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Abstract. The carbon dioxide (CO2) exchange of five dif-

ferent peatland systems across Europe with a wide gradient

in land use intensity, water table depth, soil fertility and cli-

mate was simulated with the process oriented CoupModel.

The aim of the study was to find out whether CO2 fluxes,

measured at different sites, can be explained by common pro-

cesses and parameters or to what extend a site specific con-

figuration is needed. The model was calibrated to fit mea-

sured CO2 fluxes, soil temperature, snow depth and leaf area

index (LAI) and resulting differences in model parameters

were analyzed. Finding site independent model parameters

would mean that differences in the measured fluxes could be

explained solely by model input data: water table, meteoro-

logical data, management and soil inventory data.

Seasonal variability in the major fluxes was well captured,

when a site independent configuration was utilized for most

of the parameters. Parameters that differed between sites in-

cluded the rate of soil organic decomposition, photosynthetic

efficiency, and regulation of the mobile carbon (C) pool from

senescence to shooting in the next year.

The largest difference between sites was the rate coeffi-

cient for heterotrophic respiration. Setting it to a common

value would lead to underestimation of mean total respira-

tion by a factor of 2.8 up to an overestimation by a factor

of 4. Despite testing a wide range of different responses to

soil water and temperature, rate coefficients for heterotrophic

respiration were consistently the lowest on formerly drained

sites and the highest on the managed sites. Substrate decom-

posability, pH and vegetation characteristics are possible ex-

planations for the differences in decomposition rates.

Specific parameter values for the timing of plant shooting

and senescence, the photosynthesis response to temperature,

litter fall and plant respiration rates, leaf morphology and al-

location fractions of new assimilates, were not needed, even

though the gradient in site latitude ranged from 48◦ N (south-

ern Germany) to 68◦ N (northern Finland) differed largely in

their vegetation. This was also true for common parameters

defining the moisture and temperature response for decom-

position, leading to the conclusion that a site specific inter-

pretation of these processes is not necessary. In contrast, the

rate of soil organic decomposition, photosynthetic efficiency,

and the regulation of the mobile carbon pool need to be esti-

mated from available information on specific soil conditions,

vegetation and management of the ecosystems, to be able to

describe CO2 fluxes under different conditions.

1 Introduction

In recent years, many data sets have been collected from

a number of sites and across multiple years, containing

detailed and high-resolution measurements of carbon (C)

fluxes, plant and soil characteristics, meteorological and wa-

ter table data (Baldocchi et al., 2001; Baldocchi, 2007).
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Several of the measured sites are peatlands, which have ac-

cumulated a vast amount of C since the last deglaciation. Un-

der drained conditions, peatlands have a high carbon dioxide

(CO2) emission potential (e.g., van den Bos, 2003; Lohila,

2004; Drösler et al., 2008; Maljanen et al., 2010). Under-

standing the processes driving CO2 emissions is essential in

the development of management practices to reduce green-

house gas emissions.

Direct comparison of measured data can be used to ex-

plore the effect of single variables if the site conditions are

similar or differ only in few variables, e.g., in manipulation

experiments (Chivers et al., 2009; Ward et al., 2013) or dif-

ferent vegetation types at the same site (e.g., Chojnicki et

al., 2010). However, the sites in this study have very differ-

ent characteristics with respect to climate, hydrology, cur-

rent and former land management, vegetation and soils. Di-

rect site comparisons of measured flux data (e.g., Alm et al.,

1999; Humphreys et al., 2006; Lund et al., 2009; Drewer et

al., 2010) are often uninformative when trying to distinguish

between responses of several individual factors. Typically,

multiple factors are linked and interact with each other com-

plicating the analysis. Therefore, important drivers at one site

might not play a significant role on another site (e.g., Lafleur

et al., 2005). Process oriented modeling provides a method to

identify to what extent observations at different sites can be

described by the same processes, while accounting for such

interactions.

Process oriented modeling requires (1) that the model can

describe the observations and (2) that the parameters used in

the model to describe the observations can be estimated from

available data. Typically, studies focus on demonstrating how

well the model can describe a certain set of data (e.g., van

Huissteden et al., 2009; Calanca et al., 2007; Frolking et

al., 2001; St-Hilaire et al., 2010). In contrast, the focus of

this study was exploring differences between the sites while

model performance was subordinate. Process oriented mod-

els often require a large number of input parameters which

are usually difficult to estimate based on available data from

less intensively investigated sites (Juston et al., 2010). Pa-

rameters may interact with each other and the available in-

formation does not allow for a single or unambiguous math-

ematical solution (Beven and Freer; 2001, Beven, 2006; van

Oijen et al., 2013). However, for all sites in this study, ac-

curate gas flux measurements in combination with detailed

measurements of soil and plant conditions were available.

Such extensive measurements have been demonstrated to be

useful in identifying the governing properties for specific

sites. For example, the modeling of CO2 from forest sites has

shown that dynamics of CO2 fluxes are restricted to a certain

range of parameter values (Wu and Jansson, 2013; Wu et al.,

2013a).

A systematic evaluation of one model against data from

multiple sites with a common set of parameters will allow for

a better understanding of processes not only at the individual

sites but also on the site specific differences which control

the resulting fluxes (e.g., Calanca et al., 2007; van Huisste-

den et al., 2006; van Huissteden et al., 2009). This is a nec-

essary precondition for accurate predictions of CO2 fluxes

under different climate scenarios or at different locations. On

peatlands, some attempts have been made to consider site dif-

ferences using simplified process models on national (e.g.,

ECOSSE; Bell et al., 2012) and global scales (e.g., InTec; Ju

and Chen, 2005; McGill; St-Hilaire et al., 2010) and up to a

millennial timescale (Schuldt et al., 2013). However, we are

not aware of any studies comparing differences in parameter

distributions of CO2-related processes between treeless peat-

land sites using an uncertainty-based approach and a detailed

process oriented model running on site scale.

Many carbon ecosystem models are available for site-scale

application such as Biome-BC (Feng et al., 2011), DNDC (Li

et al., 1992a, b; Dietiker et al., 2010), PaSim (Calanca et al.,

2007), PIXGRO (Adiku et al., 2006), CANDY (Franko et al.,

1997), or DAYCENT (CENTURY) (Del Grosso et al., 2005).

Some models were explicitly created or adapted to peatlands

such as PDM (Frolking et al., 2001), PCARS (Frolking et

al., 2002), CASA (Potter et al., 2001), NASA-CASA (Del

Grosso et al., 2005), ecosys (Grant et al., 2012), wetland-

DNDC (Zhang et al., 2002), peatland DOS-TEM (Fan et

al., 2013), PEATLAND-VU (van Huissteden et al., 2006) or

GUESS-ROMUL (Yurova et al., 2007).

In this work the CoupModel was used, which is a de-

tailed process oriented model coupling heat and mass transfer

for soil–plant–atmosphere systems (Jansson and Karlberg,

2010). The CoupModel was chosen for the following rea-

sons: the model was designed for a wide range of soil types

and different ecosystems and applications (see Jansson, 2012

for review) which might be useful as some of the sites in this

study are already quite degraded and might not respond like a

typical, intact peatland anymore. The model has been shown

to be capable of simulating all three main greenhouse gases

from peatlands: CO2 (Klemedtsson et al., 2008), nitrous ox-

ide (N2O) (Norman et al., 2008) and methane (CH4) (Ravina,

2007). Furthermore, the CoupModel includes detailed sub-

modules for the most relevant processes in the carbon cycle:

it predicts plant growth, plant transpiration and autotrophic

respiration, soil nitrogen (N) and C processes, energy and

heat fluxes, soil temperature, soil frost and snow depth. It

supports an hourly time step for input and output data and

can run in even finer time resolution, which is necessary for

analyzing e.g., chamber flux data. The user can select be-

tween different submodels, different equations and different

complexities and easily access all parameters via a user in-

terface. Calibration procedures with randomized parameter

values and methods for visualization and detailed analysis of

the model output are supported. An extensive model descrip-

tion can be found in Jansson and Karlberg (2010). The model

and its documentation as well as several tutorials for its appli-

cation can be downloaded from the CoupModel home page

(CoupModel, 2014).
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Table 1. Site characteristics.

Code Lom Amo Hor FsA and FsB

Country Finland UK Netherlands Germany

Site name Lompolojänkkä Auchencorth Moss Horstermeer Freisinger Moos

Area (m2) 120 000 250 000 120 000 400

Latitude,

longitude

67◦59′83′′ N,

24◦12′55′′ E

55◦47′34′′ N,

3◦14′35′′W

52◦14′25′′ N,

5◦4′17′′ E

48◦22′50′′ N,

11◦41′12′′ E

Peatland type fen bog fen fen

Dominant vegetation mosses, sedges,

shrubs

grasses, sedges,

soft rush, mosses

grass, reeds,

small shrubs

sedges, herbs,

grasses (A), tall

sedges (B)

Land use and

management

natural mire restored;

grazed

restored;

nature reserve

drained, 1 cut a−1

Mean

temperature/rangea

(◦C)

−1.4/−15–13 10/4–15 9.8/3–17 7.5/−2–17

Mean water table

(cm)

+1.2 −12.5 ∼−10 −25 (A)

−20 (B)

Annual precipitation

(mm)

484 1155 797 788

N deposition

(kg ha−1 a−1)

8.13 1.59 7.1

Peat depth (m) 2–3 0.5–5 2 3

pH 5.5–6.0 4.4 4.8–6.0 5.5–6.7

a Annual range of mean monthly temperatures.

Figure 1. Measured NEE from gap-filled time series. Positive val-

ues indicate CO2 emission, negative CO2 uptake by the ecosystem.

The main aim of this study was to find out to what extend

the large differences in measured CO2 fluxes between five

data rich European flux measurement sites can be solely ex-

plained by the differences in meteorology, water table and

management. Therefore, the process oriented CoupModel

was applied using an uncertainty-based Monte Carlo ap-

proach. Specific objectives were

I. to identify differences and similarities between various

sites in CO2-related processes, corresponding parame-

ters and responses to forcing data;

II. to identify and discuss the impact of available data for

estimating key parameters in CO2 flux models in gen-

eral;

III. to identify problems related to the model representation

of the different ecosystem processes for open peatlands.

2 Methods

2.1 Description of sites and investigations

The CoupModel was applied to five treeless peatland sites

with a wide gradient in land use intensity, water level, soil

nutrient status and mean annual temperature (Table 1). To-

gether with the climatic gradient from northern Finland to

southern Germany and a different growing season, this leads

to great differences in amplitude and dynamics of gross pri-

mary productivity (GPP), ecosystem respiration (Reco) and

different amounts of biomass. This is reflected in the annual

accumulated net ecosystem exchange (NEE) based on mea-

surements, ranging from −395 to 636 g C m−2 (Fig. 1).

Dynamic forcing data for model input (water table and

meteorology) were available from measurements at all sites

(Table S1). Data used for model parameter constraint in-

cluded measurements of LAI, soil temperature and NEE (Ta-

ble S2). Measured NEE was partitioned into Reco and GPP

by the use of empirical models. At sites where the eddy co-

variance method was used, Reco was derived from nighttime

NEE, otherwise it was taken from opaque chamber measure-

ments.. The empirical Reco models are based on temperature

(Lloyd and Taylor, 1994), while light-level-based functions
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were used for GPP according to Falge et al. (2001). Correc-

tions and gap filling at flux tower sites was done according

to the methods described in Reichstein et al. (2005). A de-

tailed description is given in the references listed in Table S2.

Though Reco and GPP are not explicitly measured, this will

be called measured data in the following for simple distinc-

tion from the simulated fluxes by the CoupModel.

The northernmost site, Lompolojänkkä fen (Lom), located

in Finland is a nutrient-rich natural mire with sedges, shrubs

and mosses. Mean air temperature from 2006 to 2010 was

−1.4 ◦C and the mean groundwater table during the snow-

free season was close to the peat surface. Data for model cal-

ibration were available from 2006 to 2010 and consisted of

eddy covariance (EC) and automatic chamber data of CO2

fluxes, snow depth and leaf area index (LAI) measurements.

A detailed description of the site and measurement methods

can be found in Aurela et al. (2009), Drewer et al. (2010) and

Lohila et al. (2010).

The Scottish site, Auchencorth Moss (Amo) is an om-

brotrophic bog, with vegetation consisting of grasses, sedges

and soft rushes, covering a primarily Sphagnum base layer.

The site is managed for low-intensity sheep grazing with

less than one livestock unit per hectare, but this was not ac-

counted for in the model. Amo encompasses a small area of

peat extraction in the southwest of the catchment, which is

unlikely to fall within the flux footprint of the EC system.

The site was drained over a century ago, however, the drains

are no longer considered to be in operation. The mean water

table was −12.5 cm between 2006 and 2010. Mean temper-

ature during this period was 10 ◦C, CO2 data from EC dur-

ing the same period was used for model calibration. A de-

tailed description of the site and measurements can be found

in Helfter et al. (2014), Drewer et al. (2010) and Dinsmore et

al. (2010).

Horstermeer fen (Hor) is located in the Netherlands in a

drained natural lake. It used to be agricultural land but was

abandoned more than 15 years ago. The water table was

raised during restoration leading to a mean value of −10 cm

during the simulation period from 2004 to 2010. It became

a seminatural grassland, a nature reserve without any mow-

ing management. The vegetation is very heterogeneous with

reeds, grasses and small shrubs (Hendriks, 2009). The mean

temperature during the simulation period was 10 ◦C. CO2

fluxes were measured half-hourly by EC and biweekly with

opaque chambers between 2004 and 2010. A detailed de-

scription of the site and measurement methods can be found

in Hendriks et al. (2007).

Freisinger Moos (FsA and FsB) is a drained nutrient-rich

fen in the south of Germany. The two sites FsA and FsB lie

next to each other in a drained sedge meadow which was

cut once per year. The mean annual hay yield was 4.19 or

4.07 t dry weight ha−1 a−1 for FsA and 5.67 or 6.17 t dry

weight ha−1 a−1 for FsB for the years 2010 and 2011, re-

spectively. FsB is located in a small depression with a mean

water level of −20 cm compared to −25 cm for FsA during

Figure 2. Scheme of carbon fluxes and pools in the current Coup-

Model setup.

the years 2007–2011. Mean temperature during this period

was 7.5 ◦C. FsB contains mainly tall sedges with little reed

while FsA is vegetated by a mixture of sedges, grasses and

herbs. Manual transparent and opaque chamber data of CO2

fluxes (n= 3 for each plot), measured several times a day

every 3–4 weeks and half-hourly meteorological data were

available for the time period of 2007–2011. A detailed de-

scription of the chamber configuration, measurement tech-

nique and empirical model approach were given in Drösler

(2005), Beetz et al. (2013) and Leiber-Sauheitl et al. (2014).

The measured Reco and empirical modeled GPP during the

measurement period of each measurement day were used for

parameter constraint, empirically modeled values between

measurement days were only used for visualization and com-

parison.

2.2 Model description

CoupModel v4 from 12 April 2013 was used for simulations.

The current version can be downloaded from the CoupModel

home page (CoupModel, 2014). A detailed description can

be found in Jansson and Karlberg (2010). The model repre-

sents the ecosystem by a description of C and N fluxes in the

soil and in the plant. It includes all main abiotic fluxes, such

as soil heat and water fluxes, that represent the major drivers

for regulation of the biological components of the ecosystem.

The most important equations with the corresponding param-

eters and switches differing from the default setup in the used

version can be found in Tables S3, S4, S5 and S6. The ma-

jor model assumptions relating to the model application to

peatlands are described below. Figure 2 shows a scheme of

the main carbon fluxes and pools in the current CoupModel

setup.
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Table 2. Abbreviations and symbols.

Abbreviation Description

C carbon

CO2 carbon dioxide

EC eddy covariance

GHG greenhouse gas

GPP gross primary production

kgresp growth respiration coefficient

kh rate coefficient for the decay of the slow C pool

kl rate coefficient for the decay of the fast C pool

ktot total rate of decomposition calculated from kh, kl and SOC of the corresponding pools in the upper 30 cm

kmrespleaf maintenance respiration coefficient for leaves

krn extinction coefficient in the Beer law used to calculate the partitioning of net radiation between plant canopy

and soil surface

LAI leaf area index

ME mean error

mretain coefficient for determining allocation to mobile internal storage pool

N nitrogen

NSE Nash–Sutcliffe efficiency

pck speed at which the maximum surface cover of plants is reached

pθp power coefficient in the response function of microbial activity in dependency of soil moisture

pθSatact activity under saturated conditions in the soil moisture response function for microbial activity, mineralization–

immobilization, nitrification and denitrification

pθUpp water content interval in the soil moisture response function for microbial activity, mineralization–

immobilization, nitrification and denitrification

R2 coefficient of determination

Reco ecosystem respiration

SOC soil organic carbon

Tamean assumed value of mean air temperature for the lower boundary condition for heat conduction

Taamp assumed value of the amplitude of the sine curve , representing the lower boundary condition for heat conduction

TMatureSum temperature sum beginning from grain filling stage for plant reaching maturity stage

TDormTh critical air temperature that must be undershot for temperature sum calculation

TEmergeSum air temperature sum that is the threshold for start of plant development

TEmergeTh critical air temperature that must be exceeded for temperature sum calculation

tQ10 response to a 10 ◦C soil temperature change on the microbial activity, mineralization–immobilization, nitrifica-

tion, denitrification and plant respiration

tQ10bas base temperature for the microbial activity, mineralization–immobilization, nitrification and denitrification at

which the response is 1

εL radiation-use efficiency

2.2.1 Meteorological driving variables and integration

time step of the model

Hourly values of global radiation, relative humidity, precip-

itation, wind speed, and air temperature, measured at each

site were used as input. Data was gap filled by simple linear

interpolation for gaps < 6 h. Larger gaps were filled by val-

ues from other adjacent climate stations. At Hor the station

used for gap filling provided only daily values. Hourly val-

ues were retrieved assuming uniform distribution over 24 h

for precipitation, wind speed and relative humidity and sinu-

soidal distribution for temperature and global radiation.

Model performance was only evaluated for the years when

meteorological data was available. The simulations were

started 2 years prior to the evaluation period, so the system

(in particular the plant) could adapt to the site conditions and

become more independent of initial values. Data from the

available years was copied to previous years if not available

from an adjacent climate station.

The model’s internal time step was half-hourly for abiotic

processes and hourly for nitrogen- and carbon-related pro-

cesses.

2.2.2 Dynamic coupled heat and water model for above

soil surface conditions

An interception model for both, radiation and precipitation,

a snow model and a surface pool model was used to pro-

vide boundary conditions at the soil surface. Interception

and plant evaporation was dependent on the simulated leaf

www.biogeosciences.net/12/125/2015/ Biogeosciences, 12, 125–146, 2015
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area index of the plant as well as the degree of coverage,

while transpiration depended additionally on the simulated

water uptake of the plant. Cloud fraction was calculated from

global radiation input and latitude. Incoming radiation was

partitioned between one part which was absorbed by the

plant canopy and another part which reached the soil. Surface

temperature was simulated based on an energy balance ap-

proach, where the radiation reaching the soil equals the sum

of sensible and latent heat flux to the air and heat flux to the

soil. Soil evaporation was derived from an iterative solution

of the soil surface energy balance of the soil surface, using

an empirical parameter for estimating the vapor pressure and

temperature at the soil surface. Vapor pressure deficit was

calculated from the relative humidity input. Snowfall was

simulated from precipitation and air temperature, snowmelt

from global radiation, air temperature and simulated soil heat

flux. Surface runoff was controlled by a surface pool of water

that covers various fractions of the soil surface. Under over-

saturated periods the flow of water in the upper soil compart-

ment could be directed upwards, towards the surface pool.

Surface runoff was calculated as a function of the amount of

water in the surface pool.

2.2.3 Dynamic heat and water model for the soil

The soil profiles were divided into 12 layers with an increas-

ing layer depth from 5 cm for the upper layer to 100 cm in

the lowest layer. Heat flow between adjacent soil layers were

calculated based on thermal conductivity functions account-

ing for the content of ice and water. The heat flow equation is

based on a coupled equation accounting for the freezing and

thawing in the soil (Jansson and Halldin, 1979). Convection

was not accounted for. The lower boundary was calculated as

temperature based on a sine variation at the soil surface and

a damping depth for the whole soil profile as well as a pa-

rameter for the annual mean temperature Tamean and annual

amplitude of temperature Taamp at the site (a list of symbols

and abbreviations can be found in Table 2).

Soil water depended on infiltration to the soil, soil evap-

oration, water uptake by plant roots and groundwater flow.

Soil moisture, represented as liquid water content, was cal-

culated based on the water storage and temperature. Water

flows between adjacent soil layers were calculated accord-

ing to the Richards equation (1931), considering hydraulic

conductivity, water potential gradient and vapor diffusion.

Soil water characteristics were described by the Brooks and

Corey (1964) equation between two threshold water tensions,

while a log-linear expression was applied at higher water ten-

sions and a linear expression at water contents close to satu-

ration. Unsaturated conductivity was simulated according to

Mualem (1976), additionally accounting for the conductivity

in macro pores. The groundwater level was defined by as-

suming a continuous zone of saturation from the water table

level down to the lower boundary of the considered soil pro-

file. To force saturation at the measured groundwater level,

water was added to or removed from the corresponding layer.

2.2.4 Vegetation

Vegetation was simulated according to the explicit big leaves

concept (e.g., Dai et al., 2004) but only one plant canopy

layer, representing the complete plant community, was de-

fined. Albedo, LAI, vegetation height and vegetation cover

were simulated. Permanent, perennial vegetation was config-

ured with maximal plant height of 0.6 m, a lowest root depth

of −0.6 m and a maximal plant cover of 100 %. Grain devel-

opment was assumed to play a minor role and was therefore

disabled. Plant respiration was assumed to be dependent on

growth and maintenance (e.g., Hansen and Jensen, 1977).

For leaf assimilation, the light-use efficiency approach

(Monteith, 1972; Monteith and Moss, 1977, see e.g., Hilker

et al., 2008 for review) was used, at which total plant growth

is proportional to the global radiation absorbed by canopy

but limited by unfavorable temperature and limited soil wa-

ter. For simplicity, plant assimilation was simulated indepen-

dent of dynamics in N availability. This might be justified

as none of the sites were fertilized in the recent years and

the vegetation community was assumed to be adapted to the

nutrient conditions at each site. Differences in N availability

between sites are included in the radiation efficiency (εL).

Plants were assumed to be well adapted to wet conditions

(Keddy, 1992, Steed et al., 2002), including aerenchyma to

tolerate water saturated soil conditions (Jackson and Arm-

strong, 1999). Plant stress due to high water saturation was

therefore disabled.

Plant development started every spring when the accu-

mulated sum of air temperatures above a threshold value

(TEmergeTth) reached the value of TEmergeSum. Both parame-

ters were calibrated (Table S4). The accumulation of temper-

atures started when the day length exceeded 10 h. Snow cover

hindered shooting by reducing the radiation passing through

to the plant, while low soil temperatures reduced plant water

uptake.

Besides a small amount of litter fall occurring during

the whole plant growth period (Robson, 1973; Duru and

Ducrocq, 2000; Fulkerson and Donaghy, 2001), senescence

was assumed to start after the plant reached maturity and

therefore depended on growth stage (e.g., Thomas and Stod-

dart, 1980) and temperature sums (e.g., Davidson and Camp-

bell, 1983). As this was not yet directly supported by the

model, the stem pool was used for brown, senescent, stand-

ing biomass. Therefore new assimilates were constantly allo-

cated to roots and leafs only, while existing leaf biomass was

reallocated after maturity to the stem pool. A third stage of

litter fall was configured depending on a minimum threshold

temperature sum: five consecutive days in the autumn with

day lengths shorter than 10 h and with temperatures below

TDormTth terminated the growing season and plants went into

dormancy.
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During litter fall part of the C is stored in a mobile pool,

which can be then reused for regrowth in spring in the next

year (e.g., White, 1973; Wingler, 2005).

Harvest took place at FsA and FsB. Based on observa-

tions in the field, 85 % of the aboveground plant material

was removed at harvest. Harvest dates were known and im-

plemented in the model. After harvest the growth stage was

allowed to be reset to a lower value (e.g., Thomas and Stod-

dart, 1980). Reallocation of C from roots to leaves could

take place as reported for, e.g., Festuca pratensis (Johansson,

1992; 1993).

2.2.5 Soil carbon and nitrogen

The organic substrate was represented by two C and N pools

for each of the 12 soil layers: one with a slow and one with a

high turnover rate coefficient. Decomposition products from

the fast pools are partitioned into CO2 which is released to

the atmosphere and C which is partly moved to the slow

pools and partly returned to the fast pools. Decomposition

products from the slow pools are partly released as CO2 and

partly returned to the slow pools. The initial values for the

amount of C and N per layer was given by measurements and

partitioned into the two pools for each layer according to the

measured C : N ratio as described in Sect. 2.2.5 and Table 3.

Beside the turnover rate coefficients and amount of substrate

in each pool per layer, decomposition rates depended on the

response to soil moisture and temperature in the correspond-

ing layer.

As the rate coefficients for decomposition were expected

to strongly affect each other, only the coefficient for the

fast decomposition pools were calibrated. The coefficient

for the slow pools (kh) was kept constant at a low value of

2× 10−8 day−1 during the calibration runs, which might be

justified as decomposition of resistant carbon is less respon-

sible for the variation in soil respiration (e.g., Whalen et al.,

2000).

Nitrogen- and methane-related processes were considered

by a model including the most important pathways and

fluxes. However no emphasize on the calibration of these

processes was made in this study since the current objective

was on CO2 fluxes from the peatlands.

Figure 3. Stepwise parameter calibration. Boxes show the outcome

of each step. Description for scenarios C1–C7 can be found in Ta-

ble S8.

2.2.6 Independent approach to find values of site

specific parameters

Dry and wet N deposition, latitude and thickness of the or-

ganic layer were used as constant site specific input.

Water retention parameters were assigned to each soil

layer according to soil data from each site. However, at Amo

and Lom, water retention and, at all sites, unsaturated con-

ductivity was assigned from the CoupModel soil database as

suggested by Lundmark (2008) for peat soils. Measured to-

tal soil organic carbon (SOC) per layer was partitioned to the

two SOC pools per layer on the basis of the measured to-

tal C : N ratio per layer whereas the initial C : N ratios of the

slow decomposing pools were assumed to be 10, while for

the fast pool’s 27.5 was chosen according to measured C : N

of leaf tissues at FsA and FsB (Table 3).

2.3 Parameter calibration approach

The aim of the calibration was to find out to what extent the

same parameter values could be used for all sites compared to

a site specific representation. A stepwise approach was car-

ried out starting with finding the best site specific parameter

representations and then trying to merge them to common

values valid for all sites. Finally, the common representation

was revised to some few parameters showing great site spe-

cific effects on model performance. An overview of the dif-

ferent steps can be found in Fig. 3, details on the calibration

procedures are presented as supplementary material.

For the basic calibration (step I, Fig. 3), 350 000–700 000

runs were performed for each site. 45 parameters, which

were suspicious of eventually being site specific, were se-

lected and calibrated with an assumed uniform random range
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Table 3. Partitioning of measured SOC to the pools. The data in the table is aggregated into 3 soil layers, however 12 layers were used in the

model.

depth (m) Lom Amo Hor FsA FsB

Measured total C (kg m−3) 0–0.1 24 190 72 107 88

0.1–0.3 30 187 79 104 90

> 0.3 51 175 156 70 61

Measured C : N (kg m−3) 0–0.1 27 23 13 11 12

0.1–0.3 20 22 13 14 13

> 0.3 20 21 22 17 17

Estimated fraction of fast pool/total C 0–0.1 95 % 72 % 18 % 3 % 9 %

0.1–0.3 56 % 73 % 20 % 20 % 16 %

> 0.3 55 % 68 % 62 % 35 % 41 %

Dry bulk density (g cm−3) 0–0.1 0.06a 0.39 0.35 0.59 0.33

0.1–0.3 0.06 0.37 0.48 0.29 0.52

> 0.3 0.10 0.37b 0.50 0.18 0.17

a No data available, value from lower layer used. b No data available, value from upper layer used.

(Table S4). Parameter ranges were then constrained based on

selected runs (steps I and II; Fig. 3), showing acceptable per-

formance to multiple variables (Table S7), measured at the

sites.

Several additional multiple calibration runs were per-

formed, with few selected parameters each, to unravel param-

eter interactions (step III; Fig. 3). A number of simulations

were also made by single value representations of parameters

(step IV; Fig. 3) to visualize the impact of certain parameter

values on interacting parameters and on performance. These

runs are called single runs in the following, numbered C1–C7

and described in Table S8.

Selection of runs and evaluation of performance was based

on three indices: coefficient of determination (R2) assesses

how well the dynamics in the measurement derived values

are represented by the model. Mean error (ME), also called

y intercept (Willmott, 1982) indicates a lag or lead between

model predictions and measured data (Moriasi et al., 2007).

Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970)

accounts for both deviation of dynamics and magnitude. It

ranges from −∞ to 1, whereas 1 means the best fit of mod-

eled to measured data and values < 0 indicates that the mean

measured value is a better predictor than the simulated value,

which indicates an unacceptable performance (Moriasi et al.,

2007).

3 Results

3.1 Model performance – results of basic calibration

and selected common configuration

Model performance showed distinct differences between the

sites, depending on the investigated variable and on the num-

ber of considered runs (Table 4). Figure 4 shows the differ-

ences between measurements and model C1.

3.1.1 Fluxes

At all sites the dynamics in Reco fluxes were simulated con-

siderably better than GPP (Table 4). Performances for NEE

were worse as simulation errors in GPP andReco are summed

up.

With respect to Reco and GPP, the selected single runs

represent a parameter configuration close to the best ones

possible in the tested range: their R2 value did not dif-

fer by more than 0.05 from the best result achieved in the

multiple calibration, while ME values were smaller than

0.1 g C m−2 day−1. Clearly, the lower R2 and higher ME val-

ues in single runs for biomass and LAI simulation indicate

that none of the runs could give the best results for all vari-

ables at the same time. For example, the best values for GPP

can only be achieved if poorer performance would have been

accepted for other parameters such as winterReco or LAI (see

criteria for accepted runs in Table S7).

The ME values in Table 4 show a clear overestimation

of winter fluxes by 3.21 and 2.11 g C m−2 day−1 for the

single runs at FsA and FsB, respectively, and a weaker

overestimation for the accepted runs. The overestimation

was less pronounced at Amo (0.13 g C m−2 day−1) and Lom

(0.01 g C m−2 day−1). At Hor, winter fluxes were underes-

timated with a ME of −0.26 g C m−2 day−1. This was re-

flected in the accumulated NEE (Fig. 4) leading to a much

higher CO2 loss compared to the CO2 balance estimated

by the empirical model approach at FsA and FsB. At Lom,

higher accumulated NEE due to the overestimation of win-

ter Reco was visible in the first months of each year. It was

nearly compensated due to the underestimated spring Reco
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Table 4. Highest achieved values for selected performance indices.

Variable Index Lom Amo Hor FsA FsB

all/select- single all/select- single all/select- single all/select- single all/select- single

ed runs run ed runs run ed runs run ed runs run ed runs run

NEE R2 0.61/0.60 0.59 0.59/0.58 0.55 0.53/0.51 0.48 0.20/0.16 0.15 0.25/0.21 0.19

ME 0.00 0.05 0.00 0.04 0.00 0.02 0.00 1.43 0.00 −0.05

GPP R2 0.66/0.66 0.65 0.68/0.68 0.66 0.58/0.57 0.55 0.38/0.35 0.34 0.40/0.39 0.35

ME 0.00 0.05 0.00 −0.09 0.00 0.04 0.00 0.06 0.00 −0.03

RecoEC R2 0.79/0.74 0.69 0.71/0.71 0.66 0.78/0.77 0.75 NA NA NA NA

ME 0.00 0.00 0.00 −0.05 0.00 −0.06 NA NA NA NA

Reco R2 0.73/0.71 0.64 0.67/0.57 0.38 0.52/0.48 0.45 0.73/0.66 0.69 0.87/0.81 0.85

Chamber ME 0.00 −0.06 0.00 0.04 0.00/−4.74 −5.38 0.00 −0.01 0.00 −0.08

Reco R2 0.67/0.63 0.63 0.14/0.08 0.06 0.28 0.28 0.51/0.43 0.32 0.92/0.89 0.89

winter ME 0.00 0.01 0/0.04 0.13 0.00 −0.26 0/1.60 3.21 0.00/0.73 2.11

Upper soil R2 0.88/0.87 0.87 0.86 0.84 0.92 0.91 0.88/0.86 0.84 0.88/0.86 0.84

temperature ME 0.00 −0.01 −0.03 −0.08 −1.37/−1.51 −1.77 0.00/0.58 0.35 0/1.20 0.35

Lower soil R2 0.95 0.95 0.90 0.89 0.89 0.89 0.97/0.96 0.94 0.92/0.91 0.94

temperature ME 0.00 −0.03 0.00 0.02 0.00 −0.08 0.00 −0.15 0.00 −0.15

Snow depth R2 0.75 0.75 NA NA NA NA NA NA NA NA

ME −0.1 −0.06 NA NA NA NA NA NA NA NA

LAI R2 0.65/0.51 0.53 NA NA 0.36/0.31 0.33 0.75/0.69 0.61 0.82/0.76 0.61

ME 0.00 0.11 NA NA 0.00/−0.61 −1.49 0.00 0.12 0.00 0.05

Aboveground R2 NA NA NA NA 0.02/0.00 0.00 0.31/0.26 0.24 0.47/0.43 0.32

living biomass ME NA NA NA NA 0 −112 0/−20 −21 0/−36 −48

Root biomass R2 NA NA NA NA 0.28/0.07 0.01 NA NA NA NA

ME NA NA NA NA 0.00 −282 NA NA NA NA

NA: not available.

or overcompensated due to GPP overestimation as, e.g., in

summer 2006, which was very dry.

3.1.2 Explanatory variables

Of all variables, the highest R2 values were achieved for soil

temperature at all sites. Temperatures in deeper soil layers

(−50 or −60 cm) had better fits than in upper layers with R2

values close to 0.9 or higher and a maximum mean devia-

tion of 0.15 ◦C. The fit of modeled vs. measured snow depth,

which was only available at Lom, had aR2 value of 0.75 with

a mean error of less than 10 cm.

Simulation of LAI represented the measurements quite

well with R2 values of between 0.53 and 0.76 and a mean

error of maximum 0.12 m2 m−2. An exception was Hor,

where LAI was underestimated by a ME of −0.61 and

−1.49 m2 m−2 in the accepted 75 runs and in the selected

single run C1, respectively. At Hor, root biomass was under-

estimated in the single run by a ME of −281 g C m−2 and

living leaf biomass by −122 g C m−2.

In most of the runs of the basic calibration at Hor, either

GPP was overestimated or leaf biomass and LAI were under-

estimated. Therefore, beside the common configuration C1,

a different configuration was tested where plant respiration

and litter fall parameters for Hor were set to much lower val-

ues than in the tested range to fit to GPP and LAI at the same

time. However, this reduced performance for Reco R
2 to 0.66

compared to 0.75 in C1 and led to an overestimation of win-

ter Reco with a ME of 0.75 g C m−2 day−1.

3.2 Parameter constraint

Site specific calibration was needed for the speed at which

the maximum surface cover is reached (pck), the mean value

in the analytical air temperature function (Tamean), temper-

ature sum for reaching plant maturity (TMatureSum), coeffi-

cient for determining allocation to mobile internal storage

pool (mretain), decomposition rate of the fast SOC pools (kl)

and radiation-use efficiency (εL).

Activity under saturated conditions (pθSatact), threshold

temperature for plant dormancy (TDormTh), response to

a 10 ◦C soil temperature change on the microbial activ-

ity (tQ10) and base temperature for the microbial activity

(tQ10bas) covary with performance indices but showed differ-

ent patterns for different validation variables and for different

sites.

Most of the parameters did not show any influence on per-

formance indices within the tested range (Fig. S1), demon-

strating that either the relatively low effect of the parameter

was overcompensated by the effect of more sensitive parame-

ters, or the range used for calibration is sufficiently constrain-

ing. Each of these parameters did not reduce model perfor-

mance indicated by R2 by more than 0.05 for GPP or Reco

after setting them to a common value.
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Figure 4. Simulated and measured Reco (positive) and GPP (negative) fluxes and accumulated NEE for one selected set of parameter values

(C1) common between all sites. Note the different scales.

3.3 Correlations between parameters

In the basic calibration, the following parameters were iden-

tified to interact with other parameters: pck covaried with

the extinction coefficient in the Beer law (krn) which is used

to calculate the partitioning of net radiation between canopy

and soil surface. Strong, linear, negative correlation between

coefficients for growth (kgresp) and maintenance respiration

(kmrespleaf) was detected.

The effect of the different parameters in the water response

function, pθSatact, pθUpp and pθp, compensated each other.

They could not be constrained without a very high measure-

ment resolution of fluxes and water table combined with high

water table fluctuation at the same time. Therefore, pθUpp

and pθp were set to default values and pθSatact was con-

strained by additional multiple runs together with kl. Dif-

ferences between sites in kl are reduced with higher pθSatact

values (Fig. 5), however, higher pθSatact values increase over-

estimation of winter Reco at FsA and FsB (Figs. 6, 7d). A

wider range of pθSatact values was acceptable for summer

Reco (Fig. 6).

Besides moisture response, decomposition rate (kl) and

temperature response (tQ10, tQ10bas) control soil respiration.

The effect on Reco was cofounded by plant respiration. Dif-

ferent patterns for different sites and variables for each of the

parameters were even more pronounced when only kl, tQ10

and kmrespleaf were in calibration (Fig. 6).

Single runs with different configurations (Fig. 7) revealed

that higher plant respiration as well as steeper temperature re-

sponse can lead to less overestimation of respiration in winter
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Figure 5. Dependencies between the parameters for decomposition

rate and saturation activity for the different sites, based on addi-

tional multiple runs.

(Fig. 7d) but lead to reduced performance (Fig. 7c). In all

single runs, despite the different configurations, FsA always

showed the highest kl, while Amo had the lowest (Fig. 7a). A

higher saturation activity reduces the difference in kl values,

but leads to higher overestimation of winter fluxes.

4 Discussion

Despite not being specifically developed for peatlands, the

CoupModel was able to simulate measured fluxes quite well.

The model was run in a simple configuration with only two

SOC pools per layer, no explicit representation of microbes,

and only one plant layer. Even though the CoupModel was

capable of adequately reproducing the measurements. Sev-

eral points were identified where further peatland specific

processes or more detailed representations might improve the

model. Those are discussed in the following subsections.

From the 45 calibrated parameters, 8 parameters could be

identified to actually need a site specific representation to

achieve acceptable performance. Those parameters are dis-

cussed in Sects. 4.3–4.10. The remaining 37 parameters were

not sensitive in the tested ranges, even though site specific

values could have been expected; for example, it is known

that grassland species differ in their assimilation and growth

response to temperatures (Billings et al., 1978; Wohlfahrt et

al., 1999). Plant respiration rates in graminoids differ be-

tween species (Poorter et al., 1991; Scheurwater et al., 1998;

van der Werf et al., 1988) and depend, among other factors,

on light (Rovira, 1969; Bahn et al., 2013), nutrient (Paterson

and Sim, 2000) and moisture conditions (Crow and Wieder,

2005) as well as on cutting regime (Bokhari, 1977). Alloca-

tion fractions to different plant parts differ between species

and depend on nutrient conditions (Aerts et al., 1991; Gong

et al., 2014) as well as shading (Bahn et al., 2013). Values

for specific leaf areas are species specific (e.g., Poorter et al.,

1990; Reich et al., 1998) and differ in response to nutrient

availability (Meziane and Shipley, 1999). Leaf lifetime (e.g.,

Ryser and Urbas, 2000) as well as leaf and root turnover rates

(Schläpfer and Ryer, 1996) vary between graminoid species.

The five peatland sites largely differed in their vegeta-

tion composition, plant life-forms and species. Nevertheless,

common values for all sites could be applied for parameters

related to these processes, without reducing model perfor-

mance onReco and GPP inR2 values by more than 0.05. That

shows that either the studied sites on a vegetation community

level did not differ much in these processes, or that the im-

pact of those parameters is subordinate compared to the im-

pact of other parameters, meteorological input and other site

conditions.

Therefore, models with a focus on multiple-year carbon

fluxes do not need a site specific interpretation of these pro-

cesses.

4.1 Model initialization

Many models use spin-up routines of many years until SOC

pools reach a steady state (e.g., Dimitrov et al., 2010; Smith

et al., 2010; Thornton and Rosenbloom, 2005). Here, mea-

sured C : N values were used to partition the SOC between

pools, while ranges for parameter values were chosen in a

way that the amount of carbon in the soil pools did not

change very drastically. However, no further effort was made

to force the pools to be in equilibrium. It was assumed that

this might not be the case in the real world either: drainage

ditches at FsA and FsB are still maintained, leading to high

carbon losses and changes in substrate quality. Land use at

Hor was quite recently changed from a fertilized and deeply

drained cropland to a nature reserve with a restored water ta-

ble. Additionally, Amo used to be more intensively managed

and drained, but the drainage system was not maintained.

Land use history was not known and SOC measurements

were available from only one date per site. The measured

carbon fluxes were therefore the only indication about car-

bon loss or addition to the complete system, while changes

in relative pool sizes were not known. The partitioning of

the SOC has implications on the parameter distribution for

the rate coefficient for decomposition, which is discussed in

Sect. 4.10.

4.2 Model performance

The best performance achieved highly differed between the

different validation variables and between the different sites.

This was not only caused by the model’s ability to simu-

late the different output parameters but also due to measure-

ment quality, measurement uncertainty, measurement meth-

ods (temporal and spatial resolution) and heterogeneity of the

sites.

www.biogeosciences.net/12/125/2015/ Biogeosciences, 12, 125–146, 2015



136 C. Metzger et al.: CO2 fluxes and ecosystem dynamics at five European treeless peatlands

Figure 6. Obtained distributions of parameter values as constrained by additional multiple runs (calibration step III). Ranges for kl1 and εL

are not shown due to their interactions with several parameters. Colored bars show the range of the 10 runs with the best performance for

each validation variable. Prior ranges are indicated by the frame around the bar. Black dash is the value chosen for the common configuration

C1.

Figure 7. Values for the parameters of decomposition rate (a) light-use efficiency (b) and resulting model performance (c, d) when applying

various single-value representations of parameters (C1–C7; see Table S8).

GPP was simulated markedly poorer as compared to Reco

at all sites and not only in the single runs, but also in the com-

plete set of performed multiple runs. An explanation might

be that in the model the whole plant community consisting

of different individuals, species and even functional types,

with different life cycles and adaptations to light availabil-

ity and temperature was simplified to only one plant. Espe-

cially mosses, which differ largely from vascular plants in

respect to their ecology and response to water, temperature

and light conditions (Gaberščik and Martinčič, 1987; Harley

et al., 1989; Murray et al., 1993; Turetsky, 2003), might be

important at the moss-rich Lom and Amo sites. The vege-

tation at Hor consists of species with very different strate-

gies and requirements for nutrients and water. At FsB, reeds,

which are known for a late emergence, were well present in

some of the years and hardly appeared in other years. FsA is

relatively species-rich and several of these species are abun-

dant only during parts of the vegetation period. Also, using a

more complex photosynthesis model such as in e.g., Farquhar

et al. (1980, 2001) and testing a wider range of parameters

might lead to a better fit. Including plant stress due to high

water levels and nutrient limitation might improve the per-

formance on some sites. For example, Sagerfors et al. (2008)

found photosynthesis to be limited also by too high water

levels, so that the McGill wetland model assumed reduced

photosynthesis outside a water level range of−10 to−20 cm

(Wu et al., 2013b). Furthermore, GPP cannot be measured di-

rectly neither by the chamber nor the EC method. Instead it

was derived from NEE and Reco or nighttime NEE, including

the uncertainty of two different measurements and empirical

modeling.

Heterogeneity of vegetation was very distinct at Hor,

which might explain the difficulties to simulate the right

amounts of GPP and biomass at the same time. The biomass

and LAI taken into account for this study might not be fully

representative of the whole EC fetch for all wind directions.
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Figure 8. Decomposition rates of fast pools (kl) and calculated rates

of total organic matter decomposition if only one pool was used

(ktot) for each site and each layer.

Hor is also a site which deviates strongly with respect to

other sites, with recent large changes in management. It is

in successional transition from intensively used dairy farm-

ing meadow (approximately 20 years ago) towards reed fen

with willow thickets. Soil and vegetation still show the im-

print of high nutrient levels derived from manuring practices

(e.g., patches with abundant Urtica dioca). This likely still

affects GPP. These features could be a better explanation of

the deviating GPP than the additionally tested configuration

with strongly reduced litter fall and plant respiration rates.

Even though the winter fluxes are small compared to the

summer fluxes, they have a marked role in the annual NEE

balances (Fig. 4). Overestimation of winter Reco in combi-

nation with slightly underestimated winter GPP leads to high

overestimation of annual accumulated NEE, emphasizing the

importance of winter flux dynamics in the annual balances.

At all sites except Hor, winter Reco was overestimated in the

selected single run. For FsB and especially FsA this was also

true for all multiple runs. As Reco at Lom and Amo are typi-

cally relative low, the effect was less pronounced.

Several different reasons for the winter Reco overestima-

tion are possible: explanations due to model setup and pa-

rameterization are discussed in the Sects. 4.7, 4.8 and 4.9.

Additionally, gases might be trapped within the snow and

under the ice (Bubier et al., 2002; Maljanen et al., 2010) and

therefore captured by the measurement instruments only in

springtime, when they are released. A gastight ice cover was

not realized in the current model setup. Frozen or ice cov-

ered soils are quite common at the boreal Lom, but also at

FsA and FsB which have a more continental climate than the

other sites.

The ability of the model to simulate soil moisture could

not be evaluated, as this variable was measured only at Lom,

where the soil was close to saturation throughout the year.

Therefore, and as groundwater level was used as input, hy-

draulic properties could not be constrained. Furthermore,

swelling, shrinking and hysteresis effects which are impor-

tant factors in hydraulic characteristics of peat soils (e.g.,

Kellner and Halldin, 2002) were not accounted for. This

could have an effect on model performance and parameter

values, especially those related to the soil moisture response.

4.3 Soil temperature dynamics

Due to the isolating impact of the snow cover (e.g., Zhang,

2005), the value of mean annual soil temperature (Tamean)

was expected to be slightly higher than the mean annual

air temperature. Constrained values of soil temperature were

1.5–5 ◦C higher than the mean annual air temperature at all

sites. If the model was run under different conditions with-

out further fitting, factors causing differences between mean

annual soil temperatures and corresponding air temperature

need to be considered.

4.4 The role of soil temperature and GPP to constrain

the plant cover

Accepted fits for soil temperature in the uppermost measured

soil layer led to pck values close to the measured coverage of

vascular plants for each site. Therefore, the measured cover-

age could directly be used in the configuration C1 (Fig. 6a).

Setting pck to a common value of 100 % reduced the differ-

ences in εL between the site’s C7 (Fig. 6e), but led to under-

estimation of soil temperature in the uppermost soil layer by

at most −0.45 ◦C in ME at Amo. An explanation could be

that mosses are contributing to the plant coverage in respect

to GPP but not to temperature, especially at sites where they

are the main peat-forming material.

4.5 Start of senescence

Site specific calibration was needed for the temperature sum

initiating the start of senescence (TMatureSum). However, if

the resulting day of the year was plotted instead, the differ-

ences between sites became small (Fig. 6) and setting it to

the mean value of all sites did not reduce model performance

in GPP R2 by more than 0.05. Induction of senescence with

graminoids is known to depend on both temperature and day

length (Nuttonson, 1958; Proebsting et al., 1976; Thomas

and Stoddart, 1980; Davidson and Campbell, 1983). How-

ever, the differences between the sites in this study could be

explained solely by the relative day length.
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4.6 Seasonal and management control of mobile plant

pool for regrowth

The proportion of C in the plant which does not become litter,

but instead is stored for shooting in the next year (mretain),

differed largely between sites. At Lom, a value of at least

40 % led to and acceptable performance while a maximum

of 3 % was found for FsA and FsB; a mean value of 20 %

would reduce R2 of GPP by at least 0.04 for these sites. At

Amo and Hor neither a value of 3 % nor 40 % reduced R2 of

GPP by more than 0.01. An explanation for the low mretain

at FsA and FsB could be that the same pool is used for re-

growth after being cut and therefore not available for shoot-

ing anymore, as the regrowth rate in both early spring and

after being cut depend on the carbohydrate reserve (White,

1973; Davies, 1988; Klimeš and Klimešová, 2002). Steele et

al. (1984) conclude that defoliation late in the year will affect

spring regrowth.

At Lom, highmretain might be an adaption to the short veg-

etation period (Kistritz et al., 1983). Evergreen parts of the

vegetation like dwarf shrubs, lower leaf parts of graminoids

and mosses were not accounted for, which also affects re-

growth in spring. Saarinen (1998) found that 60–70 % of

shoots and 20 % of green biomass in a Carex rostrata fen sur-

vived the winter and, therefore, hypothesized based on com-

parisons with other studies that the proportion increases with

increasing latitude.

The storage pool is an important parameter needing site

specific calibration but can be fitted if several measurements

during spring and early summer of either GPP, biomass or

LAI are available.

4.7 Radiation-use efficiency

As plants were not nutrient limited in the model setup, the

lowest values for εL were expected under the most nutrient-

poor conditions (Longstreth and Nobel, 1980; Reich et al.,

1994; Haxeltine and Prentice, 1996; Gamon et al., 1997;

Wohlfahrt et al., 1999). The opposite was true if site spe-

cific values were used for pck. However, a common value

for pck reduced the differences in εL and led to low εL at

the ombrotrophic Amo site, but to an even lower value at

the minerotrophic Lom site. The nutrient status of the soil

can therefore not explain the differences in εL. The assump-

tion of plants being well adapted to nutrient and water stress

might not be true for the restored Hor site, where parts of the

vegetation still consist of species which are not typical for

wetlands. This might explain the low productivity at that site,

but could only be covered by a model if site specific plant re-

sponses to high water levels would be applied. Additionally,

εL is known to be species specific (Sinclair and Horie, 1989;

Reich et al., 1998; Wohlfahrt et al., 1999).

Radiation-use efficiency is an important parameter need-

ing site specific calibration. If common values were used for

εL, pck andmretain, mean GPP would be underestimated by a

factor of 2.4 (FsB) or overestimated by a factor of 3 (Lom). If

site specific values were used for pck andmretain, the discrep-

ancy would be even higher. However εL can easily be fitted

if either GPP, biomass or LAI is known.

4.8 The control of decomposition and plant respiration

by soil temperature

The annual Reco, which was dominated by summer Reco,

could be described by a single temperature response function

at all sites. However, it was not possible to find an equally

good fit to both summer and winter Reco using the same tQ10

value. Higher tQ10 values would decrease overestimation of

winter Reco especially at the southern sites FsA and FsB, but

also reduce model performance for the annual Reco. Differ-

ent temperature responses for different sites (e.g., Jacobs et

al., 2007), seasons (e.g., Lipson et al., 2002) and temperature

ranges (e.g., Lloyd and Taylor, 1994; Paul, 2001; Atkin et al.,

2003) are reported in the literature. This is partly explained

by multiplicative effects of several temperature sensitive pro-

cesses (Davidson et al., 2006; Kirschbaum, 2006) but, still,

a constant tQ10 might be a wrong assumption (Atkin et al.,

2005).

More sophisticated temperature responses like the

Ratkowsky function (Ratkowsky et al., 1982) might improve

the performance for individual sites. This might also be true

for separate temperature response functions for plants and

soil, as summer Reco includes autotrophic and heterotrophic

respiration, while winter Reco is strongly dominated by het-

erotrophic respiration.

4.9 The control of decomposition by soil moisture

The activity under saturated conditions in respect to unsat-

urated conditions is described by pθSatact and was strongly

negatively correlated with decomposition rate kl. Patterns for

pθSatact differed between sites and variables. At all sites a

minimum value of around 5 % led to the acceptable perfor-

mance in annual Reco, while also quite high values did not

reduce the performance except at FsB. At Lom only win-

ter Reco was considered, as conditions were always saturated

during summer. For acceptable winter Reco, pθSatact needed

to be very low. This was not true for Lom, where water in

the upper soil layer partly froze in the model and led to high

winter respiration.

As the soil at FsA and FsB was saturated during winter, a

common lower value for pθSatact would decrease overestima-

tion of winter fluxes. However, it would also reduce model

performance at all sites and increase the site specific differ-

ences in kl (Fig. 7).

Permanently saturated soils contain less O2 than tempo-

rally saturated ones (e.g., Kettunen et al., 1999), which af-

fects decomposition (e.g., Reddy and Patrick, 1975; De-

Laune et al., 1981; Holden et al., 2004). Therefore a lower

pθSatact would be justified for wetter sites. If kl was constant
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between sites and instead pθSatact was fitted, this would lead

the value of pθSatact to decrease in the order FsB > FsA > Lom

> Hor > Amo (Fig. 5), which cannot be justified by the dif-

ferences in water levels which increase in the order FsA

< FsB < < Amo < Hor < < Lom. Therefore, a different pθSatact

cannot explain differences in soil respiration between sites.

However, the amount of aerenchymatous plants, leading to

soil aeration (e.g., Armstrong, 1980; Bendix et al., 1994;

Grosse et al., 1996) was not taken into account. It reaches its

highest coverage at FsB (90 %), followed by FsA (62 %), Hor

(50 %), Lom (around 10 %) and Amo (around 6 %). Model-

ing water response depending on soil O2 and redox potential,

including O2 conductance from plants, might help us to ana-

lyze the differences in decomposition rate and reduce winter

overestimation. For example, in the Wetland-DNDC model,

the water response function depends on redox potential: de-

composition under saturated condition is reduced by a factor

of only 0.6 if redox potential is high, but by a factor of 0.2 if

redox potential is low (Zhang et al., 2002).

4.10 The control of decomposition by substrate

The largest differences of parameters between sites appeared

for the maximum decay rate of the fast C pools, kl. Setting

it to a common value would lead to an underestimation of

mean Reco by a factor of 2.8 at FsB or an overestimation by

a factor of 4 at Amo.

Despite different temperature and water response curves

being tested, kl values at FsA and FsB are substantially

higher than at Amo (Figs. 5, 7). Higher tQ10 values lead to

two groups of kl values: similar high ones for Lom, FsA and

FsB and substantially lower ones for Hor and Amo (Fig. 7).

The partitioning into SOC pools strongly effects the differ-

ences, as can be shown by calculating decomposition rates

for the total SOC (ktot) based on kl, kh and SOC in the

pools of the upper 30 cm as used in the C1 scenario (Fig. 8).

However, FsB and FsA still have much higher rates than

Amo. The resulting values and ranges of ktot (0.02–0.16 a−1)

are comparable with the reported values from laboratory in-

cubation studies of peat cores (0.03–1.66 a−1, Moore and

Dalva, 1997; 0.01–0.35 a−1, Glatzel et al., 2004; 0.008 a−1,

Kechavarzi et al., 2010; a SOC content of 30 % was assumed

for conversion from dry mass).

Lower decomposability is often associated with higher

C : N ratios (e.g., Zeitz and Velty, 2002; Limpens and

Berendse, 2003; Bragazza et al., 2006; Zhang et al., 2008),

which might be important especially for the moss-rich Amo

and Lom. Assuming a C : N ratio of 60 for the fast pools

(Fig. 7, C6) leads to a decomposition rate at Lom which is

close to those at FsA and FsB, while those of Hor and Amo

remain substantially lower.

Low pH might be one reason for the low kl at Amo (e.g.,

DeLaune et al., 1981; Bergman et al., 1999). Despite being

nutrient-rich and having a high pH and high biomass pro-

duction, leading to large amounts of labile carbon added to

the soil, kl values at Hor were very low. This might be con-

nected to land use history and the origin of the peat from

partly clayey lake sediment. Most of the labile C in the par-

ent peat in the upper, formerly drained soil layers might have

been decomposed before and therefore became stabilized.

In the current setup the slow pools were almost inert. A

higher decay rate for the slow pools would result in a lower

kl for sites with high C stock in the slow pools (cf. Table 3).

This would decrease the differences between FsA and FsB

compared to Lom and Amo, but increase the differences be-

tween FsA compared to FsB and Hor.

Substrate quality is known to affect decomposition rates

(e.g., Raich and Schleisinger, 1992; Belyea, 1996; Fang and

Moncrieff, 2005; Yeloff and Mauquoy, 2006). Therefore,

many other SOC models use several different SOC pools

(e.g., Franko et al., 1997; Smith et al., 1997; Cui et al., 2005;

Del Grosso et al., 2005; van Huissteden et al., 2006) to ac-

count for differences in substrate quality. This leads to the

problem of partitioning total SOC into the pools (e.g., Hel-

frich et al., 2007; Zimmermann et al., 2007). In some models,

the various SOC pools differ also in their response functions

(e.g., Smith et. al, 2010).

The highest decomposition rates occurred at sites with

highest biomass production. A correlation of productivity

with soil respiration was found in several comparison studies

(e.g., Janssens et al., 2001; Reichstein et al., 2003). Fresh ma-

terial provided by the plants might lead to higher microbial

activity and priming effect (e.g., Kuzyakov, 2002; Fontaine et

al., 2007). A higher plant to soil respiration ratio reduced the

differences in kl between the sites and lowered winter Reco,

especially at the highly productive FsA and FsB sites, but

also reduced the model performance at all sites except Amo.

Vegetation at Amo and Lom consist largely of mosses

which are more resistant to decomposition than vascular

plants (Rudolph and Samland, 1985; Verhoeven and Toth,

1995; Limpens and Berendse, 2003; Moore et al., 2007) and

might further explain the low kl value at Amo. Despite the

lower biomass production, higher moss cover and higher

C : N ratio compared to Hor, FsA or FsB, Lom has a rela-

tively high decomposition rate. This can be explained by the

very low dry bulk density, resulting in a low amount of C in

the upper soil layers (Table 3), which are most exposed to

decomposition (e.g., Fang and Moncrieff, 2005). Also, a low

dry bulk density accompanies the low degree of degradation

and therefore high amounts of labile carbon (e.g., Grosse-

Brauckmann, 1990).

Despite the large differences in accumulated NEE (Fig. 1)

between FsA and FsB, these sites have nearly identical de-

composition rates. This confirms the expectations that the

differences in NEE between FsA and FsB can be fully ex-

plained by the differences in the water table and the biomass

and carbon stocks.
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5 Conclusions

Differences between sites with respect to CO2 fluxes could

be explained if, in addition to air temperature, water table and

soil C and N stocks, site specific plant productivity and de-

composition rates were also taken into account. Differences

in nutrient availability and soil wetness could not explain the

differences in plant productivity between the sites. Substrate

quality and litter input, as well as pH values, are likely ex-

planations for the differences in decomposition rates. A site

specific interpretation was not needed for processes related

to plant phenology, their response to temperature, allocation

of new assimilates and plant respiration and litter fall rates.

The model parameters which strongly affected model per-

formance were successfully constrained by the available

long-term measurement data on NEE, partitioned into GPP

and Reco, LAI and biomass, including rooting depth and root

biomass at one site, water table, soil temperature and soil C

and N stocks, as well as meteorological data and snow data at

one site. It would have been useful if additional information

about root biomass, litter fall and soil water content to vali-

date the model performance in the corresponding processes

was available for all sites. A second measurement of C and

N stocks, several years after the first, as well as information

about the degree of decomposition on all sites would have

been very helpful to constrain decomposition rates and parti-

tioning between SOM pools.

Some improvements in the model and its configuration

were identified to obtain a better performance for simula-

tions of GHG fluxes from treeless peatlands. Examples in-

clude separate temperature responses for plant and soil het-

erotrophic respiration. The static response to water saturated

conditions needs to be replaced by a function that considers

the change of O2 in the soil.

The Supplement related to this article is available online

at doi:10.5194/bg-12-125-2015-supplement.
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