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Abstract. Fluid sloshing in containers is modeled using a finite element formulation
previously proposed by the authors for problems with moderate motions [1], extending
in this work its application to arbitrarily large rotations and small deformations relative
to a floating frame of reference moving with the fluid. This novel approach is used to
investigate the coupling effects originated by the incidence of environmental sea waves
on rigid floating vessels with internal flexible structural parts and fluids oscillating inside
rigid or flexible tanks.

1 INTRODUCTION

This work presents a partitioned finite element formulation for the solution of structure-
structure and fluid-structure coupled problems, under the assumption of relatively small
deformations but arbitrarily large rotations, based on the the floating frame of reference
approach. The main difference with the classical approach is in the algebraic separation of
pure-deformational from pure-rigid modes, defining the position of the body-frame at any
point of the undeformed state of the body. Pure-deformational modes are then measured
with respect to this corotated configuration. The same concept was introduced by Fraeijs
de Veubeke in [1], treating the case of a complete structure presenting coupled rigid-body
and deformational motions. An important consequence of this definition of the reference
frame is the uncoupling of rigid-body from deformational motions in the inertia mass
matrix.
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The mechanical response of the multibody system can also be coupled with a fluid
domain. Fluid and structure systems are treaded separately and connected using localized
Lagrange multipliers to a common frame tracking the interface motion. This coupling
strategy permits easier parallelization and facilitates the enforcement of slip condition
between the fluid and the structure walls. The fluid is modeled using a finite element
formulation previously developed by the authors for sloshing problems with moderate
motions, extending its application here to arbitrarily large rotations and small deforma-
tions relative to a floating frame of reference moving with the fluid. This novel approach is
used to investigate the coupling effects of a rigid floating structure with flexible structural
parts and a fluid oscillating inside rigid or flexible tanks due to global motion.

2 KINEMATICS

Two reference systems are introduced. The first one is a fixed inertial-frame and
vectors expressed in this system are represented using capital letters. The second system
is a floating frame of reference that is fixed to the body and moves with it, vectors defined
in this system are written using lowercase. The position of an arbitrary point of the body
is expressed in the inertial frame as:

X = X0 +A(r+ d) (1)

where X0 is the vector defining the position of a fixed point 0 of the body in the inertial
frame, A is the rotation matrix of the body-frame, r is the vector defining the position
of the point in its undeformed position expressed in the body-fixed frame and d is the
deformational displacement vector of the same point expressed in the same frame.

Using the small deformational-displacements approximation, the position, velocity and
acceleration of a particle expressed in the inertial frame can be simplified:

X = X0 +A(r+ d) (2)

Ẋ = Ẋ0 +Aḋ−Ar̃ω (3)

Ẍ = Ẍ0 +Ad̈−Ar̃ω̇ +Aω̃2r+ 2Aω̃ḋ (4)

We can see in equation (4) that acceleration of a particle is obtained by composition
of linear, deformational, angular, centrifugal and Coriolis acceleration terms.

Finally, given a set of virtual displacements (δd, δX0, δθ), the virtual displacement δX,
expressed in the body-frame, is approximated :

δX = A
[
φ I −r̃

]



δd
ATδX0

δθ


 (5)

where φ represents the displacement interpolation matrix.
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Figure 1: Discretized free-floating substructure defined in the floating frame of reference. Decomposition
of its local displacements in rigid-body and pure deformational displacement components.

2.1 Description of the deformation

As explained earlier, the deformation of each floating substructure is described using
a local frame of reference that translates and rotates following the undeformed picture of
the solid. Merely condition to define this system is that the substructure displacement
field does not present rigid body components or free modes.

Total displacements of a discretized free floating substructure can be separated into a
pure deformational component plus a rigid-body part, as illustrated in Figure 1:

u = d+Rα (6)

where u are the nodal displacements, d represents the vector of pure-deformational dis-
placements, R is a basis of the rigid-body modes and vector α collects the amplitudes
of these rigid-body motions. Rigid-body matrix R is then a block-matrix composed of
nodal contributions:

RT =
[
RT

1 . . . RT
n

]
(7)

with sub-blocks that can be formed directly for each node of the mesh as:

Ri =
[
I −r̃i

]
(i = 1 . . . n) (8)

where ri is the position vector of node i relative to a rotation center 0 and n is the total
number of nodes of the free floating subdomain.

Once the rigid-body modes are obtained, separation of the total displacements into
deformational and a rigid-body contributions can be done as described by Felippa and
Park [2]. This is accomplished by using the projector:

P = I−MRM−1
α RT (9)

where M is a symmetric definite positive mass matrix and Mα = RTMR is the principal
mass matrix introduced by Park et al. in [3] a (6×6) matrix for a three-dimensional float-
ing substructure. This operator presents the filtering properties PTR = 0 and PMR = 0,
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allowing to separate pure deformational modes from rigid-body motions using the follow-
ing expressions:

d = PTu, Rα = (I− PT)u (10)

where, by definition, the projector PT performs an orthogonal projection in the subspace
defined by the rigid-body modes and therefore is acting as a filter for the deformational
component of displacements.

For our derivation of the equations of motion, it will be useful to separate the rigid-body
modes R into its translational and rotational components:

R =
[
Rt Rr

]
(11)

using subscripts (t) and (r) to refer to the translational or the rotational component.

3 Variational formulation

The total virtual work for a group of deformable substructures undergoing arbitrary
large-rotations is composed by the following terms:

δWT = δWi + δWd + δWf + δWc (12)

corresponding to the virtual work of inertia forces, internal forces, external forces and
constraints.

Virtual work of inertia forces δWi for a free-floating substructure is obtained integrating
in the volume V the product of particle acceleration (4) times virtual displacement (5):

δWi =

∫

V

ρẌ · δX dV (13)

Introducing a FEM discretization, and considering equations (4) and (5), evaluation of
the virtual work of inertia forces yields:

δWi =




δd
ATδX0

δθ




T

{




M St Sr

ST
t Mt −mr̃G

ST
r −mr̃G

T Mr






d̈

ATẌ0

ω̇


+




gcen
d (ω)
mω̃2rG
ω̃Mrω


+




gcor
d (ω, ḋ)

gcor
t (ω, ḋ)

gcor
r (ω, ḋ)


} (14)

where m is the total mass of the body, rG is the position vector of the body COG in local
coordinates, Mt = mI3 is the (3x3) translational mass matrix, Mr is the (3x3) inertia
tensor and M =

∫
V
ρφTφ dV is the finite-element mass matrix.
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Coupling inertia terms in (14) take the form:

St =

∫

V

ρφT dV, Sr =

∫

V

ρφTr̃T dV (15)

and the quadratic velocity terms due to centrifugal and Coriolis accelerations:

gcen
d (ω) =

∫

V

ρφTω̃2r dV, gcor
d (ω, ḋ) = 2

∫

V

ρφTω̃φḋ dV (16)

with contributions of the Coriolis acceleration to the translational and rotational rigid-
body equations given by:

gcor
t (ω, ḋ) = 2ω̃ST

t ḋ, gcor
r (ω, ḋ) = 2

∫

V

ρr̃ω̃φḋ dV (17)

It is observed that the rigid-deformational inertia coupling terms can be expressed as
the product of the deformational mass matrix and the rigid-body modes as St = MRt

and Sr = MRr. Similarly, for the rigid-body mass matrix terms of (14), we have:

Mt = RT
t MRt, Mr = RT

rMRr, −mr̃G = RT
t MRr (18)

relations previously derived by Park et al. in [3].
Observe that we have defined d in (14) as a pure deformational mode expressed in the

body reference frame, but no mechanism has been introduced to enforce such condition.
This is done introducing projector (9) and replacing the deformation vector d by its filtered
counterpart PTd, arriving to the final expression for the vital work of ineria forces:

δWi =




δd
ATδX0

δθ




T

{




MP 0 0
0 Mt −mr̃G
0 −mr̃G

T Mr






d̈

ATẌ0

ω̇


+




PMΩRrω
mω̃2rG
ω̃Mrω


+




2PΩMḋ
0

2RT
rΩMḋ


} (19)

MP = PMPT, Ω = diag(ω̃)

where deformational and rigid-body inertia terms are uncoupled.
Assuming that the reference point of the body is located at the COG, i.e. rG = 0, the

discrete approximation of the variational is expressed:

δWi = δXT
0 {MtẌ0}+ δqT{MGq̈− 2MĠq}+ δdT{MP d̈+ gd} (20)

MG = GTMrG, MĠ = ĠTMrĠ
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with rotations parametrized using Euler-parameters denoted by the quaternion q.
To compute the virtual work due to deformations, the substructure is discretized using

the classical linear FEM approximation, where the assembly of element contributions by
the direct stiffness method leads to the semi-discrete equations of motion:

δWd = δdT{KPd} (21)

KP = PKPT

where K is the small-displacements finite element stiffness matrix, presenting a null-space
given by the rigid-body modes, that is, KR = 0 and where the projector operator has
been introduced to eliminate the rigid-body component.

The virtual work produced by body loads and boundary tractions acting on the body
is approximated by the discrete equation:

δWf = −δdT{Pf} − δXT
0 {ART

t f} − δqT{GTRT
r f} (22)

provided that the total external force vector is expressed as f .

X Y

Z
X<2>

0

X<1>
0

x<1>
x<2>

y<2>

z<1> z<2>

0<1>

0<2>

Xf

Frame

<1> <2>

y<1>

Body 1 Body 2

Localized multipliers

X Y

Z
Xf

Figure 2: Flexible substructures connected to an intermediate frame. The frame is endowed with indepen-
dent displacement degrees of freedom and body-frame displacement compatibility condition is enforced
using localized Lagrange multipliers.

Flexible substructures are then connected using classical Lagrange multipliers, see Fig-
ure 2, that appear in the system as internal forces to satisfy compatibility conditions
expressed in the body frame of reference.

The virtual work done by the constraints δWc can be expressed:

δWc =

∫

Γc

δ{(Aλ) · (X−Xf )} dV (23)
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where λ represents the localized Lagrange multipliers attached to each substructure and
expressed in the body frame of reference, used to enforce the kinematic compatibility
condition between the body and a frame with position Xf .

After discretization, equation (23) transforms into:

δWc = δλT{BT(RtA
TX0 + r+ PTd)− LfA

TXf}+ δXT
0 {ART

t Bλ}+
δqT{GTRT

rBλ}+ δdT{BPλ} − δXT
f {ALT

fλ} (24)

with BP = PB, providing independent Lagrange multipliers for each substructure. This
approach allows to express substructural constraint equations in the particular local sys-
tem of each body involving only the unknowns of one body and its frame.

Finally, an additional constraint enforcing the unity norm of the quaternion should be
added. This is done introducing a new Lagrangian multiplier µ to enforce this condition
and adding to (24) a new term:

δWq = δ{µ(qTq− 1)} (25)

4 PARTITIONED EQUATIONS OF MOTION

The total virtual-work of a FEM partitioned system undergoing arbitrarily large rota-
tions with small deformations is derived from (12), (20), (21), (22), (24) and (25):

δWT = δdT{MP d̈+KPd+BPλ+ PMΩRrGq̇+ 2PΩMḋ− Pf}+
δλT{BT(RtA

TX0 + r+ Pd)− LfA
TXf}+

δXT
0 {MtẌ0 +ART

t Bλ−ART
t f}+ δµ{2qTq̇} − δXT

f {ALT
fλ

δqT{MGq̈− 2MĠq+ 2µq+GTRT
rBλ+ 2RT

rΩMḋ−GTRT
r f}} (26)

and from the stationary-point condition of total virtual-work, equations of motion are
obtained:




(MP
d2

dt2
+KP) BP 0 0 0 0

BT
P 0 BTRtA

T 0 0 −LfA
T

0 ART
t B Mt

d2

dt2
0 0 0

0 GTRT
rB 0 (MG

d2

dt2
− 2MĠ) 2q 0

0 0 0 2q̇T 0 0
0 −ALT

f 0 0 0 0







d
λ
X0

q
µ
Xf




=




P(f −MΩRrGq̇− 2ΩMḋ)
−BTr
ART

t f

GTRT
r f − 2RT

rΩMḋ
0
0




(27)
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where all terms can be clearly identified; first equation is the deformational part of the
FEM elastic equations, second equation imposes the interface compatibility condition
between the substructure boundary and the frame, third equation represents the trans-
lational global equilibrium condition expressed in the inertial frame of reference, fourth
equation represents the rotational equilibrium condition expressed in the floating-frame
of reference, fifth equation enforces unity of the quaternions and last equation represents
the frame equilibrium condition expressed in the inertial frame.

5 FLUID FORMULATION

The fluid is considered to be inviscid and incompressible, confined in a carrier structure
under the action of gravity field g, initially at rest with density ρ0 and with initial hydro-
static pressure due to gravity p0 = pext + ρ0g(H − z). Next, we define in the body-frame
a Lagrangian deformational displacement field d following the fluid particle and assume
small deviations from this equilibrium position, as represented in Figure 3.

Z
X

g

H

d

(⇢, p)

(⇢0, p0)

body-frame

Figure 3: Initial state of the fluid and deformation under the action of gravity and inertia forces. Dis-
cretization and Lagrangian description of motion using a floating frame of reference.

According to González and Park [4], the virtual work of one fluid finite element ex-
pressed in the body-frame and including the gravity body force, can be expressed as:

δW
(e)
d = ρ0c2V

(e)
f (∇̄ · d)(e)(∇̄ · δd)(e) +

∫

V
(e)
f

p0I : (∇Td∇δd) dV −
∫

V
(e)
f

ρ(A− I)g dV (28)

a linearized approximation around the initial hydrostatic equilibrium state, assuming that
the fluid deviations from equilibrium are small and where the last term accounts for the
rotation of the gravity field.

Element displacements are discretized as d = φd(e), where φ collects the element shape
functions while d(e) gathers nodal values of the element. The element stiffness matrix is

8

32
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then composed of two terms:

K(e) = K(e)
ac +K(e)

geo, (29)

K(e)
ac =

ρ0c2

V
(e)
f

∫

V
(e)
f

(∇ · φ)T dV
∫

V
(e)
f

(∇ · φ) dV (30)

K(e)
geo =

∫

V
(e)
f

pTf (∇φ)T(∇φ) dV. (31)

where K
(e)
ac is the acoustic stiffness matrix and K

(e)
geo is the geometrical stiffness matrix.

Upon assembling the element matrices, we arrive to a discrete variational for the com-
plete fluid mesh analog to (21):

δWd = δdT{KPd− P(A−A0)TFg} = δdT{KPd− f} (32)

in which KP is the projected stiffness matrix of the fluid, d the vector of fluid defor-
mational displacements and f the nodal forces increment due to gravity expressed in the
body-frame.

6 FLOATING STRUCTURES

We study the particular case of a fluid contained in a flexible tank that is transported by
a marine vessel. The hull of the ship is treated as a rigid body connected to the internal
flexible structure and the influence of the external fluid into the system is introduced
as an input. It is important to mention that the only external effect considered in the
simulations are the buoyancy restoring forces and moments. Other hydrodynamic effects
due to the interaction with the external fluid like, diffraction forces, added-mass, or viscous
damping effects, are not considered and could be important in some applications.

The static stability condition of the ship under the effect of restoring forces, which are
buoyancy and weight, is called the metacentric stability. Considering the roll motion of
the ship, see Figure 4, there is a restoring moment in the form:

mφ = −ρg � |GMT | sin(φ) (33)

where ρ is the density of water, � is the displaced volume of water, GMT is the transverse
metacentric height, and φ is the roll angle. Similarly, there is a longitudinal metacenter,
GML, which acts as center of rotation in case of disturbance in the pitch degree of freedom.

Heave motion of the ship is dominated by the effect of restoring forces. If the hull is
assumed to have a shape of a rectangular prism, and a constant waterline area Aw, which
is the area enclosed by the curve at the intersection of the body and the water surface,
then the vertical force that forms as a result of the deviation in the vertical position of
the ship with respect to the equilibrium position, can be given by

Fz = −ρgAwδZ0 (34)
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GMT sin()

MT z

y

Figure 4: Transversal restoring force on a floating structure due to roll rotation. Restoring moment is
proportional to the distance between the center of gravity (G) and the transversal metacentre (MT ) in
the y-z plane.

Finally, the restoring forces vector may be obtained by the collection of these force
components as follows:

fh(X0,q) = −ρgAwA
TAZ(X0 −X0

0), AZ =




0 0 0
0 0 0
0 0 1


 (35)

The buoyancy moments can be expressed:

mh(q) = −ρg �




|GMT |qTAφq
|GML|qTAθq

0


 (36)

with constant matrices

Aφ =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 ; Aθ =




0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0




Variation of the buoyancy forces and moments is obtained by differentiation from (35)
and (36):

∆fh(X0,q) = −ρgAwA
TAZ∆X0 − ρgAw f̃hG∆q (37)

and the moments increment are obtained from:

∆mh(q) = −2ρg �






|GMT |
0
0


qTAφ +




0
|GML|

0


qTAθ


∆q (38)
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7 SIMULATION OF SLOSHING IN FLOATING STRUCTURES

In this Section, a two-body problem is used to validate the proposed computational
technique and demonstrate its potential. We consider the case of a rigid floating structure
connected to a rigid tank transporting 75 m3 of water. The geometrical properties and
dimensions of the ship, including the exact position of the tank inside the ship, are
presented in Table 1.

m Mass 2433 ton
Iφ Rolling inertia 2433× 104 m4

Iθ Pitching inertia 2433× 106 m4

Iz Pitching inertia 2433× 106 m4

� Displaced volume of water 6000 m3

Aw Water plane area 500 m2

GMt Transverse metacentric height 3 m
GMl Longitudinal metacentric height 30 m
ρ Fluid density 1000 kg/m3

Tz Heave period 4.425 s
Tφ Roll period 2.332 s
Tθ Pitch period 7.375 s

y

z

x

y

x

z

y

55m

z

5m

5m

5m

16m

8m

B
A

Table 1: Ship design parameters. 3D cubical tank configuration. Mesh, dimensions and relative position
of the tank inside the marine vessel.

Ship motion is induced by imposing an initial rigid-body rotational velocity to the
ship ω0 = {0.1, 0.05, 0}Trad/s. The transported fluid, with properties ρ = 1000kg/m3

and c = 1500m/s, is modeled using 125 hexahedral finite elements with three degrees of
freedom per node.

Implicit time integration of the equations of motion is performed by using a fixed time
step ∆t = 0.01s, with Newmark parameters (γ = 1

2
, β = 1

4
) combined with a dissipation

parameter α = 0.01. Figure 5 shows different positions in time of the hull and the free-
surface of the fluid due to the prescribed rolling-pitching initial velocity. Time history of
the tank displacement and free-surface elevation is given in Figure 5 for two points A and
B aligned in the vertical direction near the wall.

8 CONCLUSIONS

- A fully implicit partitioned finite-element formulation for the analysis of structure-
structure and fluid-structure systems presenting large rotations and small defor-
mations has been presented. The proposed computational framework is based on
the floating frame of reference approach separating rigid-body motions from de-
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Figure 5: (a) Sloshing motion inside the tank. Instantaneous ship positions and deformed configurations
of the fluid. (b) Evolution of the vertical displacement at the bottom of the tank and elevation of the
free-surface.

formational displacements and uses localized Lagrange multipliers to satisfy the
constraints.

- It has been demonstrated that this new procedure is very well suited for modeling
moderate sloshing phenomena in coupled carrier-internal fluid problems where the
carrier presents large translations and rotations while deformations in the fluid can
be considered small. A numerical example is used to demonstrate the accuracy,
robustness, and efficiency of the proposed solution algorithm.

REFERENCES

[1] Fraeijs de Veubeke B. The dynamics of flexible bodies. International Journal of En-
gineering Science. (1976) 14:895–913.

[2] Felippa, C.A. and Park, K.C. The construction of free-free flexibility matrices for
multilevel structural analysis. Computer Methods in Applied Mechanics and Engi-
neering. (2002) 191:2139–2168.

[3] Park, K.C. and Felippa, C.A. The d’Alembert-Lagrange principal equations and ap-
plications to floating flexible systems. Int. J. Num. Meth. Engng. (2009) 77:1072–
1099.
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