
100

IV International Conference on Computational Methods for Coupled Problems in Science and Engineering
COUPLED PROBLEMS 2011
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Abstract. Previous stability analyses on Gauss-Seidel coupling iterations in partitioned
fluid-structure interaction simulations have demonstrated that Fourier modes with a low
wave-number in the difference between the current and correct interface displacement are
unstable. To stabilize these modes, the IQN-ILS technique automatically constructs a
least-squares model of the flow solver and structural solver. In this work, the multi-level
IQN-ILS technique (ML-IQN-ILS) is presented, which uses a coarsened grid of the fluid
and structure subdomains to initialize this least-squares model. As the modes that need to
be present in this least-squares model have a low wave-number, they can be resolved on a
coarsened grid. Therefore, in each time step, a number of cheap coupling iterations is first
performed on the coarsened grid to construct the model, followed by a smaller number of
coupling iterations on the fine grid. As the iterations on the coarse grid are fast and fewer
iterations are performed on the fine grid, the total duration of the simulation decreases
compared to a simulation on the fine grid only.

1 INTRODUCTION

Partitioned fluid-structure interaction (FSI) simulation techniques solve the flow equa-
tions and the structural equations separately. In this article, the focus lies on partitioned
techniques which couple the flow solver and the structural solver as ‘black boxes’, which
means that the discretization and solution techniques of the solvers do not have to be
known. Implicit (or strongly coupled) partitioned techniques enforce the equilibrium of
the stress and velocity (or displacement) on the fluid-structure interface in each time step.
Several strongly coupled partitioned techniques are able to couple ‘black-box’ solvers,
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for example Gauss-Seidel iterations with Aitken relaxation [1], the Interface Generalized
Minimal Residual method (Interface-GMRES) [2], the Interface Block Quasi-Newton tech-
nique with an approximation for the Jacobians from Least-Squares models (IBQN-LS) [3]
and the Interface Quasi-Newton technique with an approximation for the Inverse of the
Jacobian from a Least-Squares model (IQN-ILS) [4].

Several stability analyses on coupling algorithms have been performed for the incom-
pressible, inviscid flow in a straight, elastic tube [5–8]. Fourier analysis has been performed
on the difference between the current and the correct interface displacement during Gauss-
Seidel coupling iterations in [7, 8]. From these analyses, two lessons can be learned. While
the standard, one-level IQN-ILS technique only takes advantage of the first one, the new
multi-level IQN-ILS (ML-IQN-ILS) technique takes advantage of both of them.

The first lesson is that only a fraction of the Fourier modes is unstable during Gauss-
Seidel iterations. If a quasi-Newton technique is used, then only a low-rank approximation
for the exact Jacobian is required, as long as it represents the behaviour of these unstable
and slowly converging modes, which explains the performance of quasi-Newton methods
like IQN-ILS. For combinations of Fourier modes that are covered by the least-squares
model, IQN-ILS performs Newton iterations; for the other modes, IQN-ILS corresponds
to Gauss-Seidel iterations.

The second lesson is that the unstable modes have a low wave number, so their be-
haviour can be determined on a relatively coarse grid. The new ML-IQN-ILS technique
uses more than one grid level, each with a different number of grid points. It first calculates
the coupled solution on the coarsest grid level and constructs the low-rank approximation
for the inverse of the Jacobian as present in IQN-ILS while doing so. Then coupling
iterations are performed on the second grid level, during which the approximation for
the inverse of the Jacobian obtained on the coarsest grid level is further improved. This
procedure is repeated until the solution on the finest grid level has been found.

The goal of the multi-level IQN-ILS technique is thus to obtain the low-rank approxima-
tion for the inverse of the Jacobian required for the convergence of the coupling iterations
on the finest grid level at a lower cost, by constructing it partly on coarser grid levels.
This new multi-level approach is depicted in Figure 1 for two grid levels. As only data on
the fluid-structure interface is exchanged, this partitioned multi-level coupling technique
can couple black-box solvers. The name multi-grid is not used because it already refers
to a common solution technique [9], which has been used for fluid-structure interaction
simulations in for example [10, 11] and which is different from the ML-IQN-ILS technique.

The remainder of this article is organized as follows. Section 2 gives a brief overview
of the governing equations, before the detailed explanation of ML-IQN-ILS in Section 3.
Numerical results in Section 4 illustrate the performance of ML-IQN-ILS compared to the
standard, one-level IQN-ILS. Finally, Section 5 offers the conclusions.
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Figure 1: The coarse and fine fluid grid (left) and the coarse and fine structural grid (right), together
with the unique coupling grid (centre) in a multi-level simulation with two grid levels. d represents the
displacement of the interface while s represents the stress distribution on the interface. F denotes the
flow solver and S the structural solver. The output of a solver is indicated with a tilde as this value is
not always directly given as input to the other solver. In the multi-level IQN-ILS algorithm, coupling
iterations are first performed on the coarse grid level (level 1) to construct the approximation for the
inverse of the Jacobian as present in IQN-ILS at a lower cost. Subsequently, this approximation for the
inverse of the Jacobian is used and improved further during the coupling iterations on the fine grid level
(level 2), resulting in fewer coupling iterations on the fine grid level. All interface data on the different
grid levels are interpolated to and from the unique coupling grid, which determines the dimension of the
approximation for the inverse of the Jacobian.
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2 GOVERNING EQUATIONS

The fluid and structure subdomains are indicated as Ωf and Ωs and their boundaries
as Γf and Γs, respectively. The fluid-structure interface Γfs = Γf ∩ Γs is the common
boundary of these subdomains. This article only considers incompressible fluids as they
prove to be most challenging for the partitioned fluid-structure interaction techniques.
The unsteady flow of an incompressible fluid is governed by the conservation of mass and
the Navier-Stokes equations

∇ · �v = 0 (1a)

ρf

∂�v

∂t
+ ρf∇ · (�v�v) −∇ · σ̄f = �ff . (1b)

In these equations, ρf is the fluid density, �v the fluid velocity and t the time. �ff represents
the body forces per unit of volume on the fluid. The deformation �u of the structure is
determined by the conservation of momentum

ρs

d2�u

dt2
−∇ · σ̄s = �fs (2)

with ρs the structural density, σ̄s the Cauchy stress tensor and �fs the body forces per unit
volume on the structure.

The equilibrium conditions on the fluid-structure interface (�x ∈ Γfs) are

�v =
d�u

dt
and σ̄f · �nf = −σ̄s · �ns, (3)

which stipulate that the velocity and the stress have to be the same on both sides of the
interface. The vector �nf (�ns) is the unit normal that points outwards from the subdomain
Ωf (Ωs). A Dirichlet-Neumann decomposition of the fluid-structure interaction problem
is applied, so the flow equations are solved with a given velocity (or displacement) of the
fluid-structure interface and the structural equations are solved with a given stress on the
interface.

The flow equations and the structural equations are discretized in space and time
with a method of choice. The discrete flow equations are represented by F, the discrete
structural equations by S. The vector v groups all flow variables (velocity, pressure, etc.)
in Ωf ; the vector u groups all structural variables (displacement, stress, etc.) in Ωs. The
displacement of the interface Γfs with respect to the initial geometry is represented by
the vector d and the stress on the interface by the vector s. In the case of a Dirichlet-
Neumann decomposition, the displacement of the interface is considered as a function of
the structural degrees of freedom (d = d(u)) and the stress on the interface as a function
of the flow degrees of freedom (s = s(v)). All variables are at the new time level tn+1;
the dependence of the solution on the variables at tn, tn−1, . . . is hidden.
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The flow solver calculates the flow variables v that satisfy F(v, d(u)) = 0 for a given
interface displacement d. From the flow field v, the stress on the interface s is extracted.
Therefore, the flow solver is represented by the function

s̃ = F(d). (4)

Similarly, the structural solver calculates the structural variables u that satisfy S(u, s(v)) =
0 for a given stress on the interface s. The displacement of the interface d is subsequently
extracted from u, so the structural solver is represented by

d̃ = S(s). (5)

As the multi-level coupling technique uses several grid levels for the flow equations
and the structural equations, data has to be interpolated between different discretizations
of the fluid-structure interface. However, even though the discretization of the interface
inside the flow solver and the structural solver depends on the grid level, all operations of
the coupling algorithm are performed on a unique grid, the so-called ‘coupling grid’ (see
Figure 1). In this work, this coupling grid is identical to the interface discretization of
the finest fluid grid.

In line with the definition of the flow solver and structural solver as black-box functions,
the interpolation on the interface should not require access to the discretization in the
solvers. Therefore, interpolation with radial basis functions is applied. A local interpolant
is constructed in the neighbourhood of each point on the interface using a basis function
introduced by Wendland [12], namely

φ(||�x||/r) = (1 − ||�x||/r)4
+(4||�x||/r + 1), (6)

with r the radius and ||�x|| =
√

x2
1 + . . . + x2

d the Euclidean distance of dimension d. The
plus-sign behind the first term denotes that this term is zero if 1 − ||�x||/r < 0 such that
φ has a compact support.

3 ML-IQN-ILS

In the explanation of this coupling algorithm, a prime denotes the Jacobian matrix
of a function and a hat refers to an approximation. The output of a solver is indicated
with a tilde as this value is not always directly given as input to the other solver. The
grid level is indicated with a subscript i and the coupling iteration within time step n+1
with a superscript k. The superscript n + 1 is omitted wherever possible. The standard
algorithm with a single grid level is described first, followed by the multi-level algorithm
with g grid levels. The first grid level is the coarsest grid level and the gth grid level is
the finest one.

The FSI problem reformulated as a set of nonlinear equations in the interface’s dis-
placement

R(d) = S ◦ F(d) − d = 0 (7)
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can be solved by means of Newton-Raphson iterations

solve R
′k∆dk = −rk (8a)

dk+1 = dk + ∆dk (8b)

with the residual calculated as

rk = R(dk) = S ◦ F(dk) − dk = d̃k − dk. (9)

R
′k denotes the Jacobian of R, evaluated at dk. The Newton-Raphson iterations in the

time step have converged when ||rk||2 ≤ ε with ε the convergence tolerance. However, the
exact Jacobian of R is unknown as the Jacobians of F and S are unavailable. Moreover,
the linear system in Eq. (8a) with as dimension the number of degrees of freedom in the
displacement of the fluid-structure interface has to be solved in each Newton-Raphson
iteration. If the Jacobian R

′ is approximated and quasi-Newton iterations are performed,
black-box solvers can be used. However, the linear system in Eq. (8a) still needs to be
solved. As will be explained below, it is more advantageous to approximate the inverse

of the Jacobian by applying the least-squares technique introduced by Vierendeels et al.
[3] on a particular set of vectors, which is done by the standard IQN-ILS algorithm. The
quasi-Newton iterations with the approximation for the inverse of the Jacobian can be
written as

dk+1 = dk + ∆̂dk = dk +
̂(
R

′k
)
−1 (

−rk
)
. (10)

It can be seen from Eq. (10) that the approximation for the inverse of the Jacobian does
not have to be created explicitly; a procedure to calculate the product of this matrix with
the vector −rk is sufficient. The vector −rk is the difference between the desired residual,
i.e. 0, and the current residual rk and it is further denoted as ∆̂rk = 0 − rk = −rk.
The matrix-vector product in Eq. (10) is calculated from information obtained during the
previous quasi-Newton iterations. Eq. (9) shows that the flow equations and structural
equations are solved in quasi-Newton iteration k, resulting in d̃k = S ◦ F(dk) and the
corresponding residual rk. So, at the beginning of quasi-Newton iteration k + 1, a set of
known residual vectors

rk, rk−1, . . . , r1, r0 (11a)

and the corresponding set of vectors d̃

d̃k, d̃k−1, . . . , d̃1, d̃0 (11b)

are available. After each coupling iteration, the difference between the vectors from
the current coupling iteration and the vectors from the previous coupling iteration is
calculated using

∆rk−1 = rk − rk−1 and ∆d̃k−1 = d̃k − d̃k−1. (12)
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This yields a set of differences ∆rj and the corresponding set of differences ∆d̃j which
both grow in each coupling iteration (j = 0, . . . , k − 1). These vectors are stored as the
columns of the matrices V k and W k. The number of columns in V k and W k is indicated
with v which is not always equal to k as will be explained further and which is generally
much smaller than the number of rows u. Nevertheless, in simulations with a low number
of degrees of freedom on the interface, it is possible that the number of columns has to
be limited to u by discarding the rightmost columns.

The vector ∆̂rk = 0 − rk is approximated as a linear combination of the known ∆rj

∆̂rk ≈ V kck (13)

with ck ∈ Rv×1 the coefficients of the decomposition. Because v ≤ u, Eq. (13) is an
overdetermined set of equations for the elements of ck and hence the least-squares solution
to this linear system is calculated. For that reason, the so-called economy-size QR-
decomposition of V k is calculated using Householder transformations

V k = QkRk, (14)

with Qk ∈ Ru×v an orthogonal matrix and Rk ∈ Rv×v an upper triangular matrix. The
coefficient vector ck is then determined by solving the triangular system

Rkck = QkT
∆̂rk (15)

using back substitution. If a ∆ri vector is (almost) a linear combination of other ∆rj

vectors, one of the diagonal elements of Rk will (almost) be zero. Therefore, the equation
corresponding to that row of Rk cannot be solved during the back substitution. If a small
diagonal element is detected, the corresponding columns in V k and W k are removed.
Subsequently, the QR-decomposition (Eq. (14)) is performed again. This procedure is
repeated until none of the diagonal elements is too small. The tolerance εs for the detection
of small diagonal elements depends on how accurately the flow equations and structural
equations are solved. An appropriate value for εs can be determined by analyzing the
change of the vector d̃ due to a small perturbation of the vector d. If the perturbation
is too small, the resulting change will be numerical noise. The value of εs should be
chosen so that the change of d̃ has a physical meaning if the perturbation of d has an L2-
norm larger than εs. If the solution of the flow equations and the structural equations is
calculated with more significant digits, for example by using stricter convergence criteria
inside the solvers, then a smaller value of εs can be used.

The ∆̂d̃k that corresponds to ∆̂rk is subsequently calculated as a linear combination
of the previous ∆d̃j , analogous to Eq. (13), giving

∆̂d̃k = W kck. (16)
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From Eq. (9), it follows that ∆r = ∆d̃ − ∆d and substitution of Eq. (16) results in

∆̂dk = W kck − ∆̂r
k
. (17)

Because the coefficients ck are a function of ∆̂rk, Eq. (17) shows how ∆̂dk can be ap-

proximated for a given ∆̂rk. Hence, Eq. (17) can be seen as a procedure to calculate the

product of the approximation for the inverse of the Jacobian and a vector ∆̂rk = −rk

∆̂dk =
̂(
R

′k
)
−1

∆̂rk = W kck + rk. (18)

Algorithm 1 shows the Multi-Level IQN-ILS (ML-IQN-ILS) algorithm in detail. Lines 8
to 18 are the standard IQN-ILS algorithm as described above. Around the standard
algorithm, an additional loop over the grid levels is added (line 5). First, the coupled
solution is calculated on the coarsest grid level. Then, starting from that solution, coupling
iterations on the following, finer grid level are performed. These steps are subsequently
repeated for all grid levels until the solution on the finest grid has been found. The
variable ℓ ensures that at least one coupling iteration is performed on each grid level.

The displacement and the residual are not changed when the grid level i changes, as
both are defined on the coupling grid. As explained above, the coupling algorithm itself
works with a unique coupling grid, which determines the dimension of the approximation
for the inverse of the Jacobian. The different grid levels that are used for the multi-level
technique are only present inside the flow solver and structural solver. The solvers have to
interpolate the data from the boundary of their grid to the coupling grid of the coupling
code. In this way, the acceleration of the coupling iterations and the interpolation of
the data on the fluid-structure interface are completely separated, which facilitates the
implementation.

Because the coupling algorithm operates on the coupling grid, the difference between
r and d̃ in consecutive coupling iterations is always interpolated to a fixed number of
grid points, regardless of the current grid level. As a result, the modes that have been
generated on a coarse grid level can be used to accelerate the coupling iterations on the
finer grid levels. The same least-squares model is used for all grid levels so the number of
columns in the matrices V k and W k increases on each grid level. Because the matrices
V k and W k have to contain at least one column to perform a quasi-Newton step, a
Gauss-Seidel step using relaxation with factor ω (line 9) is performed in each time step,
but only on the coarsest grid level.

The numerical experiments in Section 4 indicate that vectors ∆rj and ∆d̃j from a
coarse grid level can accelerate the coupling iterations on a fine grid level. However, it
should be noted that the difference between r and d̃ in the last coupling iteration on a
certain grid level i and the first coupling iteration on the following grid level i + 1,

∆rj−1 = Ri+1(d
j) − Ri(d

j−1) (19a)

∆d̃j−1 = Si+1 ◦ F i+1(d
j) − S i ◦ F i(d

j−1), (19b)
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Algorithm 1 The multi-level IQN-ILS (ML-IQN-ILS) algorithm.

1: k = ℓ = 0
2: dk = 5

2
dn − 2dn−1 + 1

2
dn−2

3: d̃k = S1 ◦ F 1(d
k)

4: rk = d̃k − dk

5: for i = 1 to g do

6: while ||rk||2 > εi or ℓ = 0 do

7: ℓ = 1
8: if k = 0 then

9: dk+1 = dk + ωrk

10: else

11: construct V k and W k

12: calculate QR-decomposition V k = QkRk

13: solve Rkck = −QkT
rk

14: dk+1 = dk + W kck + rk

15: end if

16: d̃k+1 = S i ◦ F i(d
k+1)

17: rk+1 = d̃k+1 − dk+1

18: k = k + 1
19: end while

20: ℓ = 0
21: end for

22: for i = 1 to g − 1 do

23: synchronize F i and Si with F g and Sg

24: end for

should not be added to V k and W k. Otherwise, the approximation for the inverse of R
′

would not only relate a change of the residual to a change of the interface’s displacement,
but would also represent the additional features that become visible due to a change of
the grid level. If these differences are added to V k and W k nonetheless, the convergence
of the coupling iterations on grid level i + 1 is hampered in the numerical experiments.
When the differences in Eqs. (19) are not used, the number of columns in V k and W k at
the end of the time step is less than or equal to the number of coupling iterations minus
the number of grid levels.

Lines 22 to 24 show that synchronization is necessary at the end of the time step.
Once the solution has been found on the finest grid level, all degrees of freedom on the
coarser grid levels have to be corrected. A possible approach to the synchronization is to
interpolate the data in the entire fluid and solid domain from the finest grid level to all
other grid levels. If no such mechanism is available because the solvers are black boxes, the
interface displacement and stress calculated during the coupling iterations on the finest
grid level can be applied to the interface of the coarser grid levels and the flow equations
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Figure 2: The pressure contours (in Pa) on the fluid-structure interface of the finest grid level for the
propagation of a pressure wave in a 3D tube after 10−3 s (left), 5×10−3 s (centre) and 9×10−3 s (right).

and structural equations can be solved once more on all but the finest grid level, with this
displacement and stress as boundary condition.

4 NUMERICAL RESULTS

As an example, the propagation of a pressure wave in a straight flexible tube is sim-
ulated [13]. This tube with radius 0.005 m and length 0.05 m is a simplified model for a
large artery. The finite volume flow solver uses linear interpolation for the pressure and
first-order upwind discretization for the momentum. It solves the Navier-Stokes equa-
tions in arbitrary Lagrangian-Eulerian (ALE) formulation with PISO pressure-velocity
coupling and the first-order backward Euler time integration scheme. The grid of the
fluid domain is adapted to the displacement of the fluid-structure interface by replacing
the cell edges with springs. The finite element structural solver uses implicit Hilber-
Hughes-Taylor time integration of shell elements with 8 nodes and takes into account the
geometric nonlinearities due to the large deformation of the structure.

The tube’s wall is a linear elastic material with density 1200 kg/m3, Young’s modulus
3×105 N/m2, Poisson’s ratio 0.3 and thickness 0.001 m. The structure is clamped in
all directions at the inlet and outlet. The fluid is incompressible and has a density of
1000 kg/m3 and a viscosity of 0.003 Pa·s. Both the fluid and the structure are initially
at rest. During the first 3×10−3 s, an overpressure of 1333.2 N/m2 is applied at the inlet.
The wave propagates through the tube during 10−2 s, simulated with time steps of 10−4 s.
The pressure contours on the fluid-structure interface as shown in Figure 2 correspond
well with those in [13].

For this simulation, two grid levels are used and the convergence tolerance is εi =
10−3||r0||2 for both grid levels. The coarse grid level contains 34944+1824 degrees of
freedom for the flow and the structure, respectively. For the fine grid level, each direction
is refined with a factor 4, giving 2247168+28032 degrees of freedom. IQN-ILS required
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on average 13.2 coupling iterations per time step on the fine grid, whereas ML-IQN-ILS
performed on average 12.1 coupling iterations on the coarse grid and 7.0 on the fine grid.
The number of coupling iterations on the fine grid is thus reduced by approximately 50 %
in the simulation with two grid levels, compared to a simulation with a fine grid only. As
the cost of the coupling iterations on the coarse grid level is relatively small, the duration
of the simulation also decreases by approximately 50 %.

5 CONCLUSIONS

A new multi-level coupling technique for partitioned simulation of fluid-structure in-
teraction has been presented. This technique is based on the fundamental insight from
stability analyses on Gauss-Seidel coupling iterations that in the difference between the
current and the correct interface displacement, the Fourier modes with a low wave number
are most unstable. ML-IQN-ILS first calculates the coupled solution on the coarsest grid
level and subsequently uses that solution as the starting point for the coupling iterations
on the following, finer grid level. Moreover, the approximation for the inverse of the
Jacobian constructed on the coarser grid levels accelerates the convergence of the cou-
pling iterations on the finer grid levels. The numerical results show that this multi-level
algorithm can reduce the duration of a partitioned fluid-structure interaction simulation.
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