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1. For this study we make use of 
element concentration data from 517 
shallow soil samples collected during 
the Geochemical Baselines Survey of 
the Environment’s 2012 field season in 
south west England.

2. Traditional 
geochemical maps 
produced by simple univariate 
interpolation methods such as ordinary 
kriging are limited by the spatial sampling 
density of the survey, and are blind to 
other environmental information.

3. Instead, we build a compositional regression model using random forest
(Breiman 2001) that is able to predict element concentrations in soil

given high resolution geophysics and remote sensing data.
This approach is able to provide increased resolution,

prediction accuracy and interpretability 
compared to ordinary kriged maps.

Ordinary kriged rubidium
Root mean square error 85.3 mg/kg

Random forest modelled rubidium
Root mean square error 44.2 mg/kg

Shallow soil sample sites –
south west England, 2012

Examples of predictor variables 
used by the model

1. Soil geochemistry contains a huge amount of information about both 
subsurface and surface conditions. Thanks to the quality of modern geochemical 
analysis the sensitivity and consistency of this information far exceed anything 
that could be obtained by direct human observation. However, the breadth of 
information means that careful processing is required in order to extract only the 
relevant information for any given task: in this case to map lithology using soil 
geochemistry.

2. For the first processing step we select a sub-composition of elements which 
can be observed to be mostly unaffected by hydrothermal activity: Hydrothermal 
activity transcends lithological boundaries and minimising its influence is therefore 
necessary in order to cleanly resolve lithological boundaries. Compositional 
principal component analysis is then used to further boost the signal in favour of 
lithological discrimination by removing uncorrelated noise. 

3. As can be seen from the map and stereoscopic triplot above, the first three 
principal components of our tailored sub-composition capture lithological variation 
well. However, there is contamination from peat (pink) due to the peat and 
lithological signals varying on the same principal axes. Another imperfection is the 
somewhat blurred boundaries of the granites (brown) – a combination of down-
slope soil migration and perhaps a failure to fully omit hydrothermal signals.

Closing thoughts:
High resolution geochemical data highlight the fact that geology is highly 
heterogeneous. The act of producing classified maps, necessary as it may be 
for concisely summarising a region, seems like a worrying oversimplification 
when the scale of the intra-unit variation can clearly be seen. The important 
properties of the ground beneath our feet vary according to our purposes – the 
engineer may be interested in mechanical properties, the explorer in 
commodity element concentrations, and the epidemiologist in potentially 
harmful element concentrations. All of these vary on continuous scales. 

As we enter an era of high resolution information, what purpose do our 
classifications serve? 

Cross your eyes so that the two black circles become one.

Cross your eyes so that the two black circles become one.

Spatial map and stereoscopic triplot
(top left) of the selected ‘hydrothermally 
inert’ sub-composition in south west 
England. Colour scheme is ternary 
green-blue-red according to the first 
three principal axes. Boundaries from 
the existing 1:625k geological map are 
overlain in translucent white.

For this map the colour 
scheme is classified 
according to unsupervised 
clustering. See legend for 
interpretation of the 
classes.

4. We then classify the map using hierarchical clustering of our sub-composition’s 
non-noise principal components. We ask for nine clusters in order that the map 
remains easily comprehensible. The clusters are assigned on the basis of 
compositional variation alone. As a result we find that three classes are given to 
granite derived soils (including one class for peat) because intra-granite variation 
exceeds that of any other lithology. There are many possible approaches to 
classification, the key point is that geochemical models derived from multiple high 
resolution datasets present us with a new level of geological detail.


