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ABSTRACT Haze is a source of unreliability for computer vision applications in outdoor scenarios, and it is
usually caused by atmospheric conditions. The Dark Channel Prior (DCP) has shown remarkable results in
image defogging with three main limitations: 1) high time-consumption, 2) artifact generation, and 3) sky-
region over-saturation. Therefore, current work has focused on improving processing time without losing
restoration quality and avoiding image artifacts during image defogging. Hence in this research, a novel
methodology based on depth approximations through DCP, local Shannon entropy, and Fast Guided Filter
is proposed for reducing artifacts and improving image recovery on sky regions with low computation time.
The proposed-method performance is assessed using more than 500 images from three datasets: Hybrid
Subjective Testing Set from Realistic Single Image Dehazing (HSTS-RESIDE), the Synthetic Objective
Testing Set from RESIDE (SOTS-RESIDE) and the HazeRD. Experimental results demonstrate that the
proposed approach has an outstanding performance over state-of-the-art methods in reviewed literature,
which is validated qualitatively and quantitatively through Peak Signal-to-Noise Ratio (PSNR), Naturalness
Image Quality Evaluator (NIQE) and Structural SIMilarity (SSIM) index on retrieved images, considering
different visual ranges, under distinct illumination and contrast conditions. Analyzing images with various
resolutions, the method proposed in this work shows the lowest processing time under similar software and
hardware conditions.

INDEX TERMS Dark channel prior, defogging, image enhancement, single image dehazing, sky detection.

I. INTRODUCTION
Fog or haze is a major source of unreliability in out-
door navigation systems, surveillance systems, and other
outdoor computer vision applications, which usually is
caused by atmospheric conditions [1]–[3]. Defogging can
be defined as the removal of fog. Defogging algorithms
have to deal with a trade-off between restoration quality,
under different fog intensities and scenarios [4], [5], and
time-consumption [1], [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang .

He et al. [7] proposed the use of Dark Channel Prior (DCP)
in defogging tasks, which demonstrated that it is possible to
remove fog with remarkable results [7]. Nevertheless, DCP
has three inherent limitations: 1) high time-consumption,
2) artifact generation, and 3) sky-region over-saturation [8],
[9]. Recent research has focused on reducing DCP process-
ing time without losing restoration quality, and avoiding
image artifacts [6], [10]. For instance, Pang et al. [11] used
the DCP and the Guided Filter to avoid image artifacts by
refining the obtained transmission map. Zhu and He [10]
improved the image restoration by minimizing the energy
function through a linear attenuation based on saturation and
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brightness. Nishino et al. [12]employed the maximum pos-
terior probability to compute image depth more accurately.
Recently, pixel clustering in the RGB space was used to
reduce image artifacts during image defogging assuming that
colors in a haze-free image are closely approximated by
a few hundreds of distinct colors [13]. Furthermore, some
optimization approaches have been proposed for obtaining
enhanced dehazing results [14], [15]. For instance, some
methods based on Artificial Intelligence (AI) have yielded
to promising results through the use of a Multilayer Percep-
tron (MLP) [16]. On the other hand, Ren et al. [17] used a
multi-scale Convolutional Neural Network (CNN), a coarse-
scale net to predicts a transmission map, and a fine-scale
net to locally refine results. Cai et al. [18] proposed the
DehazeNet that adopts the CNN deep architecture specially
designed to embody image dehazing. Li et al. [19] proposed
an end-to-end CNN based design (AOD-Net) for improving
high-level tasks on hazy images. In [20], an image-to-image
translation problem was proposed using a generative adver-
sarial network, named Enhanced Pix2pix Dehazing Network,
to generate a haze-free image (without the physical scatter-
ing model). Fu et al. [21] employed a convolutional net-
work architecture, called multi-feature-based bilinear CNN,
to mitigate halo effects, abrupt edges, and image noise. How-
ever, despite the progress in AI-based methods, DCP-based
research has continued [22]. For example [8], [9], [23]–[26]
are focused on reducing the over-saturated areas generated
whenDCP is applied over sky regions. These works improved
DCP computation by adding an image segmentation stage or
implementing quadtree techniques, but their main drawback
is the relatively long processing time. Furthermore, research
efforts have focused on improving the performance measure-
ment of dehazing methods [1], [27]–[29]. The main differ-
ence of the method proposed in this work regarding previous
dehazing DCP/Fast Guided Filter (FGF) [5], [7], [30], [31]
and sky-detection based methods [8], [9], [23]–[25] is the
effective combination of DCP and FGF with local Shannon
entropy, resulting in a fast and efficient method with remark-
able results on outdoor-image dehazing.

This research aims to recover the latent sharp image
from its hazy version, overcoming the DCP limitations. The
proposed-method main contributions are:

• The improved performance of existing dark channel
prior (DCP) dehazing algorithms based on a robust sky-
detection-segmentation and the Fast Guided Filter.

• A robust sky-detection-segmentation process, based on
DCP and local Shannon entropy.

• Faster computation speed and competitive performance
than recent deep learning based dehazing algorithms
under similar conditions of software and hardware.

As a result, the proposed method reduces typical DCP arti-
facts, achieving a better recovery on sky regions than the tech-
niques in reviewed literature, reducing over-saturated areas,
and reaching a proper response with an adequate trade-off
between different levels of haze and computation time.

Quality of defogged images obtained from the proposed
methodology is analyzed through qualitative and quantitative
metrics commonly used in literature about this subject [5],
[9], [17], [32]. The quantitative evaluation is conducted using
Peak Signal-to-Noise Ratio (PSNR), Naturalness Image
Quality Evaluator (NIQE) and Structural SIMilarity (SSIM)
index. More than 500 images are used, based on both syn-
thetic and real hazy images, from three datasets: the Hybrid
Subjective Testing Set from Realistic Single Image Dehazing
(HSTS-RESIDE) [33], the Synthetic Objective Testing Set
from RESIDE (SOTS-RESIDE) [33], and the HazeRD (with
different levels of visibility due to fog) [34]. The proposed
method is compared against nine state-of-art single image
defogging methods1: He et al. [7], Pang et al. [11], Zhu and
He [10] Berman et al. [13], Ren et al. [17], Cai et al. [18],
Li et al. [19], Qu et al. [20], and Salazar-Colores et al. [16].
Obtained results and performed analyses demonstrate that

the proposed method improves the image recovery process by
reducing the typical DCP artifacts, minimizing over-saturated
areas and generating a robust response to different levels of
haze with less computation time.

The remaining of the document is organized as follows:
Section II introduces the theoretical background of involved
topics. Section III is devoted to the proposedmethod and used
data. Obtained results and their corresponding analysis are
presented in Section IV. Finally, some conclusions are given
in Section V.

II. BACKGROUND
A. ATMOSPHERIC DICHROMATIC MODEL
Image-degradation by haze is caused because of particles in
the atmospheric medium absorb and scatter light [35]. The
most accepted model for atmospheric degradation can be
expressed as follows [35]:

yi = tixi + (1− ti)a, (1)

where yi ∈ R3 represents the RGB foggy or haze image,
xi ∈ R3 is the RGB fog-free (sharp) image, ti ∈ R is the
transmission medium, i ∈ N represents the pixel position of
each variable, and a ∈ R3 represents the atmospheric light
color. Assuming that the wavelength is independent of the
atmospheric scattering, the transmission ti can be expressed
as follows [35]:

ti = e−βdi , (2)

where β is a homogeneous attenuation coefficient and di is
the scene depth at each pixel i.

Based on (1), it is possible to retrieve an estimate x̂i of the
fog-free image xi from the foggy image yi as follows [35]:

x̂i =
yi − a
ti
+ a, (3)

1Note that some of these methods use state-of-the-art techniques such as
deep learning and generative models.
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DCP is one of the most widely-used methods for computing
these unknown variables ti and a in order to dehaze the
image [7], [36].

B. THE DARK CHANNEL PRIOR
The dark channel of image yi is defined as [36]

dci = min
i∈�k

min
c∈{r,g,b}

(
yci
ac

)
, (4)

where the c-th color component of yi and a are yci and ac

respectively, �k is a square patch of size s × s centered in
a pixel k .
According to [36] and [35], it is possible to establish the

relation between a fog-free image and its dark channel. For
the case of non-sky regions, the dark channel usually has
low-intensity values , i. e.

dci→ 0. (5)

From the previously established relation, He et al. [7] pro-
posed that the corresponding transmission ti can be computed
as

ti = 1− ωdci, (6)

where 0 ≤ ω ≤ 1 is the level of the desired restoration.
The atmospheric light color a is computed by selecting the
brightest pixel of yi, from the subset of dci composed of the
0.1% of the brightest values.

1) RELATION BETWEEN dci AND DEPTH di
Substituting (2) in (6), with w = 1 we can establish the
relation between dci and di as

dci = 1− e−βdi , (7)

as a consequence, when the distance di → 0, dci = 0, and
when di→∞, dci = 1.

DCP-basedmethods usually have twomain drawbacks [1]:
1) Generation of saturated sky-regions i.e. sky regions

with unreal colors as shown in Fig. 1(c).
2) The restoration or recovery process has a trade-off

between the retrieved-image quality (produced number
of artifacts) and processing time. Fig. 1(d) shows an
example of the visual artifacts that can be generated.

C. LOCAL SHANNON ENTROPY
The local Shannon entropy E�k on a square window �k is
defined as

E�k = −
L−1∑
j=0

PjlogPj, (8)

where L is the number of possible values for a pixel of E�k (in
a grey-scale imageL equal to 256),Pj =

nj
s×s is the probability

that the grey-scale value j appears in �k , which is an s × s
square window centered in the pixel k . nj is the number of
pixels with the value j in �k .

FIGURE 1. Examples of the main drawbacks of DCP method. (a) Input
image 1, (b) input image 2, (c) restored image from (a) presenting
saturated sky regions, (d) restored image from (b) illustrating image
artifacts.

D. THE FAST GUIDED FILTER
The Fast Guided Filter (FGF) [30] is an edge-preserving
linear smoothing filter defined as

qi = ak Ii + bk , ∀i ∈ �k , (9)

where qi is the filtering output image and Ii is the guidance
image. i is the position of a pixel and k is the index of a
local square window � with size s × s. ak and bk are linear
coefficients constants in �k . Given the filtering input image
p, the filter minimizes the reconstruction error between p and
q as

ak =
1
|ω|

∑
i∈ωk Iipi − µk p̂k

σ 2
k + ε

, (10)

bk = p̂k − akµk , (11)

where µk and σk are the mean and variance of I in �k , p̂k
is the average of p in �k , and ε is a regularization parameter
controlling the degree of smoothness.

III. METHODS AND DATA
A. PROPOSED METHOD
The proposed method is based on two assumptions about sky
regions in hazy outdoor images:

1) Sky region distance di → ∞ from the capture device;
thus, the transmission ti described in (2) takes the value
ti = e−∞, i.e., ti→ 0. Based on (7), it can be concluded
that dark channel dci → 1 in sky regions, as shown in
Fig. 2(c).

2) Sky regions are mainly homogeneous; hence, the local
Shannon entropy E�k , computed over the magnitude
of gradient ei in homogeneous regions, has low values,
i.e., E�k → 0 [37]. Fig. 2(d) depicts the local Shannon
entropy map, where it is possible to see how the sky
region values tend to zero in the entropy map.
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FIGURE 2. (a) Input image, (b) ground truth segmented sky, (c) dark
channel intensity map, where dci → 1 in the sky region, and (d) local
Shannon entropy map, where E(�k ) → 0 in the sky region.

Based on these two assumptions, a new two-stages method
that computes an initial and an improved dark channel maps,
is proposed. The aim of the first stage is to compute initial
values of dc0i , a

0, and sky region mask si. The second stage
is devoted to obtain an improved dark channel map dc1i ,
atmospheric light a1, and a refined transmission map t1i using
the sky detection-segmentation. Fig. 3 presents a flowchart
of the proposed method, and Fig. 4 provides an stage-to-
stage visual example of its application. The detection and
segmentation of sky regions are explained in Section III-
B. Each stage of the proposed method is detailed as
follows:

• Stage 1. From an input image yi, Fig. 4(a), it is possible
to obtain its corresponding dark channel dc0i with an
initial atmospheric light a0 and a sky mask si as follows:

1) Estimate the atmospheric light a0 as in [36],
Fig. 4(b).

2) Compute the dark channel dc0i using a0 and (4),
Fig. 4(c).

3) Detect, segment, and obtain the sky region mask
si using local Shannon entropy and dark channel
criteria described in Section III-B, Fig. 4(d).

• Stage 2. Compute an improved atmospheric light
a1 and transmission map t1i by using the detected
sky region si. Finally, apply the scattering model as
follows:

4) Estimate the atmospheric light a1 based on the
detected sky region si, as the average of the pixels
in the input image yi that belong to the sky region
si. If a sky region is not detected, the value of a1 is
assigned as a1 = [1 1 1], as shown in Fig. 4(e).

5) Compute dark channel dc1i using a1 and (4),
as shown in Fig. 4(f).

FIGURE 3. Flowchart of the two-stages proposed method.
Stage 1 computes the initial transmission map and the atmospheric light
(blue line boxes). Stage 2, improves the transmission map using the sky
detection-segmentation (red dot-line boxes).

6) Compute a rough transmission t0i based on the dark
channel dc1i as follows:

t0i = 1− ω

{
1− dc1i , if si = 1 (sky)
dc1i , otherwise.

(12)

Please refer to Fig. 4(g).
7) Compute a final refined transmission t1i using the

FGF (see Section II-D) as follows:

t1i = FGF(yi, t0i ). (13)

Please refer to Fig. 4(h).
8) Retrieve the restored image x̂i by applying the scat-

tering model using the refined transmission map t1i
and the atmospheric light a1 through (3), as shown
in Fig. 4(i).

B. SKY REGION DETECTION-SEGMENTATION
The sky detection-segmentation flowchart process is pre-
sented in Fig. 5.2 This process is divided into two stages:
detecting and segmenting a baseline sky region, and refining
or improving the sky region, as depicted in Fig. 6. The stages
of this process are described as follows:
• Stage 1. Detect and segment a baseline sky region.

1) The input image yi is transformed from its RGB
color model into the corresponding CIELab color

2 To obtain a better performance, the sky detection-segmentation is per-
formed over a scaled version of the image (600× 400 pixels).
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FIGURE 4. Proposed method. (a) Input image, (b) estimated atmospheric light a0, (c) computed dark channel dc0
i , (d) segmented sky region si ,

(e) improved atmospheric light ai estimation, (f) computed dark channel dc1
i , (g) rough transmission map t0

i , (h) refined transmission map t1
i ,

(i) recovered image x̂ .

space ȳi in order to obtain an accurate gradient
information [38].

2) The gradient magnitude Gi is computed over the
Luminance (L) channel ȳi(1), as shown Fig. 6 (b).

Gi =
√
Gxi2 +Gyi2, (14)

whereGxi,Gyi are the Sobel operators, defined as:

Gxi =

−1 0 1
−2 0 2
−1 0 1

 ∗ ȳi(1) (15)

Gyi =

−1 −2 −1
0 0 0
1 2 1

 ∗ ȳi(1). (16)

3) The local Shannon entropy Ei is computed over Gi
using (8), as shown in Fig. 6(c).

4) The local Shannon entropy map is binarized by
assuming that Ei → 0 on sky regions, as shown
in Fig. 6(d).

Ēi =

{
0, if Ei < entropy_threshold
1, otherwise.

(17)

5) The dark channel map is binarized considering that
on sky regions dc1i → 1, as depicted in Fig. 6(e)
and 6(f).

¯dc1i =

{
1, if dc1i > dc threshold
0, otherwise.

(18)

6) A baseline sky segmentation Si is obtained by
combining Ēi and ¯dc1i through the AND logical
operator (∧), (19), as shown in Fig. 6(g).

Si = Ēi ∧ ¯dc1i . (19)

• Stage 2. Refine and improve sky region Si through mor-
phological operations.
7) In order to obtain the basic structure of Si, its

morphological skeleton sk0i must be computed,
as depicted in Fig. 6(h).

8) Seeds sdi are obtained for a region growing pro-
cess by computing and combining the skeleton
branches and endpoints through the OR logical
operator (∨), [39] of sk0i as shown in Fig. 6(i).

sdi = get_branches(sk0i ) ∨ get_endpoints(sk0i ).

(20)
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FIGURE 5. Flowchart for the sky detection-segmentation process. Stage 1:
detection and segmentation of a base line sky region. Stage2: refinement
of the sky segmentation region.

9) Compute image ei by binarizing Gi using an edge
threshold as illustrated in Fig. 6(j).

ei =

{
1, if Gi > edge_threshold
0, otherwise.

(21)

10) In order to avoid possible discontinuities in ei,
a morphological dilation is applied on ei using a
structural element B, as displayed in Fig. 6(k).

dei = δB(ei). (22)

11) Remove false edges by applying an AND (∧) oper-
ation between d̄c0i and dei

dei = dei ∧ d̄c
0
i . (23)

12) Region growing [40] is used for computing the
accurate sky region. Region growing examines

neighboring pixels of initial seed points sdi stop-
ping when an edge in dei is found, as depicted in
Fig. 6(l), 6(m), and 6(n).

sk1i = region_growing(sdi, dei). (24)

13) False sky regions are removed by applying a mor-
phological opening operation [41], as shown in
Figure 6(o)

si = area_opening(sk1i ). (25)

Please see Fig. 6(o).
The parameters of the proposed method were tuning empir-
ically, using the images in the dataset [42]. The code of the
proposed method can be found in.3

C. SKY DETECTION-SEGMENTATION STAGE VALIDATION
Since the proposed method aims to diminish haze effects on
outdoor images using a sky detection-segmentation stage, it is
necessary to measure the performance of this stage; hence,
the dataset in [43] was used, which is a 60-images subset
with the corresponding ground-truth from Caltech Airplanes
Side dataset [44]. A Jaccard similarity coefficient was used
for measuring the segmentation quality, which is a commonly
used metric in the literature [45] and it is defined as the size
of the intersection between two finite sets divided by the size
of their junction, multiplied by 100. That is:

J (A,B) =
|A ∩ B|
|A ∪ B|

× 100 (26)

The Jaccard index defines a similarity percentage
between 0 and 100. The median Jaccard index reached by
the detection-segmentation stage in this work was 96.24
%, which validates the applied method. Fig. 7 shows two
examples from the used database and the corresponding
results obtained through the proposed approach.

D. DATA
The quantitative evaluation of the proposed algorithm is per-
formed using the following datasets, in order to have a wide
range of images for testing. It is worth it to notice that these
datasets were used in recent works from reviewed literature.
• Hybrid Subjective Testing Set (HSTS) from a Realistic
Single Image Dehazing (RESIDE) dataset composed of
ten real-world images [33].

• Synthetic Objective Testing Set (SOTS) from a Realistic
Single Image Dehazing (RESIDE) dataset composed
of 500 synthetic images [33].

• A HazeRD dataset composed of 14 real-world images,
in which the haze was simulated with different visual
ranges (0.05, 0.1, 0.2, 0.5, and 1 Km) [34].

Only outdoor images from the above datasets are used to
evaluate the proposed method, allowing an accurate simula-
tion of fog with realistic parameters, which are justified by
the scattering theory. The parameter ω from (6) used in the
experiments of our method is 0.95.

3Link to code via github
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FIGURE 6. Sky detection-segmentation process. (a) Input image yi , (b) gradient magnitude Gi , (c) local Shannon entropy Ei , (d) binarized local Shannon
entropy Ēi , (e) dark channel dc0

1 , (f) binarized dark channel d̄ c0
1 , (g) segmented baseline sky Si , (h) morphological skeleton sk0

i , (i) obtained seeds sdi ,
(j) estimated edges ei , (k) dilated edges dei , (l) des

i di , (m) segmented sky region sk1
i , (n) segmented sky region sk1

i over the input image yi , (o) refined
sky segmented si .
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E. QUANTITATIVE EVALUATION
1) PERFORMANCE METRICS
Full reference metrics PSNR and SSIM, as well as the
no-reference metric NIQE were used for evaluating and
comparing quantitatively the proposed-method performance.
These metrics are described as follows:
• The Peak Signal-to-Noise Ratio (PSNR) is a quantitative
measure about the quality of a reconstruction. This is one
of the most widely used metrics in dehazing literature
[46]. The mean square error (MSE) between two m× n
monochromatic images I and J is required to obtain the
PSNR metric, as follows:

MSE =
1
mn

m−1∑
i=0

n−1∑
j=0

||I (i, j)− J (i, j)|2; (27)

hence, the PSNR is given by

PSNR=10 log10
(MAX2

I

MSE

)
=20 log10

(MAXI
√
MSE

)
, (28)

where MAX = 2B − 1 and B is the number of bits used
in the image. The higher the PSNR value, the better the
restoration.

• Structural Similarity (SSIM) Index is a perceptual
image-similarity metric, alternative to the mean square
error MSE) and PSNR, to increase correlation with sub-
jective assessment. For an original and a reconstructed
image, I and J , respectively, SSIM is defined as

SSIM(I , J ) =
(2µIµJ + C1)(2σIJ + C2)

(µ2
I + µ

2
J + C1)(σ 2

I + σ
2
J + C2)

, (29)

where µ, σ and σIJ , are the mean, the variance, and
covariance of the images, respectively.

• Naturalness Image Quality Evaluator (NIQE) [47] is a
no-reference, image-quality score, which is based on the
construction of ‘‘quality-aware’’ features and their adap-
tation to a Multivariate Gaussian (MVG) model. The
quality-aware characteristics are derived from a Natu-
ral Scene Statistics (NSS) model. Quality is expressed
as the distance between the MVG and NSS elements
extracted from the assessed image, and the correspond-
ing MVG quality characteristics obtained from the nat-
ural image corpus.

IV. RESULTS AND ANALYSIS
Quantitative and qualitative tests are performed to evaluate
and compare the efficiency of the proposed method, using
metrics as in [11], [48], and [16], [49] for its assessment.
The quantitative evaluation is performed through the com-
monly used PSNR value and SSIM index to determine the
recovered-image quality as in [5]–[7], [19], [33].

All experiments and tests were performed on a PC with
2.6 GHz Intel Core i7-6700HQ, Nvidia GTX 950m GPU
and 16 GB of RAM. All methods except the one proposed by
Qu et al. [20] are Matlab2018-coded and run using only the

FIGURE 7. Two samples from the database used for assessing the sky
detection-segmentation stage. (a), (d) Input image, (b), (e) ground-truth
sky mask, (c), (f) proposed-method output mask.

CPU. The Qu et al. [20] method runs on Python 3 language
and Caffe framework using the GPU (4 GB RAM).

A. QUALITATIVE EVALUATION
Fig. 8 shows 10-real world images from the HSTS dataset;
where column (a) represents the ground-truth images, col-
umn (b) represents synthetic fogged images, and (c) to
(k) depict the results from different defogging algorithms:
(c) He et al. [7], (d) Pang et al. [11], (e) Zhu and He [10],
(f) Berman et al. [13], (g) Ren et al. [17], (h) Cai et al. [18],
(i) Li et al. [19], (j) Salazar-Colores et al., [16], and
(k) Qu et al. [20]. Columns (l) shows the result from the pro-
posed method. From this figure, it can be observed that the
algorithms (c), (e), and (g) show unreal colors in the retrieved
image, mainly in the sky region; moreover, methods (e), (f),
(g) and (i) present some visual artifacts in zones with different
depth values.

Fig. 9 shows 5 out of 500 real-world outdoor images from
the SOTS dataset. These ground-truth images are depicted
in column (a). Fog-affected images are shown in column
(b), and the image-restoration results are listed in subsequent
columns as follows: (c) He et al. [7], (d) Pang et al. [11],
(e) Zhu andHe [10], (f) Berman et al. [13], (g) Ren et al. [17],
(h) Cai et al. [18], (i) Li et al. [19], (j) Salazar-Colores et al.
[16], and (k) Qu et al. [20]. Column (l) shows the result from
the proposed method.

These results are consistent with those shown in Fig. 8.
Similar changes can be seen in the color of sky regions when
methods (c), (e), (f), and (g) are used; furthermore, some
artifacts are present by using methods (e), (f), (g), and (i).

B. QUANTITATIVE EVALUATION
As described before, SSIM index is computed over the
restored images shown in Fig. 8, obtaining the corresponding
index values given in Table 1.

The results are compared against the ninemethods, demon-
strating that the proposed method can achieve a SSIM index
of 0.9, which is the second one average index of the compared
methods, only Qu et al. [20] shows better performance. Note
that Cai et al [18]. and Li et al. [19] use a deep-learning
technique, which is a state-of-art method, whereas the other
methods show lesser SSIM index values. The SSIM index
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FIGURE 8. Qualitative comparison of ten images from HSTS dataset using different algorithms. (a) ground-truth images, (b) images with fog, (c) He et
al. method, (d) Pang et al. method, (e) Zhu et al. method, (f) Berman et al. method, (g) Ren et al. method, (h) Cai et al. method, (i) Li et al. method,
(j) Salazar et al., (k) Qu et al., and (l) proposed method.

TABLE 1. SSIM index from the 10 images from HSTS dataset presented at
Fig. 8 and numeric comparison with different defogging methods.

results appear to be in good agreement with the visual evalua-
tion presented in Fig. 8 and with the results shown in Fig. 10.

The PSNR computations using the 10HSTS images overall
methods are presented in Table 2. These results revealed that
the proposed method has a significant advantage over the
other methods; only the method reported by Cai et al. [18]
has a similar PSNR value. The obtained experimental results
corroborate that the method proposed in this work provides
a similar or even a better outcome than those in the state-of-
the-art, including artificial intelligence methods, considering
PSNR value and SSIM index.

TABLE 2. PSNR from the 10 images from HSTS dataset presented at Fig. 8
and numeric comparison with different defogging methods.

The SSIM index was computed for over 500 images from
SOTS to statistically evaluate and compare the proposed
method against the other nine approaches. The results are
presented using a box-plot. See Fig. 10. The box-plot is
divided into four parts (quartiles), where the red central line
represents the median value. By comparing the median val-
ues of the SSIM index, it is possible to note that the proposed
method is one of the best three methods (higher SSIM).
By comparing the interquartile range (the box), it is possible
to see that our method returns the most compact interquartile
range, meaning that it is robust. Additionally, this method
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FIGURE 9. Qualitative comparison example of 5 images from RESIDE dataset. (a) Ground-truth images, (b) images with fog, (c) He et al. method,
(d) Pang et al. method, (e) Zhu et al. method, (f) Berman et al. method, (g) Ren et al. method, (h) Cai et al. method, (i) Li et al. method, (j) Salazar et
al., (k) Qu et al., and (l) proposed method.

FIGURE 10. Box-plot comparison of the SSIM index using 500 outdoor
from SOTS dataset.

FIGURE 11. Method comparison in terms of PSNR, over 500 outdoor
real-world images obtained from SOTS dataset.

can generalize better than the AI-based methods. Finally,
those points outside of the whiskers represent outliers.4

4Outlier points are defined as the points outside 1.5 times the interquartile
range above the upper quartile and below the lower quartile.

FIGURE 12. Comparison of the average SSIM index for retrieved images
from pictures of the HazeRD dataset with different visibility ranges.

FIGURE 13. Comparison of the average PSNR value for retrieved images
from pictures of the HazeRD dataset with different visibility ranges.

The performance of classical DCP and FGF approach, con-
sidering the SSIM index, is consistently lower than the pro-
posed method.
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FIGURE 14. Example of HazeRD image with different visibility haze conditions. (a) Ground-truth image, (b) 1km, (c) 0.50 km, (d) 0.20 km, (e) 0.10 km, and
(f) 0.05 km.

FIGURE 15. Qualitative comparison example of 4 images from literature. (a) Images with fog, (b) He et al. method, (c) Pang et al. method, (d) Zhu
et al. method, (e) Berman et. al. method, (f) Ren et al. method, (g) Cai et al. method, (h) Li et al. method, (i) Salazar et al., (j) Qu et al., and
(k) proposed method.

Similarly, the PSNR computation over the 500 images
from SOTS dataset is illustrated through box-plots in Fig. 11.
In general, it is possible to see that the PSNR range value
is higher than the SSIM index. The proposed method has
the best median value 24.27. By comparing the inter-quartile
range, it is possible to see that Zhu et al., Cai et al., Li et al.,
Salazar et al., Qu et al. and the proposed method have
similar performance. Compared against the DCP-based/FGF
methods, He et al. and Pang et al., the proposed-method
performance, using this metric, is remarkably higher.

Another dataset used for the quantitative evaluation was
the HazeRD dataset [34]. The quantitative evaluation is based
on the SSIM index and PSNR over the same outdoor images
with 5 different visual ranges: 0.05 km, 0.10 km, 0.20 km,
0.50 km, and 1 km, where 0.05 km is the highest fog density
and the lowest visual range. Fig. 14 presents an example of
an image with different fog intensities.

Fig. 12 presents the SSIM index over five visual ranges:
0.05 km, 0.10 km, 0.20 km, 0.50 km, 1 km, and the average,
using the HazeRD dataset. The point-up triangle marker (4)
represents the maximum SSIM index over all methods at cer-
tain visual range. In contrast, the point-down triangle marker
(∇) represents the minimum index over all methods. Fig. 14
reveals that our method has outstanding performance in the

visual ranges of 0.20 km, 0.50 km, 1 km, and the average
value. These results suggest that the defogging methods,
including the deep-learning techniques (e.g. Cai et al. [18],
Li et al. [50], and Ren et al. [17]), have a lower SSIM per-
formance with different illumination and contrast conditions.
Although the SSIM performance of our method is not the best
at 0.05 and 0.10 km, it exhibits a superior SSIM performance
to the remaining methods.

Average PSNR values for the retrieved images from
the HazeRD dataset are shown in Fig. 13, over the five
visual ranges: 0.05 km, 0.10 km, 0.20 km, 0.50 km,
1 km. From this figure, the proposed method shows the
best performance with the highest PSNR value, indicated
by the pointing-up triangular marker ((4)), at 0.50 km,
0.20 km and 1 km.

Four real-world images (Fig. 15) widely used in the liter-
ature were employed to evaluate the methods performance
with the no-reference metric NIQE. From obtained results,
the proposed method achieves the second-best outcome,
being outperformed just by the Zhu et al. method; however,
this approach shows an inferior performance than the pro-
posed method considering PSNR and SSIM metrics. Finally,
the AI-based methods have worse performance than the clas-
sical methods in all cases.
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TABLE 3. NIQE metric values results (less is best).

TABLE 4. Elapsed-time comparison for different defogging algorithms in
seconds, considering different resolutions.

C. PROCESSING TIME
In Table 4, a time-consumption comparison is performed con-
sidering all methods with different image resolutions (640×
480, 800×600, 1024×768, 1280×720, 1920×1080). From
this table, it is worth it to notice that the proposed method
has the lowest processing time in comparison to all the other
approaches with similar software and hardware conditions,
considering all image resolutions. The Qu et al. method [20]
a faster processing time; however, it could not be considered a
fair comparison since, the method is implemented on Python,
and executed using GPUs. Moreover, it is important to notice
that with the maximum image size (1920× 1080) considered
in this work, this method deliver a memory error; therefore,
it can be considered that a very important feature of the
proposed method is its capability of being implemented in
conventional embedded systems, making it suitable for being
used in real-life, computer-vision applications to carry out
defogging tasks online.

V. CONCLUSION
Defogging is a significant process of computer vision, which
has to consider several factors like restoration quality, dif-
ferent fog-intensity scenarios (visual ranges), and process-
ing time. DCP is usually employed for this task; however,
it suffers from high time-consumption, artifact generation,
and sky-region over-saturation; hence, resent research has
focused on improving these features in dehazing methods.
In this research, the recovery of a sharp image from its
hazy version, eluding the DCP limitations, is aimed. The
proposed method performance is assessed through a quali-
tative and quantitative analysis applying the commonly used
SSIM and PSNR metrics over retrieved images from more
than 500 pictures of the HSTS, SOTS and HazeRD databases,

and comparing the obtained results against 9 recently pro-
posed approaches in reviewed literature; from there, it is
demonstrated that the proposed method falls into the three
techniques with the highest SSIM index; furthermore, the it
has the highest PSNR median value among all considered
defogging approaches. On the other hand, considering dif-
ferent visual ranges, the proposed method shows a superior
performance at least in three out of five distinct ranges,
than all the other defogging approaches under different illu-
mination and contrast conditions. In addition, the proposed
method achieved the second-best performance utilizing the
no-reference NIQE metric. Finally, the proposed method has
the lowest processing time (under similar conditions of soft-
ware and hardware), considering different image resolutions,
compared to all examined algorithmswhich is a quite relevant
for many computer vision applications.
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