
Computing at the Edge: But, what Edge?
Luis M. Contreras‡, Javier Baliosian∗†, Pedro Martnez-Julia§, and Joan Serrat†

‡Transport and IP Networks Dept. Telefnica Global CTIO Unit Madrid, Spain,
∗Universidad de la República, Uruguay,
†Universitat Politcnica de Catalunya, Spain,

§National Institute of Information and Communications Technology (NICT) Tokyo, Japan,
luismiguel.contrerasmurillo@telefonica.com, baliosian@fing.edu.uy, pedro@nict.go.jp, serrat@tsc.upc.edu

Abstract—The traditional telecommunications business is evolv-
ing towards offering a richer set of services beyond basic connec-
tivity, leveraging on network programmability and virtualization.
A versatile execution environment is required, capable of running
different workloads in different locations in the network. Cloud
computing is the key paradigm that allows fostering this trending
change. One interesting question to solve is to what extent
those computing environments have to move towards the edge.
Some services can be enabled by environments with increased
capillarity, while others can be implemented in environments
with more relaxed constraints (e.g., in terms of latency). This
paper explores this topic by differentiating service edge from
physical network edge and proposing an architecture based on the
ALTO server for assisting orchestration systems in discriminating
the suitable environments for each service. In addition to that,
we propose a network-flow based strategy for assigning service
functions to infrastructure elements following those precepts,
together with an initial validation on the scalability of the
assignation solution, a well-known problem of this task.

I. INTRODUCTION

The cloud computing paradigm has provided a new model
for service delivery where Data Centers (DCs) hosting a pool
of Information Technology (IT) resources, are able to attend
multiple service demands by means of a dynamic assignment
of capabilities, such as CPU or storage capacity, either as phys-
ical or virtual resources (in the latter, by using some abstraction
mechanisms). The virtualization technology in the cloud allows
the flexible management of those IT resources, distributing
them per service as needed (following an Infrastructure-as-
a-Service, IaaS, approach) either among distinct servers into
a single data center, or spreading them across several inter-
connected data centers, even across multiple administrative
domains.

The computing resources are then allocated on-demand de-
pending on the customer (or tenant) requests. This elasticity on
resource consumption allows and encourages efficient resource
utilization and an agile adaptation to the business and service
needs in every moment.

Originally, those DCs were conceived as large centralized
facilities concentrating a significant number of computing
resources. However, new service needs (e.g., requiring low
latency or benefitting from the proximity to the end-user) are
influencing this design by reconsidering the need of deploying
more and more computing capabilities towards the network
edge. The emerging approach is to deploy multi-purpose
hardware resources at the edge of a telco operator’s network to

Fig. 1. Centralized cloud site architecture.

dynamically deploy the application logic close to the end-user
device.

Such trend, while initially can be seen as natural, supposes
larger investments as well as the introduction of adaptation
mechanisms in the control operations of the network in order to
offer flexibility for agile connectivity of workloads variable in
time, origin, etc. It is therefore essential to understand what is
the optimal edge for each of the services that will be supported
by the network, thus avoiding any overinvestment and over- di-
mensioning of the network systems with computing execution
environments and transport capacity connecting them. This is,
however, not easy because of the intrinsic uncertainty of the
services that will be deployed on those systems, and where
(location) and when (time) they will be deployed, especially
in the advent of 5G.

Moreover, even assuming a certain degree of distribution
of the IT resources across the network, it is not clear what
can be the criteria and procedures for identifying the most
convenient location for each service at each time, pursuing
efficiency in the sense of not starving precious resources for
services that could be accommodated in other less important or
critical infrastructures. All of this, for sure, depends on the kind
of service to be deployed, since whatever can be essential for
a service does not necessarily correspond with a key constraint
for another one.

Fig. 2. Placement options depending on the type of service.

This paper proposes an initial approach to this issue by
exploring what kind of parameters can be taken into account
for infrastructure discrimination, as well as proposing an initial
idea of integration of these decision mechanisms (based on
ALTO) in a management and orchestration system governing
many cloud infrastructures in the network. It introduces a
combinatorial optimization process that leverages on the par-
ticularities of the domain to address the typically untreatable
problem of optimally assigning services to host infrastructure
in a practicable manner.

The paper is organized as follows. Section II provides
insights on the evolution of existing carrier networks with the
introduction of computing environments for allowing a flexible
deployment of services. Section III stresses the difference
between the physical network edge and the logical service
edge, as the motivation for selecting appropriate edges for
each type of service. Section IV presents a network flow-
based combinatorial optimization approach for integrating such
decision criteria on the management and orchestration system
in a tractable manner. Finally, Section VI concludes the paper
and presents some future steps with regards to the objective of
the paper.

II. CLOUD-BASED TELCO NETWORKS

Network operators have started to evolve their networks
[1] by introducing computer-based execution environments
and developing control mechanisms to manage and operate
the transport equipment connecting those environments. The
objective is two-fold: provisioning cloud services to their
customers and enabling the virtualization of network functions.
To achieve this goal, we need to define mechanisms that are
able to orchestrate the cloud environments with different and
heterogeneous access and core networks, dynamically control-
ling intra- and inter-DC connectivity enabling high throughput
and low-latency services [2].

A. Evolution from conventional telecom networks

Traditional telco network architectures (for both fixed and
mobile) have been typically designed as centralized with a
hierarchical structure, having a clear function of aggregating
traffic and offering access to content out in the Internet [3].

This traditional approach is being questioned as a result of
the need of introducing and managing diverse and dissimilar
services for a multitude of heterogeneous terminals connected
through different access networks compelling a wide variety
of QoS performance requirements, bandwidths, traffic profiles,
and connectivity types. Future telco networks are expected to
support the needs of a hyper-connected society, which is con-
tinuously demanding very high data rate access, independence
from the technology of attachment to the network, and an
increasing number of almost permanently connected devices.
Conventional ways of engineering services are not valid any-
more, i.e., based on monolithic devices statically located in the
network. Evolution in time, location, and requirements of the
workloads generated by the end-users advocates for a flexible
infrastructure able to allocate resources that can be instantiated
and removed, scaled-up and down, and being made closer to
the user, according to the real needs of the overall services, in
real-time.

The efficient integration of cloud-based services among
distributed DCs, including the interconnecting network, be-
comes then a challenge to provide performance guarantees,
localization, and high availability properties. The transport
network must increase its flexibility in terms of automatic
configuration and adaptive bandwidth allocation to support
such services. As a mean of achieving that, it is foreseen an
overall control of the resources (both for network and cloud)
in an automatic fashion.

B. Network Softwarization and Virtualization

Generally speaking, these IaaS-based cloud services can
be used for the deployment of virtualized network functions,
respecting the requirements of telecom services such as high
availability (i.e., 5-nines), very low latency, and sophisticated
networking.

Network Function Virtualization (NFV) advocates for the
instantiation of Network Functions (NFs) on commodity hard-
ware, as opposed to the monolithic approach of vertical soft-
ware and hardware integration, common up to recent years.
The possibility of instantiating services as a composition of
Virtualized NFs (VNFs) distributed along the network provides

2

TABLE I
SERVICE CHARACTERIZATION BY TYPE [4].

Scenario End-to-end
latency

Jitter Traffic density

Discrete
automation
motion control

1 ms 1µs 1Tbps/km2

Discrete
automation

10 ms 100µs 1Tbps/km2

Process
automation –
remote control

50 ms 20 ms 100Gbps/km2

Process
automation –
monitoring

50 ms 20 ms 10Gbps/km2

Electricity
distribution –
medium voltage

25 ms 25 ms 10Gbps/km2

Electricity
distribution –
high voltage

5 ms 1 ms 100Gbps/km2

Intelligent
transport sys-
tems/infrastructure
backhaul

10 ms 20 ms 10Gbps/km2

Tactile interaction 0,5 ms TBC [Low]
Remote control [5 ms] TBC [Low]

great flexibility and facilitate the adaptation to whatever spe-
cific need of a service.

One further step to take is introducing the network slicing
concept, leveraging on network softwarization and virtual-
ization. The idea behind this concept is the possibility of
defining an arbitrary amount of logically independent network
partitions or slices, each comprising different resources and
NFs, which are interconnected and are involved in the delivery
and the operation of a specific service. By instantiating network
slices, the network will be able to provide completely different
services in a dynamic way over the same infrastructure. Each
slice will behave and appear as a fully-functional network,
despite those slices actually, operate over the same physical
infrastructure.

C. Cloud-based services as an enabler of network slicing

Network providers are nowadays deploying cloud-like fa-
cilities, termed NFV infrastructures (NFVI) in NFV termi-
nology, which will serve to host VNFs. An NFVI allows
the deployment of VNFs in a dynamic way that can be
adapted to the specific needs of each requested service. In
Telefnica, those NFVI capabilities are based on UNICA [5],
the architecture being globally deployed at all its operation
centers. The overarching architecture of UNICA is based on
cloud concepts to allow large-scale deployment across multiple
sites, but also covers provider needs such as carrier-grade
performance, scalability, and operational capabilities.

For the NFVI infrastructure to be operational, it will be
required to define several types of sites or points of presence
along the operator’s network to create the topology needed to
satisfy the requirements of the services according to their needs
in terms of latency, processing capacity, bandwidth, etc. The
aim is to distribute workloads efficiently and smartly across
the network. The objective is to distribute network loads or

applications that improve the efficiency of the network and the
user’s service experience.

Conventional centralized IT data center architectures for
cloud computing could play a role in the above context, but
they are clearly insufficient. In fact, new communication trends
require higher levels of capillarity in terms of edge cloud
locations.

Thus, the concept of edge can be tackled at different points
of the network [6], such as the operator’s core network, the
aggregation central offices, the base stations or even the on-
premises or on-device. Distinct applications with different
kind of workloads and different service requirements could
be in principle constrained to certain of those locations to
work properly. Figure 2 provides a first approximation to
this idea together with some potential workload distribution.
However, having an assessment method of this fact could help
to select the proper execution environment for a given service
and rationalize the investment needed to support plenty of
computing capabilities across the network.

In summary, different environments can be further comple-
mented with more cloud facilities in different parts of the
network. With a potential plethora of computing capabilities
across the network, selecting the most appropriate execution
environment for each service is then an exercise of efficiency
and optimization.

III. PHYSICAL EDGE VS. SERVICE EDGE

The evolutionary roadmap of existing telco networks will
then offer multiple levels of processing/storage (local, edge
cloud, remote, and federated cloud). The criteria to decide
where to deploy the service (i.e., the NFs defining the service)
must be defined by considering a combination of several
factors, among which it can be mentioned the service perfor-
mance parameters, the minimization of energy consumption,
the network and cloud load balancing, etc. Such decisions
should be transparent to the user.

Many references can be followed for understanding the
different needs of future 5G services. In [4] and [7], 3GPP has
defined three types of service categories, namely enhanced Mo-
bile Broadband (eMBB), ultra Reliable Low Latency (uRLLC),
and massive Machine Type Communications (mMTC), as well
as the corresponding traffic requirements for two of them, the
eMBB and uRLLC slices. Traffic requirements for mMTC are
defined by NGMN in [8]. Finally, 5G PPP has provided several
5G use cases in [9], identifying a set of basic characteristics
for them.

Table I presents some examples of the characterization of
different forthcoming 5G service scenarios, in terms of latency
or traffic needs, for example. It is then clear that different
constraints can be relaxed or on the contrary, considered as
mandatory at the time of identifying from which point in the
network is most appropriate to carry out the service delivery.

For instance, for the motion control in the discrete automa-
tion case, the end-to-end latency is limited to 1 ms, requiring
at the same time a high traffic density of up to 1 Tbps/km2.
This suggests the need for delivering the service very close

3

to the physical edge of the network. On the contrary, in the
remote control for process automation, both the latency and the
traffic density can be relaxed up to 50 ms and 10 Gbps/km2

respectively, which in principle can be accommodated in DCs
more deeply in the network, despite it could also be hosted
close to the physical edge of the network, as before. This
reflects the fact that the physical edge of the network does
not necessarily correspond with the suitable edges for each of
the services to be deployed.

Here we assume that the 5G services being deployed will
basically consist of five technical dimensions:
• Bandwidth (B), characterized by indicators like data rate,

accumulated data volume, etc.;
• Delay (T), articulated around parameters like latency,

jitter, etc.;
• Computation (C), determined by aspects like the process-

ing imposed by the number of sessions to be maintained,
processing needs for the service, etc.;

• Storage (S), influenced by memory size, the volume of
data to be stored, etc.;

• Durability (V), defined by the ephemeral duration or
permanent behavior of the service to be deployed.

All these dimensions can be taken into account at the time
of deciding where and when to deploy a service, or what
resources and functions allocate for creating a supportive slice
for that given service. Other parameters can also influence,
like geographic or regulatory limitations that can condition
the number of selectable edges, but these are not addressed
here for the sake of brevity. Then, for each service to be
deployed, it is required to identify how it maps against the
referred technical dimensions, in such a way that compliant
DCs can be discriminated and selected as suitable candidates
for deployment.

The set of cloud infrastructures I available at the time of
deploying a service are composed of many IT resources R
for computation and storage in a specific location L and will
be accessible through the network via some links of a given
capacity A. The resources R can be checked against the service
needs in terms of computation C and storage S; the capacity A
can be checked against the needed bandwidth, B; and finally,
the location L can be checked against the delay T , e.g. by
means of monitoring data obtained through active probing
between the access point of interest and the targeted cloud
sites. Furthermore, the temporal availability of the resources
could be restricted, for instance, due to a pre-scheduled future
use because of, e.g., a calendaring schema (in this work, we
do not address this issue either).

When a service is to be deployed, it can be modeled in terms
of parameters B, T , C and S, and also characterized by the
expectation on the durability of the service, V . Discriminating
what of those cloud infrastructures can properly host the newly
requested service and choosing a proper matching of services
and infrastructures is known to be a computationally exigent
task, known in general as the assignment problem. Bellow,
we propose one solution based on classic network flow-based
combinatorial optimization, that leverages the particularities

of the problem to control its computational complexity. Once
identified what the environments suitable for the deployment
of a given service are, and its best distribution (or at least
a very good one), this information can be consumed by the
orchestration system ensuring that the service KPIs can be
satisfied.

IV. THE SERVICE ASSIGNMENT PROBLEM

The assignment problem, is one form of the facility location
problem, largely studied in works such as [10] and, as most
of them, can be seen as a combination of special cases of the
Knapsack Problem (KP). In the classic KP, we have an item
set N , consisting of n items j (they can be the services in this
paper) with profit pj and weight wj(a service requirement, for
example), and the capacity value c (the infrastructure capacity).
The objective of a KP is to select a subset of N such that
the total profit of the selected items is maximized and the
total weight does not exceed c. However, since the service
requirements of our own problem are multidimensional, we
have elements of the d-dimensional knapsack problem (d-
KP) [11], which can be seen as a knapsack problem with a
collection of different resource constraints or one constraint
consisting of a multidimensional attribute. On top of that,
because we have multiple infrastructure elements, we may see
the problem also as a Multiple Knapsacks Problem (MKP) [11].
MKP is a generalization of KP from a single knapsack to m
knapsacks. Its objective is to assign each item to at most one
of the knapsacks such that none of the capacity constraints are
violated and the total profit of the items put into knapsacks is
maximized.

Following this characterization, our service assignment prob-
lem can be formulated in terms of Linear Programming (LP) as
follows. We have a set of service requests F = f1, ..., fn with
profits pj (the profit is independent of which infrastructure
element host it) and the previously mentioned requirements
on storage sj , bandwidth bj , and computation cj , all with
j = 1, . . . , n. We have also a set of infrastructure elements
R = r1, . . . , rm with positive capacities σi, βi, and κ, cor-
responding to storage, bandwidth, and computation resources,
with i = 1, . . . ,m. By now, we leave out other constraints that
are not related with the capacity of the Infrastructures but with
its location (e.g., delay and jitter); they will be considered as
part of the heuristics applied later in Section IV-B.

We call a subset F̂ ⊆ F feasible if the items of F can
be assigned to the infrastructure elements without exceeding
their capacities, i.e. if F̂ can be partitioned into m disjoint sets
Fi, such that s(Fi) 6 σi, b(Fi) 6 βi, and c(Fi) 6 κi with
i = 1, ...,m. The objective is to select a feasible subset F̂ ,
such that the total profit of F is maximized.

4

The problem is stated as:

maximise
m∑
i=1

n∑
j=i

pjxij (1)

subject to
n∑

j=1

sjxij ≤ σi, i = 1, . . . ,m, (2)

n∑
j=1

bjxij ≤ βi, i = 1, . . . ,m, (3)

n∑
j=1

cjxij ≤ κi, i = 1, . . . ,m, (4)

m∑
i=1

xij ≤ 1, j = 1, . . . , n, (5)

xij ∈ 0, 1, i = 1, . . . ,m, j = 1, . . . , n (6)

where variable xij = 1 if function j is placed infrastructure
element i and zero otherwise. To guarantee that each function
can be placed in an infrastructure element, we assume:

sj ≤ σi, bj ≤ βi, cj ≤ κi, i = 1, . . . ,m, j = 1, . . . , n (7)

To avoid trivial constraints it is assumed that:
n∑

j=1

sj ≥ σi,
n∑

j=1

bj ≥ βi,
n∑

j=1

cj ≥ κi, i = 1, . . . ,m (8)

A problem as the one formulated above is well known to be
NP-hard, with no pseudo-polynomial solutions (unless P =
NP). Because this, many heuristics have been developed to
address complex KPs, some based on branch-and-bound strate-
gies, other through approximation algorithms (for example, see
[12], [13]). However, having in mind the particular dynamics of
the problem, this is, both the available infrastructure and the
demand pattern are not very diverse and change slowly, we
have chosen a method similar to the one in [14] that, instead,
shifts most of the computation complexity to an algorithm
that builds a potentially vast flow network but only when the
infrastructure or the demand pattern change.

To distribute the computational load in a way that left the
heaviest parts to be performed offline and not too often, we
divided the problem into two main tasks.

The first and most onerous task is to get the set of infras-
tructure cloud elements –with their RAL characteristics– and a
demand profile of services –with their BTCSV requirements–,
and compute an optimal and generic assignment of service re-
quests to infrastructure elements. That includes addressing the
combinatorial problem of considering all the possible service
types combinations that an infrastructure element can host and
chose the optimal one (below, we describe how we reduce the
size of this problem). This part can be computed only when
the infrastructure changes and using either a particular set of
service requests or the expected demand profile for a particular
time-frame. We call this part of the problem ”Service Demand-
pattern Assignment.”

The second task is to get the result generic result of the ”Ser-
vice Demand-pattern Assignment,” and a particular instance

of service requests set, and assign them to each infrastructure
element. We call this task, ”Service Request Assignment.”

Below, we present the details of how these two tasks are
addressed.

A. Service Demand-pattern Assignment

A 5G infrastructure, such as the one considered in this paper,
might be sized in some thousands of nodes and the number of
service requests in such a network would be of a similar order.
Addressing such scales naively might be unpractical even for
an offline task. Thus, to reduce the size of the problem, we
assume that each of infrastructure element rj belongs to a
type (such as Access CO or Site Radio Edge, as those in
Table I) with common characteristics such as storage capacity,
computation power, and bandwidth1. Hence, we have a set of
different infrastructure types R = Ri, such that |R| � |R|.
Second, that each of the services requests fi belongs to also
a type of service (e.g., Video CDN, VRAN) with common
requirements such as storage capacity, computation power, and
bandwidth2. Consequently, we have a set of different service
types F = Fi, such that |F| � |F |. We assume that all
services belonging to a type Fi imply the same profit pi.

It is quite common to use flow networks to model com-
binatorial problems [15]. Network models of this type have
several elements: capacities on the edges, indicating how much
”flow” they can carry; source nodes, which generate traffic;
sink (or destination) nodes which ”absorb” flow as it arrives;
and finally, the flow itself, which is transmitted across the
edges. The ”flow” is an abstraction for different things that
depend on the problem being modeled.

Formally, a flow network is a directed graph G = (V,E)
with the following features: a capacity ce and cost oe, associ-
ated with each edge e; a source node s ∈ V ; and a sink node
t ∈ V . In addition to this, no edge enters the source s and no
edge leaves the sink t; there is at least one edge incident to
each node; and finally, all capacities are integers. An s−t flow
is a function w that maps each edge e to a non-negative real
number, w : E → R+; the value w(e) represents the amount
of flow carried by edge e. A flow w must satisfy the following
two properties.

0 ≤ w(e) ≤ ce, e ∈ E, (9)∑
e into v

w(e) =
∑

e out of v

w(e), v 6= s, v 6= t (10)

The value of a flow w, denoted v(w), is defined to be the
amount of flow generated at the source:

v(w) =
∑

e out of s

(11)

Finally, the main purpose of all this formulation is to, given
a flow network, find a flow of maximum possible value and
minimum cost.

1Note that two Access CO with different resource configurations or locations
may belong to different types

2Note that, for example, different Video CDN service requests with different
requirements belong to different service types in this model.

5

s

t

R1 RmRm−1. . .

F̂
1
,1

=
(f̂

1
,1
,1 ,...,f̂

n
,1
,1)

F̂
1
,k

1
=

(f̂
1
,1
,k

1 ,...,f̂
n
,1
,k

1)

. . .

F̂
m

,k
m

=
(f̂

1
,m

,k
m
,...,f̂

n
,m

,k
m
)

F̂
m

,1
=

(f̂
1
,m

,1 ,...,f̂
n
,m

,1)

. . .

F̂
m

−
1
,k

m
−

1
=

(f̂
1
,m

−
1
,k

m
−

1 ,...,f̂
n
,m

−
1
,k

m
−

1)

F̂
m

−
1
,1

=
(f̂

1
,m

−
1
,1 ,...,f̂

n
,m

−
1
,1)

.

|R1
| : 0

|R
m
−
1 |
:
0

|R
m | : 0

∞
:
∑ n i=

1

∣ ∣ ∣|F i|
−
f̂ i

,1
,1

∣ ∣ ∣ ∞
: ∑

ni=
1 ∣∣∣ |F

i | −
f̂
i,1

,k
1 ∣∣∣ ∞

:
∑ n i=

1

∣ ∣ ∣|F i|
−

f̂ i
,m

,1

∣ ∣ ∣ ∞
: ∑

ni=
1 ∣∣∣ |F

i | −
f̂
i,m

,k
m ∣∣∣

∞
: − ∑

n
i=

1 p
i f̂

i,1,1

∞
: − ∑

n
i=
1 p

i ˆf
i,1,k

1

∞
: −
∑ n

i=
1
pif̂

i,j
,km

Fig. 3. Graph GD , the Network Flow formulation of the Demand-pattern
Assignment Problem. Each edge has a label ”capacity:cost” on it although not
of them are depicted for the sake of clarity. Each doted, red box represents a
type of infrastructure element containing all feasible combinations of service
functions it can host. Note that different infrastructure types can host different
types of services.

Following this type of approach, we model the Service
Demand-pattern Assignment as a minimum cost, maximum
flow problem. To build the needed flow network, we create
a graph GD organized into four layers, like the one seen in
Figure 3, which is typical of the bipartite matching problems.
The top and bottom nodes are the source and the sink of the
flow, respectively. The second layer from the top has the nodes
R1, . . . ,Rm which represent the types of cloud infrastructure
elements, and the edges s − Ri have no cost and a capacity
|Ri| equal to the number of infrastructure elements included in
the particular type. The third layer has the nodes F̂j,ki

, each
of them represent a feasible assignment combination of the
services, divided by service type, in an infrastructure element
of type Rj . This feasible assignment is represented by a vector
f̂i,j,k that represents the number of services of type Fj in k-
th feasible placement at the infrastructure element of type Rj .
The capacities of all the edges between the second and the third
layer are ∞ (there is no need to constrain these edges). In this
way, we set the flow network to compute a bipartite matching
between the infrastructure element types in the second layer
and one combination of services in the third. Additionally, in
order to choose the best matching, we add costs to the edges.
We want to match an infrastructure typeRi with a combination
service placements that, considering all the matchings, covers
as many service requests in the pattern as possible. We express

that idea as a minimization problem: the best distribution of
services is the one that minimizes the distance between the
vector of feasible assignations {f̂i,j,k} and the vector with the
total number of service functions request {|Fi|}. This distance,
and therefore the cost of the edges between the second and
third layers, is computed as

oe =

n∑
i=1

∣∣∣|Fi| − f̂i,j,k
∣∣∣ (12)

and represents the cost of each edge between layers 2 and 3.
Finally, as in the formulation of Equation 1, we want also to
maximize the profit of our distribution of functions, thus, to
each edge between nodes in Layer 3 and the sink, we set a
cost

oe =

n∑
i=1

pif̂i,j,k (13)

that models the objective function in Equation 1. Although it
is a simple demonstration, it is beyond the scope of this paper
to prove that the minimum-cost flow of graph GD assigns
the service functions to the infrastructure elements in such
a way that maximizes the profit and tries to assign as many
service requests as possible on the existent infrastructure. To
compute the minimum cost, maximum flow that this network
can accommodate, we use the dual-simplex algorithm provided
by Matlab R©.

Most of the computational load of the procedure described
above is on the building of the graph, in particular, its third
layer. In the worst case, the number of nodes in this layer is
bounded by O(|R|K |F|), where K is the maximum number
of service instances of a given type that can be placed in
an infrastructure element. For example, if an infrastructure
element has 96 cores, and the less exigent service needs two
cores to work properly, then K ≤ 48. Although it is a beyond a
polynomial complexity, in practice, the number of service types
and service instances that can be placed in an infrastructure
element are bounded, and this number stays treatable (we are
just using brute force to compute the third layer). Additionally,
this layer has to be built only when there is a new function
type or a new infrastructure type.

1) Experiments on the Service Demand-pattern Assignment:
In order to show the feasibility of this approach, we depict
some performance results of our implementation for the Ser-
vice Demand-pattern Assignment problem in Table II. There,
we show the running time for building graph GD (GD Build
Time column) and for solving the Service Demand-pattern
Assignment problem (SDPAP Processing Time column). The
experiments where ran on an Intel R© CoreTM i7-8550U CPU, at
1.80GHz, with 16GB of RAM.

It can be seen that most of the time is used to compute the
graph. It worth noting that graph GD will only have to be built
after a topology change or a new type of service is created. A
change in the pattern of service demand only affects the costs
of the edges (which can be updated in lineal time) and requires
a new execution of the minimum cost algorithm, which can be
run in some seconds even for large graphs, as can be seen in
the table.

6

TABLE II
SOME EXPERIMENTS TO SHOW THE FEASIBILITY OF THE SERVICE

DEMAND-PATTERN ASSIGNMENT PROBLEM.

Infr.
Types

Infr.
ele-

ments

Service
Types

Service
re-

quests

GD

Size
(nodes)

GD

Build
Time

(s)

SDPAP
Process-

ing
Time

(s)
5 250 2 200 487 0.37 0.01
5 250 3 300 1082 3.57 1.59
5 250 4 400 2512 90.77 4.97
5 250 5 500 5492 717.86 9.56
5 250 6 600 10542 3049.61 19.09

B. Service Request Assignment

The second task, the Service Request Assignment, is simpler.
It takes the assignation made by the previous task, an actual set
of service requests, and assigns them to infrastructure nodes.
To perform this second assignation, we use the same network
flow technique, but this time in its simpler version, which only
tries to maximize the flow on a network without edge’s costs.
This is typically solved the Ford-Fulkerson [15] algorithm;
when the capacities of the edges are integers, the run-time of
this algorithm is bounded by O(Ef), where E is the number
of edges in the graph and f is the maximum flow in the graph.
This low complexity makes the algorithm very useful to assign
functions to infrastructure elements in run-time.

In this case, the flow network is the graph GS = ES , VS
with the structure depicted in Figure 4. As with GD, top and
bottom nodes are the source s and the sink t of the flow; this
time, the second layer from the top represents the set of service
requests F with nodes fi, and the edges from s to each node fi
have all unitary capacities. The third layer is computed starting
from the nodes F̂i,j selected by the Service Demand-pattern
Assignment task. They are replicated as many times as flow
enters in the same node in the solution to the Demand-pattern
Assignment problem above, following the different sources of
flow computed. In this way, if, for example, an edge (Ri, F̂j,k)
has a flow w(Ri,F̂j,k)

= 2, the third layer has two nodes named
F̂j,k,I1 and F̂j,k,r2 , where r1 and r2 are the identifiers of two
infrastructure elements of type Ri chosen randomly among the
set Ri. This is made in lineal time.

The edges (fi, F̂i,j,k) connecting these two main layers also
have unitary capacities. This is a typical bipartite matching
graph, and computing the maximum flow in it is equivalent to
assign a service to a particular infrastructure node.

In is important to note that edges (fi, F̂i,j) have to be created
following two restrictions:

• (fi, F̂i,j,rk) ∈ ES only if placing service fi in the node
rk, complies with the delay and density requirements of
fi.

• f̂i,j,k ≥
∑

e ce : e = (fx, F̂i,j,rk), fx ∈ Fi.

The first restriction re-introduces in our solution the service
constraints that were left outside the initial linear programming
problem formulation. The second restriction is enforced just
removing incoming edges randomly until the restriction holds.

s

t

f1 f2 fm−1 fm. . .

1 1 1 1

F̂
1
,1

=
(f̂

1
,1
,1
,.
..
,m

n
,1
,1
)

F̂
1
,k

1
=

(m
1
,1
,k

1
,.
..
,m

n
,1
,k

1
)

. . .

F̂
j
,k

j
=

(f̂
1
,j
,k

j
,.
..
,m

n
,j
,k

j
)

F̂
j
,1

=
(f̂

1
,j
,1
,.
..
,m

n
,j
,1
)

.

1

1 1 1

1

∞

∞ ∞

∞

Fig. 4. Network Flow formulation of the request assignment problem. (not
all capacities are shown for clarity)

C. Incrementally Updating the Set of Services

All the process described above works allocating a complete
set of service requests at the same time (e.g., all the services
to be deployed simultaneously during a period of time),
but, in a more realistic scenario, new service requests arrive
continuously to, for example, the ALTO Server that will be
described below. It would be service disruptive to re-assign
and re-allocate all the services every time a new request arrives,
however, the method presented here permits to assign a new
service to a hosting infrastructure just recomputing the flow in
the second graph after adding a new node in the second layer.
Ford-Fulkerson permits to do that in a time that is bounded
by O(m + n), where m is the number of edges and n the
number of vertex of the graph. The same idea and complexity
are valid for removing a service. For this, we are assuming that
adding or removing a service, which should change the costs
of GD edges, do not impact significatively in the output of
the Service Demand-pattern Assignment. We leave for future
work a study on how this strategy impacts the optimal use of
the infrastructure resources.

V. SERVICE EDGE VIEW BASED ON ALTO

This section describes a potential architecture based on
ALTO concept [16], where the identification of the most
appropriate edge execution environments, as proposed above,
could be offered as an ALTO service. The idea is to relay
on ALTO for retrieving the recommended edges for a given
5G service to be deployed in the network after running either
both assignments process presented in Section IV or just the
lighter Service Request Assignment process, depending on the
dynamics of the demand and the network.

The proposed architecture is illustrated in Figure 5. It
assumes that an Orchestrator, in charge of deploying a 5G
services requiring to instantiate some capabilities at the edge

7

interfaces with an ALTO server in order to retrieve an indica-
tion of the computing environments that could satisfy the final
service requirements. For doing so, the ALTO server interacts
with a number of Edge Managers responsible for managing the
compute and storage infrastructure of each of those execution
environments spread across the network. These Edge Managers
will be responsible mainly of providing information about the
resource availability in each edge node under its control, and
at the same time reporting sufficient information for helping
to identify the topological location of the edge node itself.
The resource-based information can be used to feed an Edge
Resource database, assisting in the identification of resources
available in each node. In order to allow real-time status
collection of the resources in each edge node, the system can
rely on telemetry information [17] provided by a monitoring
system attached to the underlying infrastructure, interacting
with the ALTO server either directly or through the particular
Edge Managers. On the other hand, the topology information
could be merged or integrated with the ALTO network maps,
in order to create an overall topological view of the network
and computing capabilities internal to the service provider.
This topological view can be relevant to decide the placement
of service components, for example, in the form of Virtual
Network Functions (VNFs) or applications, that could show
some restrictions (e.g., latency).

The ALTO server will provide a set of convenient edges for
the specific service as requested by the Orchestrator. To do
so, will run the Service Demand-pattern Assignment process
presented in Section IV-A1 to obtain a set of suggested
infrastructures (in general only the light assignation part)
and, if needed, the much lighter Service Request Assignment
process presented in Section IV-B. Notably, the application
of some policies can also be foreseen, e.g., through specific
modules, in order to assist the edge discrimination, for instance,
policies for data sovereignty. Thus, this augmented ALTO
server could result integrated into orchestration frameworks
for edge computing. For instance, considering the ETSI Multi-
access Edge Computing architecture [18], the Orchestrator in
Figure 5 could be the Multi-access Edge Orchestrator at MEC
system level, while the Edge Managers represented in the
figure could be the per-host Virtual Infrastructure Managers
in MEC.

It is important to note that ALTO will basically assist in the
identification of the best execution environments for certain
services, but it will not participate in the resource allocation,
which will be the responsibility of the Edge Managers once
the Orchestrator, based on ALTO, selects some edge node.
Then, after resource allocation is performed for a given service,
whenever any parameter is unmet, the virtual system is adapted
as soon as possible to ensure the continuity of the service. A
reactive or proactive method can be used, as discussed in [19].

VI. CONCLUDING REMARKS

One of the motivations for the concept of network slicing is
to deploy services at the edge of the network for reducing
latency or providing a certain service in proximity to the

Fig. 5. Integration with the orchestration system.

consumers of that service, e.g., content. With the different
computing capabilities offered by infrastructure providers, it is
essential to get informed decisions about where a service can
be deployed to satisfy its specific requirements, being static
or dynamic. In this way, having mechanisms for identifying
suitable service edges can facilitate the work of the service
orchestration by directly selecting the cloud execution envi-
ronments from those that can match the service expectation.

Such a fact becomes clear when analyzing the characteristics
of future 5G services. The particular characterization of the
services into categories, such as eMBB or uRLLC, remarks
that some parameters can be relaxed or can be seen as less
critical from one service respect to the other, even falling on the
same service type, an aspect exploited in this work. Some other
studies have also revealed this fact when dealing for instance,
with the QoS capabilities to be offered by the network [20].

This paper explores the convenience of assisting the decision
of the orchestration systems. Such a decision is typically
taken on the basis of a number of key parameters, such as
bandwidth and latency, and large numbers of options resulting
in intractable problems. We take advantage of the actual
scale of the problem, the possibility of grouping services and
infrastructures into types, and the dynamics of the topology and
demand of the network, to propose a feasible solution of the
typically intractable multi-dimensional assignment problem.

We have left out of the scope of this paper some formal
aspects such as proving that the costs in the edges of graph Gd

actually induce an optimal fit, although is intuitive to see that
it maximises the profit. The same happened with the impact
of incrementally assigning services to infrastructure, without
disrupting those already deployed, but in base to slightly
inaccurate models. Properly addressing those issues would not
fit in this paper and is left to be presented in further work.

ACKNOWLEDGMENT

This work has been partly funded by the European Com-
mission through the projects NECOS (Grant Agreement no.
777067) and 5G-TRANSFORMER (Grant Agreement no.
761536).

REFERENCES

[1] L. M. Contreras, V. Lopez, O. G. De Dios, A. Tovar, F. Munoz,
A. Azanon, J. P. Fernandez-Palacios, and J. Folgueira, “Toward
cloud-ready transport networks,” IEEE Communications Magazine,

8

vol. 50, no. 9, pp. 48–55, sep 2012. [Online]. Available: http:
//ieeexplore.ieee.org/document/6245958/

[2] L. Velasco, L. M. Contreras, G. Ferraris, A. Stavdas, F. Cugini,
M. Wiegand, and J. P. Fernandez-Palacios, “A service-oriented
hybrid access network and clouds architecture,” IEEE Communications
Magazine, vol. 53, no. 4, pp. 159–165, apr 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/7081090/

[3] R. D. Doverspike, K. K. Ramakrishnan, and C. Chase,
“Structural Overview of ISP Networks.” Springer, London,
2010, pp. 19–93. [Online]. Available: http://link.springer.com/10.
1007/978-1-84882-828-5{\ }2

[4] 3GPP, “TS 122 261 - V15.5.0 - 5G; Service requirements for
next generation new services and markets (3GPP TS 22.261
version 15.5.0 Release 15),” Tech. Rep., 2018. [Online]. Available:
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

[5] D. Cooperson and C. Chappell, “Telefónica’s UNICA architecture
strategy for network virtualisation,” Tech. Rep., 2017.
[Online]. Available: https://www.telefonica.com/documents/737979/
140082548/Telefonica{\ }Virtualisation{\ }gCTO{\ }FINAL.PDF/
426a4b9d-6357-741f-9678-0f16dccf0e16?version=1.0

[6] Telefonica, “Telefónica Open Access and Edge Computing,” no. Febru-
ary, 2019. [Online]. Available: https://www.telefonica.com/documents/
737979/144981357/whitepaper-telefonica-opa-mec-feb-2019.pdf/
b011b66e-982f-6163-9409-c3c9fddc6c89

[7] 3GPP, “TS 123 501 - V15.2.0 - 5G; System Archi-
tecture for the 5G System (3GPP TS 23.501 version
15.2.0 Release 15),” Tech. Rep., 2018. [Online]. Available:
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

[8] NGMN, “5G White Paper,” 2015. [Online]. Available: https://www.
ngmn.org/5g-white-paper/5g-white-paper.html

[9] Michał Maternia and Salah Eddine El Ayoubi, “5G PPP use cases
and performance evaluation models,” 5G PPP, Tech. Rep. [Online].
Available: http://www.5g-ppp.eu/

[10] Z. Drezner and H. W. Hamacher, Facility location: applications and
theory. Springer, 2002. [Online]. Available: http://www.amazon.co.uk/
Facility-Location-Applications-Zvi-Drezner/dp/3540213457

[11] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004. [Online]. Available:
http://link.springer.com/10.1007/978-3-540-24777-7

[12] A. Neebe and D. Dannenbring, “Algorithms for a specialized segregated
storage problem,” University of North Carolina, pp. 77–5, 1977.

[13] M. S. Hung and J. C. Fisk, “An algorithm for 0-1 multiple-knapsack
problems,” Naval Research Logistics Quarterly, vol. 25, no. 3, pp.
571–579, 1978. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/nav.3800250316

[14] Y. Rochman, H. Levy, and E. Brosh, “Resource placement and as-
signment in distributed network topologies,” in 2013 Proceedings IEEE
INFOCOM, April 2013, pp. 1914–1922.

[15] D. R. Ford and D. R. Fulkerson, Flows in Networks. Princeton, NJ,
USA: Princeton University Press, 2010.

[16] S. Kiesel, W. Roome, R. Woundy, S. Previdi, S. Shalunov,
R. Alimi, R. Penno, and Y. R. Yang, “Application-Layer Traffic
Optimization (ALTO) Protocol,” RFC 7285, sep 2014. [Online].
Available: https://rfc-editor.org/rfc/rfc7285.txt

[17] H. Song, Z. Li, P. Martinez-Julia, L. Ciavaglia, and A. Wang,
“Network Telemetry Framework,” Internet Engineering Task Force,
Internet-Draft draft-opsawg-ntf-00, mar 2019. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-opsawg-ntf-00

[18] ETSI GS MEC 003, “Multi-access Edge Computing (MEC);
Framework and Reference Architecture,” ETSI, Tech. Rep.,
2019. [Online]. Available: https://www.etsi.org/deliver/etsi{\ }gs/MEC/
001{\ }099/003/02.01.01{\ }60/gs{\ }MEC003v020101p.pdf

[19] P. Martinez-Julia, V. P. Kafle, and H. Harai, “Achieving the autonomic
adaptation of resources in virtualized network environments,” in
2017 20th Conference on Innovations in Clouds, Internet and
Networks (ICIN). IEEE, mar 2017, pp. 52–59. [Online]. Available:
http://ieeexplore.ieee.org/document/7899249/

[20] L. Cominardi, L. M. Contreras, C. J. Bcrnardos, and I. Berberana,
“Understanding QoS Applicability in 5G Transport Networks,” in 2018
IEEE International Symposium on Broadband Multimedia Systems and
Broadcasting (BMSB). IEEE, jun 2018, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/document/8436847/

9

