aimed to only sample beetle species known to inhabit the steppic grasslands of 

southern Poland (where the majority of plant species were collected for the barcode database 

development). Therefore, the majority (> 90%) of the beetle species were collected in 

southern Poland (in the uplands localized between the cities of Kraków and Kielce; 

coordinates of the center of this area are 50.374°N and 20.407°E). Some beetle species which 

could not be found due to their rarity in southern Poland or because their populations are 

extinct in this region were collected in the neighboring regions of Central and eastern Central 

Europe (in Moravia in the Czech Republic, southern Slovakia, northern Hungary, and Podolia 

in western Ukraine; see Data Accessibility). Beetles were collected in sweep-nets during 

several field trips in May and June 2011–2014. Beetles were only collected in good weather 

conditions to avoid collecting starving specimens, since the efficiency of plant DNA isolation 

and amplification is decreased in starving individuals (Kajtoch & Mazur 2015). The 

specimens were then immediately preserved in the field in ethanol (96%) to minimize DNA 

degradation. Samples were kept frozen until DNA isolation. Due to the rarity of most of the 

examined species, only 1–2 specimens could be collected and used for barcoding. For several 
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species, especially those known to be polyphagous and for which we were able to collect at 

least 10 specimens, preferably each from a different locality, a larger number of specimens 

(10-16) were analyzed (details in Table 1).  

 

Laboratory procedures  

Whole beetles were digested with proteinase K and DNA was isolated using a 

Sherlock AX kit (A&A Biotechnology) dedicated to the isolation of DNA traces from low-

quality samples. The DNA concentration and purity of all isolates was assessed using 

Nanodrop. In addition, the quality of the DNA isolates from the beetles was checked by 

amplifying the COI mitochondrial gene using primers that have frequently been used in other 

studies on beetles (C1-J- 2183 and TL2-N-3014; Simon et al. 1994). These sequences were 

also used in further phylogenetic analyses (see below). Next, DNA isolates were used for the 

amplification of two chloroplast barcodes, i.e., the rbcL gene and the trnL intron, using the 

following primers: rbcL-F1 and rbcL-724R (Fay et al. 1997), and A49325 and B49863 

(Taberlet et al. 1991, primers c and d). We did not analyze the matK barcode because its 

amplification and sequencing were problematic for some steppic plants (see Heise et al. 

2015). We did not use primers developed to amplify short barcodes (minibarcodes; e.g., 

Hofreiter et al. 2000 for rbcL and Taberlet et al. 1991, 2007 for trnL), as these short markers 

do not have sufficient discriminatory power and rarely allow for species-level identification 

(see also Little 2014). As the purpose of this research was to identify host plants to the lowest 

possible taxonomic level (preferably to the species level), we decided to use standard primers 

amplifying longer parts of selected barcodes, or approximately 350–640 bp of trnL intron and 

650–680 bp of the rbcL gene. This could potentially lead to an absence of PCR products for 

some samples (Kajtoch & Mazur 2015), but we reduced the risk of this by using freshly 

collected and immediately preserved specimens and by using two barcodes.  
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All PCR products were visualized on an agarose gel, and if more than one band was 

observed, bands were extracted from the gel using NucleoSpin Gel and PCR Clean-up. PCR 

products were purified using the ExoProStar kit (GE Chemicals). Purified DNA products 

were then Sanger sequenced using forward primers and a BigDye Terminator v.3.1 Cycle 

Sequencing Kit (Applied Biosystems, Carlsbad, CA, USA) and run on an ABI 3100 

Automated Capillary DNA Sequencer. In cases of unreadable sequences, the sequencing 

procedure was repeated under modified PCR conditions with the use of reverse primers.  

 

For seven species of weevils and eight species of leaf beetles (mostly polyphagous, 

see Table 1), another method of host plant identification was used. Barcodes of rbcL and trnL 

were amplified separately for each individual to avoid problems and errors caused by an 

unequal concentration of plant DNA in isolates from weevil bodies. Between 10 and 16 

specimens of each species were used (see Table 1 for details). All amplicons (small volumes 

of both rbcL and trnL) were first checked on agarose gel and then pooled approximately 

equimolarly (separately for each species; all rbcL PCRs were pooled separately from trnL 

PCRs) and purified using the Nucleospin DNA Extraction Kit. Each batch of PCR reactions 

included blank samples (with all reagents but without DNA templates) to test for possible 

contamination.  None of these negative controls resulted in a PCR product. The barcoded 

libraries were prepared using NEBNext DNA library prep without the DNA fragmentation 

step, i.e., adaptors were ligated to the amplicon ends. The libraries were sequenced as part of 

a MiSeq paired-end 2 x 300 bp run, which allowed for sequencing of the full, or almost full, 

length of trnL and most of the length of rbcL barcodes.  
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Data analysis 

Host plant identification 

Sanger sequences 

Sanger sequences were checked visually using BioEdit v.7.0.5.2 (Hall 1999). Only 

good quality sequences longer than 350 bp (trnL, mostly longer than 500 bp) or 600 bp 

(rbcL), were used for further analysis. Two approaches were used for host plant identification 

in Sanger sequenced samples. First, Sanger sequences of both barcodes obtained from beetle 

guts were compared with the available databases of xerothermic plant barcodes (Heise et al. 

2015) using Megablast (Altschul et al. 1990). Only hits with at least 99% identity, E-value < 

10-200 and >95% query coverage were retained. These thresholds were set somewhat 

arbitrarily to maximize the stringency of identification of the host plant species. Query 

coverage of at least 95% was required to exclude, for example, chimeric sequences that may 

have been generated during PCR. An identity of at least 99% was chosen to allow for 

sequencing errors and intraspecific genetic variation. An alternative approach for host plant 

identification from Sanger sequences was based on phylogenetic analysis (Mitter & Brooks 

1983; Mitter et al. 1991; Miller &Wenzel 1995). To visualize plants featured in the diets of 

the two beetle families in the context of the species present in the previously compiled 

database of steppic plants, we constructed a phylogenetic tree using sequences obtained from 

the beetles and from the database. We selected the rbcL barcode for phylogenetic host plant 

identification as this gene could be easily and reliably aligned, contrary to the indel-rich trnL 

intron. All rbcL sequences generated from the beetles were added to rbcL sequences from the 

barcode database and the dataset was aligned using MAFFT v.7 (Katoh & Standley 2013). 

The Akaike Information Criterion (AIC) in MrModeltest 2.3 (Nylander 2004) in conjunction 

with PAUP* (Swofford 2002) were used to determine the best-fitting nucleotide substitution 

model. Next, we used PhyML 3.0 (Guindon et al. 2010) to reconstruct a Maximum 
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Likelihood phylogenetic tree. PhyML was run with an appropriate substitution model and 

node support was assessed with the bootstrap technique using 1,000 pseudoreplicates. The 

tree was visualized and edited with FigTree v1.3.1 (Rambaut 2009). Sequences generated 

directly from plants, weevils, and leaf beetles were marked with distinct colors. 

 

Illumina sequences 

We used the following approach to analyze the Illumina sequences obtained from 15 

beetle species. Both paired reads were joined end-to-end and only joined reads of length 

larger than 300 bp were used in further analyses. End-to-end joining was necessary because 

rbcL and in many plant species also trnL amplicons are longer than 600 bp, so the 300 bp 

reads from both amplicon ends did not overlap. This procedure may have resulted in 

duplications in the middle of the joined sequence if the paired-end reads overlapped (for trnL 

amplicons shorter than 600 bp which occur in some plant species). Duplicated fragments in 

the middle of the reads should not significantly affect blast sensitivity as it uses a local 

alignment approach. Identification of the plant was performed by a comparison of the 

sequencing reads with sequences in the database of plant barcodes. Plant identification was 

performed by comparing sequencing reads with sequences in the database of plant barcodes. 

For each ≥300 bp read, an ungapped Megablast search with the cutoff E value of 10-150 was 

performed with the maximum of 10 hits retained. Only reads with the best hits showing at 

least 98% identity to at least one plant species in the database were retained. This threshold 

was estimated on the basis of divergence analyses made for all available steppic plants in a 

previous study (Heise et al. 2015). Moreover, 98% identity was used in other studies that 

performed host plant identification using plant barcodes and next-generation sequencing 

technologies (e.g., Soininen et al. 2009; Valentini et al. 2009b; Hajibabaei et al. 2011; Heise 

et al. 2015). A read was considered to have a unique match if only a single hit was reported 
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or if the bitscore of the second-best hit was no better than 0.95 × the bitscore of the best hit; if 

multiple high-scoring pairs [hsp] occurred for a given query, these were combined. Host plant 

species were identified only on the basis of these reads. This procedure has recently been 

successfully tested on a polyphagous beetle (see Heise et al. 2015).  

 

We also validated this method for the identification of known plant species in a mixed 

sample. Amplicons of both barcodes obtained for the eight selected plant species (one from 

each family: Eryngium planum, Inula ensifolia, Onobrychis viciifolia, Adonis vernalis, Salvia 

pratensis, Rosa canina, Arenaria serpyllifolia, and Elymus repens) were pooled, Illumina 

sequenced, and analyzed as described above.  

 

Beetle-host plant analysis 

COI sequences generated for beetles were aligned using MAFFT v.7, and the best-

fitting nucleotide substitution model was determined using AIC in MrModeltest 2.3 in 

conjunction with PAUP*. Phylogenetic trees using the Maximum Likelihood approach were 

constructed separately in PhyML 3.0 for weevils and leaf beetles. Five beetle species were 

used as out-groups (sequences downloaded from GenBank): Nyctoporis carinata 

(Tenebrionidae; EU037102), Coraebus elatus (Buprestidae; JQ303296), Melanotus 

communis (Elateridae; EF424474), Arachnodes emmae (Scarabaeidae; GQ342139), and 

Platycerus virescens (Lucanidae; AB609585). These species were randomly selected among 

representatives of distant (in respect to weevils and leaf beetles) beetle families. The COI 

trees showing relationships of beetle species were then used for the preparation of networks 

visualizing all interactions identified between the beetles and their host plants (combining 

information across barcodes and sequencing technologies). Due to a large number of such 

interactions, we decided to visualize these networks in a simplified way, connecting the 
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beetle species to their host plants at the family level (details about the host plant species are 

presented in additional tables). Each beetle species for which a host plant was identified 

based on plant DNA barcoding using a comparison of data from the barcodes to information 

from the literature (based on information collected from Burakowski et al. 1990a,b; 1991, 

1992, 1995, 1997, and other works cited above) was analyzed to evaluate the congruence 

between current and older knowledge about beetle feeding preferences.  

 

Next, data about the host plants of the steppic beetles, which were combined from 

barcodes and sequencing technologies, were used for a general analysis of the feeding 

preferences of beetles. Steppic plant species were assigned as host plants for certain beetle 

species on the basis of barcode identification. The matrix was then used to calculate the 

number of beetle species (separately for weevils polypagous and mono/oligophagous 

[monophagous and oligophagous], and simultaneously for leaf beetles) feeding on a 

particular plant species. This analysis was performed on all beetle species that had at least 

one identified host plant. To check the correlation between the number of beetle species 

feeding on a particular plant species, we used Pearson’s correlation (R). Additionally, Cluster 

Analysis was implemented to visualize relative clustering of four defined groups of beetles in 

the area of feeding on particular plant species. Differences in the composition of plants 

consumed by the above four groups of beetles were also tested with use of analysis of 

variance (ANOVA). All statistical analyses were performed using Statistica 10.0 (Statsoft). 

Finally, using EstimateS (Colwell 2013), we calculated the Bray-Curtis dissimilarity index 

(BC) (Bray & Curtis 1957) between (i) polyphagous weevils and leaf beetles, (ii) 

mono/oligophagous weevils and leaf beetles, (iii) polyphagous and mono/oligophagous 

weevils, and (iv) polyphagous and mono/oligophagous leaf beetles.   
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RESULTS 

 

Sampling efficiency  

Despite the rarity of many steppic beetle species, we managed to collect 55 species of 

leaf beetles (i.e., 65% of species associated with steppic grasslands in Poland and Central 

Europe; Borowiec et al. 2011; Schmitt & Rönn 2011) and 59 species of weevils (52% of 

species from Central Europe; Mazur 2001; Wanat & Mokrzycki 2005; see Table 1). Species 

that could not be collected included extremely rare beetles often restricted to single localities 

(e.g., the weevil Donus nidensis, known only in one steppic patch in southern Poland and 

another in western Ukraine; Timarcha rugulosa, a very rare species known only from a few 

localities). We intentionally omitted some of these species from our study, regardless of their 

conservation status, as the collection of even single individuals could be detrimental for their 

local populations (Kajtoch et al. 2014b).  

 

General diet characterizations of steppic beetle species  

PCR failure rates were 14.9% for leaf beetles, and 15.7% for weevils. For the majority 

of the beetles (66% of leaf beetles and 67% of weevils), Sanger sequencing allowed for the 

identification of the host plants (see Supplementary Table 1 and Supplementary File 1 for 

details). Similarly, the phylogenetic approach based on rbcL sequences allowed for host plant 

identification for 62% of leaf beetle species and 65% of weevil species (see Supplementary 

Figure 1). All eight species of plants preselected for the validation procedure were identified 

in Illumina generated sequences blasted against the reference barcode database (see 

Supplementary Table 2 and Supplementary File 2 for details).  
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The efficiency of Illumina sequencing on plant DNA isolated from beetles and the 

results of host plant identification (number of hits to particular host plants identified for 

examined beetles and relative frequencies of identified host plants in groups of sequences 

generated for the beetle species) are presented in Supplementary File 3. The following 

numbers of host plants per species were identified by Illumina sequencing: based on trnL, 

weevils: 7.4 ± (SD) 1.02 (range 3–12); leaf beetles: 6.1 ± 1.83 (2–18); based on rbcL, 

weevils: 6.7 ± 0.64 (5–10); leaf beetles: 7.8 ± 1.97 (3–18). The most polyphagous weevils 

were: Centricnemus leucogrammus (16 host plants), Argoptochus quadrisignatus (12), 

Polydrusus inustus (11), and Eusomus ovulum (10). The most polyphagous leaf beetles were 

Cryptocephalus bameuli (27), Cryptocephalus pygmaeus (18), and Gonioctena fornicata 

(15).  

 

Barcoding vs. the direct observation of feeding beetles 

For species whose host plants were identified unambiguously, including the vast 

majority of monophagous beetles (94% of leaf beetles and 100% of weevils), the barcoding 

approach identified the same host plant that was previously reported on the basis of direct 

observations (Supplementary Table 1). Similarly, an overwhelming majority of oligophagous 

species (91% of leaf beetles and 90% of weevils) were found to feed on plants belonging to 

the same plant genus or to one of the species belonging to the plant family known as hosts for 

the particular beetle (Supplementary Table 1). Moreover, almost all species classified as 

polyphagous by direct observations were confirmed to feed on multiple hosts, with the single 

exception of Cryptocephalus violaceus, which is apparently associated with only two plant 

genera (see Supplementary Table 2).  
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Differences in diet composition between beetle families (weevils vs. leaf beetles) 

Networks of interactions between weevils and their host plants and leaf beetles and 

their host plants were found to be complex. In total, we identified 224 beetle-host plant 

interactions (117 for leaf beetles and 107 for weevils; see Figures 1 and 2). However, when 

we exclude polyphagous taxa, the number of interactions decreases substantially to only 65 

(31 for leaf beetles and 34 for weevils; see Supplementary Table 1, Figures 1 and 2).  

 

The polyphagous species most commonly ate the following host plants: Onobrychis 

viciifolia (the host plant of 6–7% of the studied beetles), Hypericum perforatum (the host 

plant of 6% of leaf beetles), Lotus corniculatus (4.3% of leaf beetles), Prunus spinosa (4.3% 

of weevils and 3.4% of leaf beetles), Crataegus monogyna (3.4% of both weevils and leaf 

beetles), Salvia pratensis (2.6% of both weevils and leaf beetles), Filipendula vulgaris (2.6% 

of weevils and 3.4% of leaf beetles), and Sarothamnus scoparius (3.4% of weevils; see 

Figure 2 for details). At the family level, the most commonly eaten host plants were Fabaceae 

(14.5% of weevils and 23.9% of leaf beetles), Rosaceae (20.5% and 17.1%, respectively), 

Asteraceae (5.1% and 8.5%), and Lamiaceae (both 6.0%; see Figures 1 and 2). There was a 

significant correlation between the number of polyphagous leaf beetle and weevil species 

feeding on particular plant species (R=0.704, P<0.001). The BC dissimilarity index between 

these two groups was 0.39.  

 

A different pattern was observed when polyphagous species were omitted. The plants 

most often consumed by monophagous and oligophagous beetles were: Euphorbia 

cyparissias (16.1% of leaf beetles), Cirsium pannonicum, Linum flavum, Genista tinctoria, 

Asparagus officinalis (6.5% of leaf beetles each), Medicago varia (8.9% of weevils), 

Centaurea scabiosa, Campanula glomerata, Salvia pratensis, Plantago lanceolata, 
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Verbascum lychnitis, Coronilla varia, Lathyrus tuberosus, Onobrychis viciifolia, and 

Trifolium arvense (5.9% of weevils each; see Figure 2). Differences between leaf beetles and 

weevils were also observed at the host plant family level: Asteraceae (16.1% of leaf beetles 

and 14.7% of weevils), Hypericaceae (16.1% of leaf beetles), Rosaceae (9.7% of leaf 

beetles), and Lamiaceae (8.8% of weevils; details in Figures 1 and 2). There was no 

significant correlation between numbers of mono/oligophagous leaf beetle and weevil species 

feeding on particular plant species (r=0.107, P=0.380). The BC dissimilarity index between 

these two groups was 0.75.   

 

Moreover, when comparing polyphagous and mono/oligophagous leaf beetles, no 

correlation was found ( R=0.204, P=0.092), as both of these groups were highly dissimilar 

(BC index=0.79). The same was observed for polyphagous and mono/oligophagous weevils 

(R=0.152, P=0.201; BC index=0.74). All defined groups of beetles differed significantly in 

food selection (ANOVA=24.78, P<0001; see also Supplementary Figure 2).  

 

Differences in diet composition among congeneric species  

When analyzing the feeding preferences of congeneric beetle species, three groups 

could be identified. The first contains members of the genera that feed on the same host 

plants: Crioceris (feeding exclusively on Asparagus), Cleopomiarus (with the Campanula 

host plant), and Pseudoprotapion (monophages of Onobrychis). The second group includes 

beetle genera that feed on two or more genera of plants that are often phylogenetically 

related, e.g., Tychius (feeding on Trifolium or Melilotus – Fabaceae), Sibinia (Silene and 

Dianthus, both from Caryophyllaceae), Larinus (Carlina, Centaurea, and Cirsium—all from 

Asteraceae), Apthona (feeding mostly on Euphorbia, but some on Linum), and Sitona 

(feeding mostly on Fabaceae). Genera belonging to the third group include beetles feeding on 
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different, unrelated plants: Cryptocephalus (with some polyphagous species), Polydrusus 

(generally polyphagous), Cassida, and Trichosirocalus. 

Some genera of steppic weevils and leaf beetles contain both polyphagous and 

monophagous species (e.g., Cryptocephalus, Cassida, Chrysolina, Pachybrachis, Sibinia, 

Sitona, and Trichosirocalus). In other genera, all of the examined steppic species are either 

monophagous/oligophagous (Apthona, Dibolia, Gonioctena, Longitarsus, Hemitrichapion, 

Miarus, Pseudoprotapion, and Tychius) or polyphagous (Galeruca, Labidostomis, 

Smaragdina, Larinus, and Polydrusus). Overall, a transition between mono/oligophagy and 

poliphagy was observed in 30% of genera (4/12 of leaf beetles and 9/12 of weevils, only 

considering genera represented by at least two species in our study).  

 

DISCUSSION 

 Here we present the first analysis of ecological associations between herbivorous 

beetles and their host plants from steppic grasslands, a highly threatened environment in 

Central Europe. Comprehensive analyses using two DNA barcodes and two sequencing 

technologies have significantly expanded knowledge about feeding preferences for this 

ecological guild of beetles.  

 

Accuracy and reliability of direct observations of feeding  

For monophagous and most oligophagous species, host plant identification based on 

DNA barcoding generally agreed with previously published information about their feeding 

preferences. This finding confirms that traditional studies, mostly direct observations of 

beetles in the field (Freude et al. 1966; 1981; Dieckmann 1980; Burakowski et al. 1990a,b, 

1991, 1992, 1995, 1997), correctly identified host plants to these beetle species. However, we 

also found some discrepancies in host plant identification based on observations and 
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barcodes. One of the most interesting findings is the identification of multiple host plants for 

the leaf beetle Cheilotoma musciformis, which, based on observations, should feed only on 

Onobrychis, Anthyllis, and Rumex (Szymczakowski 1960; Gruev & Tomov 1984; 

Warchałowski 1991). Previous studies on limited samples indicate that this species is 

oligophagous and feed exclusively on Fabaceae (Onobrychis, Lotus, and Oxytropis; Kajtoch 

et al. 2013; Heise et al. 2015), whereas the current study extends the list of its host plants to 

include some Rosaceae (e.g., Prunus and Crataegus) and Hypericum.  

 

Novel findings on diet preferences of steppic beetles  

One interesting result was the identification of host plants for species with previously 

unknown diets. Examples are the weevil Omias globulus, which feeds on Elymus repens, and 

leaf beetle Cryptocephalus violaceus, which feeds on Onobrychis and Hypericum. Illumina 

sequencing of barcodes generated from several randomly picked individuals showed that 

some presumably polyphagous species are rather oligophagous (e.g., the weevil Sitona 

striatellus and leaf beetles Labidostomis longimana and Smaragdina affinis) and feed on two 

or only a few plants. Other species are polyphagous, but with a diet restricted to some plant 

families (like weevils: Polydrus inustus – Rosaceae, Eusomus ovulum – Rosaceae and 

Fabaceae, leaf beetles Gonioctena fornicata – Rosaceae and Fabaceae; see also 

Supplementary Table 2).  

 

Does diet composition differ between weevils and leaf beetles? 

Weevils and leaf beetles constitute more than half of all beetle species associated with 

steppic grasslands (Mazur 2001; Wanat & Mokrzycki 2005; Wąsowska 2006; Borowiec et al. 

2011; Mazur & Kubisz 2013). They are phylogenetically distant but closely linked 

ecologically and show similar feeding habits (mainly leaf-eaters as imago). Data collected for 
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dozens of steppic species from both families gave us a unique opportunity to 

comprehensively compare these two groups. Two opposite patterns are observed for 

polyphagous and mono/oligophagous species. In polyphagous species, weevils and leaf 

beetles feed on nearly the same plant species. This result simply confirms that polyphagous 

steppic beetles are feeding generalists (Bernays & Minkenberg 1997). The polyphagous 

species could simply follow the abundance and constancy of plants in the environment. 

Another explanation for this lack of difference in the diets of polyphagous weevils and leaf 

beetles is that all of these species feed on plants which have less effective chemical defenses, 

which implies that generalists are less adapted to repellents than specialists, who are probably 

specifically adapted. Polyphagous species were responsible for approximately two-thirds of 

the links between host plants and beetles. When only mono/oligophagous beetles were 

analyzed, significant differences in host plant composition were detected between weevils 

and leaf beetles. Only members of Asteraceae and Lamiaceae are similarly important as host 

plants for both groups of beetles, whereas other plant families were more frequent in the diet 

of either weevils or leaf beetles. This suggests some dietary niche displacement between 

these two groups of beetles caused by host plant specificity. Such specificity could have 

resulted from competition for available food resources during the evolution of both groups. It 

accelerated when seed plant radiation began, as host plant selection is currently considered to 

be one of the major forces of beetle speciation and insect speciation in general (Thorsteinson 

et al. 1960; Ward et al. 2003; Grimaldi & Engel 2005). Another probable explanation is the 

avoidance of some host plants possessing efficient chemical defenses (Schultz 1988; Hartley 

& Jones 1997; Aniszewski 2007). However, due to the different physiology of particular 

species, leaf beetles and weevils could be adapted to feed on plants with different repellents. 

Both processes are not exclusive and have often led to co-evolution between herbivores and 

their host plants. This has been observed particularly in beetles (e.g., Petitpierre & Segarra 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

1985; Metcalf 1986; Anderson 1993; Farrell 1998; Oberprieler et al. 2007; Lawrence et al. 

2011).  

 

Intrageneric competition for food-plant resources  

This dietary displacement could be associated with beetle phylogeny, and, if so, it 

should be observed mainly between closely related species (Petitpierre & Segarra 1985; 

Metcalf 1986; Anderson 1993; Farrell 1998; Oberprieler et al. 2007; Lawrence et al. 2011). 

However, only in some genera that were represented by multiple species in the study did we 

find that the diets of related species are substantially different. Species belonging to the same 

genera feed on different plants, usually from other genera or families (e.g., Cassida and 

Trichosirocalus, and to a lesser extent also Apthona, Larinus, Sibinia, Sitona, and Tychius,). 

This can also be explained as either food competition avoidance or adaptation to hosts with 

different chemical defenses. In some genera, species feed on different, unrelated plants and 

all or some of these beetles are polyphagous (e.g., Cryptocephalus and Polydrusus). In these 

genera, the feeding preferences of particular species probably evolved as a way to feed on 

multiple host plants, which could also reduce congeneric competition (e.g., for more 

nutritious plants), or again, could be a result of adaptation to different insect repellents 

present in plants. Moreover, we found that in the evolutionary history of approximately one-

third of the studied beetle genera, some shift between monophagy, oligophagy, and poliphagy 

happened; similar shifts were reported for some other beetles (e.g., Oreina, Dobler et al. 

1996). However, these transitional events could pre-date the formation of steppic 

assemblages. On the other hand, only some beetle genera were found to feed exclusively on 

the same host plants (e.g., Crioceris, Cleopomiarus, and Pseudoprotapion). Species from 

these genera apparently maintained general feeding preferences from common ancestors, as 
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was shown for some other beetle genera (e.g., Phyllobrotica, Farrell & Mitter 1990; 

Ophraella, Futuyma et al. 1995; Anthonomus grandis species group, Jones 2001).  

  

Limitations of host plant barcoding 

We are aware of the limitations of this study, including limited sampling for some 

species and some technical constrains (see Supplementary File 4 for details). Limited 

sampling could have resulted in the underestimation of host plant diversity in the diet of  

oligophagous species, but this should not affect most of the results, especially those on higher 

grouping levels such as the analyses of weevils vs. leaf beetles and mono/oligophagous vs. 

polyphagous species. PCR failure, sequencing errors, or problems with species assignment to 

the reference barcode database were also reported in similar studies (see Jurado-Rivera et al. 

2009; Pinzón-Navarro et al. 2010; Kishimoto et al. 2013), and we tried to minimize biases 

caused by these technical constraints. In our opinion, the presented results adequately reflect 

the trophic relations between steppic beetles and their host plants.  

 

It is also important to emphasize that data in Supplementary Table 2 should not be 

considered as quantitative, i.e., corresponding to the actual contribution of various plant 

species to the diet of particular beetle species. Multiple factors, such as variation among plant 

species in the rates of digestion, the efficiency of DNA extraction, and the process of PCR 

amplification, most likely introduce considerable bias, and thus the data can be regarded as 

semiquantitative at best.  
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Conservation implications 

 Apart from the ecological implications of this study, the identification of host plants 

for beetles could be crucial from a conservation point of view. Steppic grasslands are 

presently highly fragmented. Patches of this habitat are usually isolated from one another and 

the gene flow between populations is limited (see Kajtoch et al. 2014a).  

 

Only some steppic patches in protected areas (usually very small) remain in good 

condition (Eriksson et al. 2002; Janišová et al. 2011; Wesche et al. 2012). Consequently, 

both populations of steppic plants and animals are highly threatened. For the effective 

conservation of steppic populations and management of steppic habitats, an extensive 

knowledge about local flora and fauna is needed; however, relatively little is known about the 

ecology of steppic invertebrates. Despite their rarity, steppic beetle species are not protected 

under local or international (e.g., European Union) laws. Consequently, steppic grasslands are 

protected mainly as localities that are important for other taxa, such as orchids (Natura 2000 

sites). However, the effective protection of steppic patches should not only include 

conservation priorities for these “flagship” plants (which are not found to be hosts for any of 

the beetles examined in this study), but also for all other steppic organisms (also a common 

issue for other habitats and species; see Cardoso 2012). The planning of any conservation 

actions in steppic grasslands needs to be rooted in basic knowledge about the species 

inhabiting the area, including herbivorous beetles, as it could be crucial for the survival of 

their populations to sustain certain plants. This concerns mainly mono/oligophagous species, 

which depend on single or several host plants. Some plants from Fabaceae, Rosaceae, 

Lamiaceae, and Hypericaceae, which are most frequently eaten by beetles, are the most 

preferred food for domestic mammals and are also utilized by humans (collected in 

grasslands mostly as herbs or fruits). Knowledge about the host plants of beetles and other 
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steppic species could be even more important if they are reintroduced or translocated to 

preserve or restore at-risk or locally extinct populations. Such actions would be futile unless 

the preferred host plants are confirmed in the patches used for beetle settlement or these 

plants are translocated along with the beetles.  
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- Final plant barcode assemblies available as supporting information in separate article (Heise 

et al. 2015, Botanical Journal of Linnaean Society; 

http://onlinelibrary.wiley.com/doi/10.1111/boj.12261/suppinfo ) 

- alignments of COI sequences for phylogenetics and Maximum Likelihood COI trees files;  

alignments of rbcL sequences for phylogenetics and Maximum Likelihood rbcL trees file; 

Illumina trnL and rbcL sequences files and sampling locations (table and google maps file): 

Dryad: http://dx.doi.org/10.5061/dryad.26h4v 
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Figure captions 

 

Figure 1. Networks of interactions identified among herbivorous beetles inhabiting steppic 

grasslands in Central Europe and their host plants. Weevils and leaf beetles are presented in 

Maximum Likelihood phylogenetic trees reconstructed from sequences of the Cytochrome 

Oxidase I mitochondrial gene (only bootstraps with a value of >50% are presented). Numbers 

in brackets presented along with names of all steppic plant families for which barcodes were 

available (Heise et al., 2015) express the numbers of plant species in the families. Plant 

families eaten by any of beetles are marked in frames. Interactions for beetles with Sanger 

sequencing data (mostly monophagous or oligophagous taxa) are marked in red, interactions 

for beetles with Illumina sequencing data (mostly polyphagous taxa) are marked in blue. 
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Labidostomis longimana leaf beetles are presented outside the COI as it was not possible to 

generate a homologous sequence for this species.  

Images of weevils: Eusomus ovulum (top) and Trichosirocalus troglodytes (bottom) and leaf 

beetles: Chrysochus asclepiadeus (top) and Gonioctena fornicate (bottom) (photographs are 

from ICONOGRAPHIA COLEOPTERORUM POLONIAE (© Copyright by Prof. Lech 

Borowiec, Wrocław 2007-2014, Department of Biodiversity and Evolutionary Taxonomy, 

University of Wroclaw, Poland)).  

 

Figure 2. Host plant composition of steppic beetles (leaf beetles and weevils) showed for all 

examined beetles (top drawings) and for only species with single host plants identified 

(bottom drawings). Colors correspond to particular plant families; numbers indicate plant 

species as follows: 1- Achillea millefolium, 2 - Artemisia campestris, 3 - Carlina acaulis, 4 - 

Carlina onopordifolia, 5 - Centaurea stoebe, 6 - Centaurea scabiosa, 7 - Cirsium 

pannonicum, 8 - Hieracium pilosella, 9 - Inula ensifolia, 10 - Picris hieracioides, 11 - 

Chrysanthemum corymbosum, 12 - Campanula glomerata, 13 - Vincetoxicum hirundinaria, 

14 - Galium mollugo, 15 - Salvia pratensis, 16 - Stachys recta, 17 - Teucrium chamaedrys, 18 

- Thymus pannonicus, 19 - Thymus pulegioides, 20 - Clinopodium vulgare, 21 - Verbascum 

lychnitis, 22 - Plantago lanceolata, 23 - Linaria vulgaris, 24 - Dianthus carthusianorum, 25 - 

Silene nutans, 26 - Rumex acetosella, 27 - Sisymbrium loeselii, 28 - Hypericum perforatum, 

29 - Euphorbia cyparissias, 30 - Berberis vulgaris, 31 - Ranunculus acris, 32 - Linum flavum, 

33 - Linum hirsutum, 34 - Agrimonia eupatoria, 35 - Crataegus monogyna, 36 - Filipendula 

vulgaris, 37 - Fragaria viridis, 38 - Potentilla alba, 39 - Potentilla argentea, 40 - Prunus 

spinosa, 41 - Rosa canina, 42 - Sanguisorba minor, 43 - Cuscuta epithymum, 44 - Anthyllis 

vulneraria, 45 - Astragalus arenarius, 46 - Astragalus danicus, 47 - Coronilla varia, 48 - 

Genista tinctoria, 49 - Lathyrus tuberosus, 50 - Lotus corniculatus, 51 - Medicago falcata, 52 
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- Medicago lupulina, 53 - Medicago varia, 54 - Melilotus officinalis, 55 - Onobrychis 

viciifolia, 56 - Ononis spinosa, 57 - Oxytropis pilosa, 58 - Sarothamnus scoparius, 59 - 

Trifolium arvense, 60 - Vicia tenuifolia, 61 - Eryngium planum, 62 - Seseli libanotis, 63 - 

Peucedanum cervaria, 64 - Pimpinella saxifraga, 65 - Elymus repens, 66 - Festuca rupicola, 

67 - Koeleria macrantha, 68 - Stipa Joannis, 69 - Asparagus officinalis, 70 - Corylus 

avellana 
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Table 1. Efficiency of host plants amplification and sequencing for examined  steppic beetle species  (ordered according to systematics).  Abbreviations: M – monophagous, 
O – oligophagous, P – poliphagous, U – unknown diet,  number of specimens (no. sp.), PCR and sequencing success (√ - PCR & sequencing successful, X – unsuccessful, U 
- sequences unreadable, P - sequences of poor quality, L - lack of BLAST hits) and sequencing technique used for amplification of host plants DNA from the beetles (S - 
Sanger and I – Illumina) 
 

species phagism 
no  PCR & sequencing seq.  

species phagism 
no PCR & sequencing seq.  

sp. COI rbcL trnL tech. 
 

sp. 
COI rbcL trnL tech. 

CHRYSOMELOIDEA       CURCULIONOIDEA       

CHRYSOMELIDAE         ANTHRIBIDAE       

Criocerinae       Urodontinae       

Crioceris quatuordecimpunctata (Scopoli, 1763) M 2 √ √ √ S Bruchela rufipes (Olivier, 1790) M 1 √ L L S 

Crioceris quinquepunctata (Scopoli, 1763) M 2 √ √ √ S APIONIDAE       

Cassidinae       Apioninae       

Cassida lineola Creutzer, 1799 M 1 √ √ √ S Hemitrichapion pavidum (Germar, 1817) M 2 √ √ √ S 

Cassida margaritacea Schaller, 1783 O 1 X X X  Cyanapion platalea (Germar, 1817) M 1 √ √ √ S 

Cassida panzeri Weise, 1907 M 1 √ L L S Mesotrichapion punctirostre (Gyllenhal, 1839) M 2 √ √ √ S 

Cassida pannonica Suffrian, 1844 M 1 √ √ √ S Pseudoperapion brevirostre (Herbst, 1797) M 2 √ √ √ S 

Hypocassida subferruginea (Schrank, 1776) M 1 √ L L S Pseudoprotapion elegantulum (Germar, 1818) M 2 √ √ √ S 

Chrysomelinae       Pseudoprotapion ergenense (Becker, 1864) M 2 √ √ √ S 

Chrysolina cerealis (Linnaeus, 1767) O 1 √ √ √ S Squamapion elongatum (Germar, 1817) M 2 √ P √ S 

Chrysolina sanguinolenta (Linnaeus, 1758) M 1 √ √ √ S Exapion elongatulum (Desbrochers, 1891) M 1 X X X  

Entomoscelis adonidis (Pallas, 1771) O 1 X X X  CURCULIONIDAE       

Gonioctena fornicata (Brüggemann, 1783) P 10 √ √ √ I Entiminae       

Gonioctena olivacea (Forster, 1771) O 1 √ √ √ S Argoptochus quadrisignatus (Bach, 1856) P 12 √ √ √ I 

Galerucinae       Phyllobius brevis Gyllenhal, 1834 P 12 √ √ √ I 

Galeruca pomonae (Scopoli, 1763) U 2 √ L L S Centricnemus leucogrammus (Germar, 1824) P 16 √ √ √ I 

Galeruca tanaceti (Linnaeus, 1758) U 1 √ U U S Cycloderes pilosulus (Herbst, 1795) P 1 X X X  

Calomicrus circumfusus (Marsham, 1802) O 2 √ √ √ S Eusomus ovulum Germar, 1824 P 16 √ √ √ I 

Luperus xanthopoda (Schrank, 1781) O 2 √ √ √ S Omias globulus (Boheman, 1843) U 1 √ √ √ S 

Alticinae        Omias puberulus Boheman, 1834 O 1 √ √ √ S 
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Podagrica fuscicornis (Linnaeus, 1767) M 1 X X X  Otiorhynchus fullo (Schrank, 1781) P 2 √ U U S 

Aphthona beckeri Jakobson, 1896 M 1 √ √ √ S Paophilus afflatus (Boheman, 1833) P 1 √ U U S 

Aphthona cyparissiae (Koch, 1803) M 2 X X X  Parafourcartia squamulata (Herbst, 1795) P 16 √ √ √ I 

Aphthona czwalinai Weise, 1888 M 1 √ √ √ S Philopedon plagiatum (Schaller, 1783) O 1 √ √ √ S 

Aphthona euphorbiae (Schrank, 1781) M 1 √ √ √ S Polydrusus confluens Stephens, 1831 P 1 √ √ √ S 

Aphthona lacertosa Rosenhauer, 1847 M 2 √ √ √ S Polydrusus inustus Germar, 1824 P 16 √ √ √ I 

Aphthona ovata Foudras, 1861 M 1 √ √ √ S Sitona humeralis Stephens, 1831 M 1 √ √ √ S 

Aphthona pygmaea (Kutschera, 1861) M 2 √ √ √ S Sitona inops Schoenherr, 1832 M 2 √ P √ S 

Aphthona venustula (Kutschera, 1861) M 2 √ √ √ S Sitona languidus Gyllenhal, 1834 M 2 √ √ √ S 

Dibolia cryptocephala (Koch, 1803) M 1 √ √ √ S Sitona lateralis Gyllenhal, 1834 O 2 √ √ √ S 

Dibolia schillingii (Letzner, 1847) M 2 √ √ √ S Sitona longulus Gyllenhal, 1834 M 1 √ √ √ S 

Longitarsus exsoletus (Linnaeus, 1758) O 1 √ P P S Sitona striatellus Gyllenhal, 1834 P 12 √ √ √ I 

Longitarsus quadriguttatus (Pontoppidan, 1763) O 1 X X X  Sitona waterhousei Walton, 1846 O 2 √ √ √ S 

Longitarsus tabidus (Fabricius, 1775) M 1 √ √ √ S Strophosoma faber (Herbst, 1784) P 1 √ U U S 

Neocrepidodera ferruginea  (Scopoli, 1763) O 1 √ √ √ S Lixinae       

Phyllotreta nodicornis (Marsham, 1802) M 1 √ L L S Larinus obtusus Gyllenhal, 1836 M 3 √ √ √ S 

Podagrica fuscicornis (Linnaeus, 1767) O 1 √ √ √ S Larinus planus (Fabricius, 1792) O 1 √ U U S 

Psylliodes cucullata (Illiger, 1807) M 1 √ P √ S Larinus sturnus (Schaller, 1783) O 2 √ √ √ S 

Sphaeroderma testaceum (Fabricius, 1775) O 1 √ √ √  Larinus turbinatus Gyllenhal, 1836 O 2 √ √ √ S 

Cryptocephalinae       Hyperinae       

Cheilotoma musciformis (Goeze, 1777) O 12 √ √ √ I Hypera fuscocinerea (Marsham, 1802) O 2 √ √ √ S 

Coptocephala unifasciata (Scopoli, 1763) P 1 √ √ √ S Curculioninae       

Labidostomis humeralis (Schneider, 1792) M 1 X X X  Cionus clairvillei Boheman, 1838 M 2 √ √ √ S 

Labidostomis longimana (Linnaeus, 1760) P 12 X √ √ I Mecinus pascuorum (Gyllenhal, 1813) M 1 √ √ √ S 

Lachnaia sexpunctata (Scopoli, 1763) O 1 X X X  Rhinusa tetra (Fabricius, 1792) M 3 √ P √ S 

Smaragdina affinis (Illiger, 1794) P 10 √ √ √ I Cleopomiarus distinctus (Boheman, 1845) M 1 √ √ √ S 

Smaragdina aurita (Linnaeus, 1767) O 1 √ U √ S Cleopomiarus graminis (Gyllenhal, 1813) M 2 √ P √ S 

Cryptocephalus bameuli Duhaldeborde, 1999 P 16 √ U √ I Sibinia subelliptica (Desbrochers, 1873) M 2 √ √ √ S 

Cryptocephalus bilineatus (Linnaeus, 1767) P 2 √ √ √ S Sibinia tibialis (Gyllenhal, 1836) O 1 √ √ √ S 

Cryptocephalus chrysopus Gmelin, 1790 O 2 √ √ √ S Sibinia vittata Germar, 1824 M 1     
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Cryptocephalus flavipes Fabricius, 1781 P 2 √ √ √ S Tychius aureolus Kiesenwetter, 1851 O 2 √ X X  

Cryptocephalus fulvus (Goeze, 1777) U 2 √ L √ S Tychius crassirostris Kirsch, 1871 O 1 √ √ √ S 

Cryptocephalus pygmaeus Fabricius, 1792 P 10 √ √ √ I Tychius schneideri (Herbst, 1795) M 2 √ √ √ S 

Cryptocephalus quadriguttatus Richter, 1820 U 1 √ U U S Tychius sharpi Tournier, 1873 M 2 √ √ √ S 

Cryptocephalus violaceus Laicharting, 1781 U 14 √ √ √ I Tychius medicaginis Brisout, 1862 M 1 √ X X  

Cryptocephalus virens Suffrian, 1847 O 2 √ √ √ S Smicronyx jungermanniae (Reich, 1797) M 1 √ L L S 

Cryptocephalus vittatus Fabricius, 1775 O 2 √ √ √ S Pseudorchestes ermischi (Dieckmann, 1958) M 1 √ √ √ S 

Pachybrachis fimbriolatus (Suffrian, 1848) P 12 √ √ √ I Ceutorhynchinae       

Pachybrachis hippophaes (Suffrian, 1848) O 1 √ L L S Mogulones geographicus (Goeze, 1777) M 1 X X X  

Pachybrachis tesselatus (Olivier, 1791) O 1 √ L L S Mogulones javetii (Gerhardt, 1867) M 1 X X X  

Eumolpinae        Phrydiuchus tau Warner, 1969 M 1 √ √ √ S 

Chrysochus asclepiadeus (Pallas, 1773) M 1 √ P √ S Stenocarus ruficornis (Stephens, 1831) M 1 √ L L S 

       Thamiocolus signatus (Gyllenhal, 1837) M 1 √ √ √ S 

       Trichosirocalus barnevillei (Grenier, 1866) O 1 √ √ √ S 

       Trichosirocalus troglodytes (Fabricius, 1787) M 2 √ √ √ S 

       Zacladus geranii (Paykull, 1800) M 1 √ L L S 
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