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Raúl Sáez and Xavier Prats
Department of Physics - Aerospace division

Technical University of Catalonia - BarcelonaTECH
Castelldefels, Spain 08860

raul.saez.garcia@upc.edu and xavier.prats@upc.edu

Abstract—Continuous descent operations (CDOs) with
required times of arrival (RTAs) have proven to deliver major
environmental benefits in terminal maneuvering areas (TMAs)
without degrading capacity. When traffic density is high, air
traffic controllers (ATC) have to delay flights and assign an RTA
different from the aircraft’s estimated time of arrival (ETA).
In such case, aircraft may have to follow a non-optimum speed
profile and possibly be forced to fly powered descents instead of
neutral CDOs. Furthermore, ATC may also stretch the planned
route to keep the safety of the operation. In that case, aircraft
might be able to fly neutral CDOs, but at the expense of flying a
longer route. In this paper, the differences in fuel consumption
between powered descents and path stretching are quantified. A
simplified scenario has been defined in which an Airbus A320
is approaching a generic airport with a finite number of arrival
routes (i.e. distances to go), and several fictitious RTAs. Then, an
optimal control problem has been formulated and solved in order
to generate several trajectories meeting the assigned RTAs. In
terms of fuel consumption results show that, for RTAs later than
the ETA, although in the beginning path stretching represents
a higher fuel consumption, in the end flying powered descents
is the strategy that consumes more fuel. For RTAs earlier than
the ETA, path stretching shows lower consumption values. The
methodology presented in this paper could help to define a
ground supporting tool to help ATC to decide which would be
the best decision under the trajectory based operations paradigm.

Keywords-Continuous descent operations; Required time of
arrival; Path stretching; Fuel efficiency

I. INTRODUCTION

A continuously growing environmental sensitivity in avia-
tion has encouraged the research into methods for achieving
a greener air transportation. Continuous descent operations
(CDOs) allow aircraft to follow an optimum flight path that
delivers major environmental and economic benefits, giving
as a result engine-idle descents that reduce fuel consumption,
pollutant emissions and noise nuisance[1], [2], [3]. This need
for a cleaner aviation is clearly recognized by the SESAR
[4] and NextGen programs [5], which aim to reduce the
environmental impact of aviation while increasing capacity
and safety. A key transformation to achieve these goals is the
use of new air traffic management (ATM) paradigms such as
the trajectory based operations (TBO) concept.

CDOs are optimized to the operating capability of the
aircraft, resulting in different optimum trajectories for aircraft
with different characteristics. As a result, the vertical and time
predictability of incoming traffic flows decreases, which leads
to an increase of the air traffic controller officer (ATCO)
workload. Consequently, ATCOs would increase separation
buffers leading to airspace and runway capacity loses that are
not acceptable in major terminal maneuvering areas (TMAs),
especially during peak hours. A solution for this problem,
aligned with the TBO paradigm, would be to sequence and
merge arrival traffic by assigning required times of arrival
(RTAs) at one or several fixes along a known route (2D
trajectory), which would improve the predictability of the
arriving aircraft. This allows the flight management system
(FMS) to know the remaining distance to go, and thus, enable
the aircraft to fly an optimal descent profile while satisfying
the RTA [6].

Given a merging fix, if the RTA is close to the estimated
time of arrival (ETA) at that fix for the planed (thrust idle)
descent, the aircraft will be able to adapt the trajectory and
still fly a neutral CDO (i.e. idle thrust and without using speed-
brakes). In [7] it was reported that for certain conditions this
RTA can be updated even when the descent has been initiated
and still find solutions not requiring thrust or speed-brakes.
However, for certain aircraft energy states (i.e. altitude/speed
conditions) or for those RTAs significantly differing from the
ETA, a neutral CDO is not possible. Furthermore, for certain
traffic loads and TMA sizes it would not be possible either to
sequence all arriving traffic using only RTAs leading to neutral
CDOs, as reported for instance in [8].

This paper compares two possible solutions to accommodate
arrivals when not all aircraft can fly neutral CDOs following
the planned route: i) aircraft flying the planned route but with
descents requiring thrust or speed-brake usage to fulfill the
RTA (i.e. powered descents); and ii) stretching the arrival
route to fly longer distances and fulfill the same RTA, but
enabling neutral CDOs. The differences in fuel consumption
are quantified for both cases. This work represents a first step
to define a ground supporting tool to help ATC to decide
which would be the best decision under the TBO paradigm,
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where advanced synchronisation mechanisms between ground
and airborne tools are expected.

To the best of the authors’ knowledge, no other works
analyzed the trade-offs between path stretching vs. the use
of powered descents. A similar study was done in [9], where
an assessment of the difference in fuel consumption between
neutral CDOs and powered descents was presented, but it is
not concluded when it would be more desirable to fly this
kind of procedures instead of stretching the route for different
RTA values. Another similar study was done in [10], where
fuel consumption is quantified for descent trajectories with
an assigned RTA later than the ETA at the metering fix.
However, the paper does not focus on CDOs specifically and
allows more flexibility in the cruise speed. Finally, in [11], a
similar study is performed but focusing for departures. It aims
at the quantification in terms of fuel and time consumption
of implementing sub optimal trajectories in a 4D trajectory
context that use RTAs at specific navigation fixes.

II. CONCEPT OF OPERATIONS

This section describes the concept of operations proposed in
this work. Two strategies are considered: one where aircraft are
allowed to fly powered descents and fly the initially planned
route and another one where the route is stretched and the
aircraft fly neutral CDOs.

Figure 1(a) depicts the vertical perspective of the first
scenario used to illustrate the problem addressed in this
work. Suppose an aircraft trying to land at a given airport
with only one available arrival route. Well before the top of
descent (TOD), while still in cruise, the aircraft is requested to
compute its arrival time window at the metering fix, which is
the difference between the earliest and the latest time of arrival
at that fix (RTAE and RTAL), which are assumed to be
computed by the FMS of the incoming aircraft by considering
the earliest and latest trajectories.

One interesting matter is the width of this time window,
which depends on several factors, e.g. the aircraft performance,
weather conditions, etc. However, there is another factor that
could be changed in order to obtain wider or shorter time

windows, which is the type of descent being considered.
Neutral CDOs assume idle thrust and no speed-brakes usage
throughout the descent, while non-neutral or powered descents
allow the use of thrust and speed-brakes. This supposes a
higher flexibility with respect to neutral CDOs, which leads
to wider time windows, but at the expense of increasing the
fuel burnt and/or noise nuisance.

In addition to the neutral and powered time windows
([RTAEn , RTALn ] and [RTAEp , RTALp ] in Figure 1(a)
respectively), aircraft send to the ATCO their estimated time
of arrival. It should be noted that, while the earliest and latest
times of arrival at the metering fix will mainly depend on air-
craft performance, flight envelope and weather conditions; the
estimated time of arrival at the same fix will be obtained after
computing the optimal descent trajectory for that particular
flight, subject to airline and crew policies, such for example,
the Cost Index setting for that particular flight1.

With all this information, ATC can assign an RTA at the
metering fix to the arriving aircraft while it is still in cruise.
In this way, the FMS on-board can compute the optimum CDO
that complies with the RTA.

The vertical and lateral profiles of the second scenario are
depicted in a simplified way in Figures 1(b) and 2, respectively.
In this case, it is assumed that ATC could issue path stretching
instructions, so in the end there is more than one arrival route
available for the arriving aircraft. In order to illustrate this, a
finite set of available arrival routes (Ra0 , ..., Ran in Figure 2)
with associated distances to go (Da0 , ..., Dan in Figure 1(b))
are defined. The process is the same as in the first scenario:
aircraft send to the ATC their time window and ETA at the
metering fix, and the ATC assigns them an RTA. However,
in this case only neutral CDOs are allowed. In this paper the
arrival route is considered to be pre-negotiated before the top
of descent (TOD), as discussed in [13], so the FMS could
know the remaining distance to go when the RTA is assigned
at the metering fix.

1The Cost Index is a parameter chosen by the airspace user that reflects
the relative importance of the cost of time with respect to fuel costs [12]

(a) Neutral CDO/powered descent (b) Path stretching

Fig. 1: Vertical profile of both scenarios
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Finally, in both scenarios the distance from the metering fix
(where the RTA is assigned) to the runway remains the same.

Fig. 2: Scenario 2: path stretching lateral profile

III. TRAJECTORY OPTIMIZATION

This section presents the methodology used to generate the
(optimal) trajectories for the validation scenario of this paper.
In real life, these trajectories would be generated by an ad-
vanced functionality of each aircraft flight management system
(FMS), assuming it is equipped with the RTA functionality.

In this paper, several trajectories are generated for the air-
craft arriving at the airport subject of study; they are computed
for different required times of arrival within the available
metering fix time window and for several route lengths (i.e.
distances to go).

Given a known lateral route, and consequently a fixed
distance to go, the optimization of the vertical profile (altitude
and speed) can be formulated as an optimal control problem,
which aims at computing the control time history of a system,
here the aircraft, such that a cost function is minimized while
satisfying some dynamic and operational constraints. Several
approaches can be found in the literature addressing this
problem, like the ones found in [14] and [15], which focused
on the development of advanced concepts and technologies in
order to satisfy RTAs with high accuracy. In this work, the
solution chosen is a non linear programming (NLP) trajectory
optimizer like the one used in [16], which proved to be very
robust and fast. The interior point optimizer (IPOPT) software
package is used to solve the NLP problem.

Section III-A presents the optimal control problem in the
continuous domain. Then, Section III-B shows how this prob-
lem is discretized. Finally, Section III-C details the optimal
control problem particularized for aircraft descents.

A. Optimal control problem in the continuous domain

An optimal control problem over a fixed or variable contin-
uous time horizon [tI , tF ] can be formulated as [17]:

min
u(t)

J := φ (x(tF ),d) +

∫ tF

tI

π (x(t),u(t),d) dt

s.t x(tI) = X

ẋ = f (x(t),u(t),d)

bin (x(t),u(t),d) ≤ 0

beq (x(t),u(t),d) = 0

ψ (x(tF ),d) = 0,

(1)

where x ∈ <nx is the vector of differential states; u ∈ <nu
is the vector of controls; and d ∈ <nd is the vector of
fixed parameters of the model. The cost function J : <nx ×
<nu × <nd → <, which is composed by a running cost
(or Lagrange term) π : <nx × <nu × <nd → < and an
end cost (or Mayer term) φ : <nx × <nd → <, is to be
minimized subject to: dynamic constraints f : <nx × <nu ×
<nd → <nx in the form of ordinary differential equations
(ODEs) with initial conditions X ∈ <nx ; algebraic constraints
beq : <nx × <nu × <nd → <nϕ ; inequality path constraints
bin : <nx × <nu × <nd → <nb ; and terminal constraints
ψ : <nx ×<nd → <nψ .

Essentially, two different methods are available for solving
Eq. (1): indirect methods, which involve the calculus of varia-
tions or the maximum principle of Pontryagin [17]; and direct
methods, which transform the original infinite-dimensional
optimal control problem into a finite-dimensional non-linear
programming (NLP) optimization problem [18].

In this work, direct methods are used. These methods
discretize the time histories of the control and/or state variables
at a set of time samples. The cost function and constraints of
the optimal control problem can be expressed in terms of these
discretized states and/or controls, which become the decision
variables of a parametric NLP optimization problem that can
be solved by means of standard solvers.

B. Optimal control problem discretization using direct meth-
ods

Let the continuous time horizon [tI , tF ] be discretized into
N + 1 equidistant time samples τk, with k = 0, . . . , N . Note
that τ0 = tI , τN = tF and the discretization step is ∆τ =
(τN − τ0)/N . The discrete optimal control problem minimizing
the cost function J in a time horizon of N time intervals can
be formulated as:

min
xk,k=0,...,N
uk,k=0,...,N−1

J := φ (xN ,d) +

N−1∑
k=0

Π (xk,uk,d,∆τ)

s.t x0 = X

xk+1 = F (xk,uk,d,∆τ) ; k = 0, . . . , N − 1

bin (xk,uk,d) ≤ 0; k = 0, . . . , N − 1

beq (xk,uk,d) = 0; k = 0, . . . , N − 1

ψ (xN ,d) = 0,
(2)

where xk ∈ <nx and uk ∈ <nu are the state and control
vectors discretized at τk, respectively, for k = 0, . . . , N .

The optimal control problem described by Eq. (2) assumes
that the same running cost, dynamic constraints and algebraic
and path constraints apply during the whole time horizon. In
addition, event constraints can be set only at the very end of
the time horizon. Yet, many real-life processes can be divided
into several phases (or stages), where the dynamics of the
system, the running cost and the algebraic and path constraints
might change. In addition, in some particular applications it
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is necessary to formulate interior-point constraints in between
two consecutive phases.

Eq. (2) can be easily extended to multi-phase problems.
First, let the continuous time horizon [tI , tF ] be divided into P
time intervals [tj , tj+1] for j = 0, . . . , P−1; each time interval
corresponding to a different phase. Again, t0 = tI and tP =
tF . Then, each time intervals (or phase) is discretized into Nj
equidistant time samples τk, τk+1, . . . , τk+Nj−1, where τk =
tj , τk+Nj−1 = tj+1 and k =

∑
i<j Ni, for all j = 0, . . . , P −

1. The discretization step of the jth phase is denoted by ∆τj .
As a result, the whole time horizon is discretized into N+1 =∑P−1
j=0 Nj time samples τ0, τ1, . . . , τN .
Let T be a multi-dimensional set that relates the index of

each phase to the indexes of its corresponding time samples.
The subset E ⊆ T only includes the index corresponding to
the last time sample of each phase; and I is defined as T \E .

Based on the definitions stated above, the discrete multi-
phase optimal control problem can be formulated as:

min
xk,k=0,...,N
uk, ∀(j,k)∈I

J := Ja + Jb

Ja =
∑

(j,k)∈E

φj (xk,d)

Jb =
∑

(j,k)∈I

Πj (xk,uk,d,∆τj)

s.t x0 = X

xk+1 = F j (xk,uk,d,∆τj) ; ∀(j, k) ∈ I
binj (xk,uk,d) ≤ 0; ∀(j, k) ∈ I
beqj (xk,uk,d) = 0; ∀(j, k) ∈ I
ϑeqj (xk,d) = 0; ∀(j, k) ∈ E\{(P − 1, N)

ϑinj (xk,d) ≤ 0; ∀(j, k) ∈ E\{(P − 1, N)

ψ (xN ,d) = 0

xk − xk+1 = 0; ∀(j, k) ∈ E\{(P − 1, N)}
(3)

In Eq. (3), Πj : <nx×<nu×<nd×< → < and F j : <nx×
<nu×<nd×< → <nx are the quadrature and states evolution
functions for the jth phase, respectively. Similarly, beqj : <nx×
<nu×<nd → <nϕj and binj : <nx×<nu×<nd → <nbj are the
algebraic and path constraints, respectively, of the jth phase;
and ϑeqj : <nx × <nd → <

nϑeq
j , and ϑinj : <nx × <nd →

<
n
ϑin
j represent applicable equality and inequality interior-

point constraints, respectively, applying at the last time of the
jth phase. Note that in Eq. (3) a new set of constraints has
been added to link the state variables across two consecutive
phases and guarantee continuity in the solution.

Analogously to the single-phase optimal control problem,
the discretization step of each individual phase could be con-
sidered either a known parameter or variable to be optimized,
depending on the context. For instance, if the duration of the
whole time horizon were fixed to a certain parameter, say a
RTA, but the duration of each phase were flexible, ∆τj for

j = 0, . . . , P − 1 would become decision variables subject to
the following constraint:

P−1∑
j=0

(Nj − 1) ∆τj − RTA = 0, (4)

which would be appended to Eq. (3).

C. Optimal control problem for aircraft descents

For the remainder of this document the optimal control
problem will be formulated in the continuous domain aiming
to keep the notation simple. However, the problem needs to
be discretized.

The state vector x = [t, v, h] is composed of time, true
airspeed (TAS), and altitude; the control vector u = [γ, T, β] is
composed of the aerodynamic flight path angle, engine thrust,
and speed brakes deflection. The flight path angle is the control
that is used by the aircraft to modulate energy (i.e., exchange
potential energy for kinetic energy and vice-versa), whereas
thrust and speed brakes are used to add and remove energy
from the system, respectively.

Different from typical formulations, the independent vari-
able in this problem is the distance to go (s) and not the time
[16]. The selection of s as the independent variable is driven
by the fact that during an ideal CDO, with no intervention from
the air traffic controllers (ATC) except for the assignment of
the RTA, the aircraft will follow a ”closed route”, and therefore
the remaining distance to go will be always known by the
FMS. In addition, this formulation replicates how constraints
are defined in the current operational environment, thereby
enabling more precise modeling of the constraints.

The dynamics of x are expressed by the following set
of ordinary differential equations, considering a point-mass
representation of the aircraft reduced to a ‘gamma-command”
model, where vertical equilibrium is assumed (lift balances
weight) and the cross and vertical components of the wind
are neglected:

f j =
dx
ds

=

 1
T−D(v,h,β)

m − g sin γ

v sin γ

 1

v cos γ + w(h)
(5)

where D : Rnx×nu → R is the aerodynamic drag; g is the
gravity acceleration and m the mass, which is assumed to be
constant since the fuel consumption during a descent is a small
fraction of the total mass [3]. In this paper it has been assumed
that the effect of the cross-wind on the ground speed is orders
of magnitude below that of the longitudinal wind, like done
in previous works [19].

The longitudinal component of the wind w : R → R is
modeled by a smoothing spline as function of the altitude:

w(h) =

nc∑
i=1

ciBi(h), (6)

where Bi, i = 1, . . . , nc, are B-spline basis functions and
c = [c1, . . . , cnc ] are control points of the spline [20]. It should
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be noted that the longitudinal wind has been modeled as a
function of the altitude only, as done in other research [21].

Since the flight time is fixed by the RTA, the goal is
to minimize a fuel consumption for the remaining descent.
Therefore, the stage cost is:

πj(v, h, T, γ) =
q(v, h, T )

(v cos γ + w(h))
(7)

where q : Rnx×nu → R is the fuel flow and Kβ a weighting
parameter that determines how much the use of β is penalized.
It should be noted that in this application example, no terminal
cost are considered (i.e., φj = 0 for j = 0, . . . , P − 1).
Furthermore, a fourth-order Runge-Kutta scheme is used to
obtain F j and Πj from f j and πj , respectively.

In addition, the following terminal constraints are enforced
at the end of the trajectory:

ψ =

[
vCAS(v, h)− vCASF

h− hF

]
, (8)

where vCAS : Rnx → R is the calibrated airspeed (CAS);
and vCASF and hF are the CAS and altitude at the runway,
respectively.

Phase-independent path constraints on the controls (i.e.,
applying all along the descent) are also considered, aiming
to ensure that the maximum and minimum descent gradients,
thrust and speed brakes are not exceeded:

binj =


γ

γmin − γ
Tmin(v, h)− T, T − Tmax(v, h)

0.0− β
β − 1.0

 (9)

where γmin is the minimum descent gradient; Tmin : Rnx →
R and Tmax : Rnx → R are the idle and maximum thrust,
respectively; β = 0 and β = 1 indicate that speed brakes
are retracted and fully extended, respectively. Different alter-
natives can be used to model Tmin, Tmax, D and q and their
respective parameters. In this paper, the EUROCONTROL’s
base of aircraft data (BADA) v4 model has been adopted [22].
However, BADA v4 does not include a model for the effects of
the speed brakes on the drag coefficient CD. As a workaround,
in this paper the contribution of the speed brakes has been
modeled as an extra linear term CDββ in the generic BADA v4
drag coefficient model, where CDβ is a coefficient representing
the increase in drag coefficient for unit of speed brakes
deflection. More specifically, the speed brakes deflection can
take the following values: [0.0, 0.5, 1.0] (i.e. [null, half, full]).

The descent can be divided into several phases, defined
between two consecutive waypoints of the trajectory with
associated speed and/or altitude constraints. In each phase,
different operational constraints may apply and may be mod-
eled in the form of additional path, algebraic and interior-point
constraints, which depend on the particular procedure being
investigated and that will be listed in Section IV-A. Finally,

it is assumed that during the cruise phase the speed remains
constant.

IV. RESULTS

This section presents the results obtained in this work. Sec-
tion IV-A describes the experimental setup used to illustrate
the methodology proposed in this paper. Then, Section IV-B
shows the trajectories obtained with the trajectory optimizer
for the neutral CDOs and powered descents. Finally, Section
IV-C shows the fuel consumption results, comparing the two
strategies described in Section II: descent type and path
stretching.

A. Experimental setup

An Airbus A320-231 is chosen for the experiment, assum-
ing a cruise altitude of FL360 and a Mach of 0.78. Well
before starting the descent, the optimal descent trajectory to
the runway for a typical cost index of 30 kg min−1 [12] is
computed, discretizing the continuous optimal control problem
into N = 115 time samples. A higher number of time samples
(shorter interval duration) results in a more accurate solution,
however, the computational burden becomes greater. As a
result of this optimization, the optimal time of arrival at the
metering fix is obtained, which corresponds to the ETA at that
fix. International standard atmosphere (ISA) conditions and no
wind are considered when generating the trajectories.

As explained in Section II, two scenarios are considered
in this paper. The distance to go considered in the neutral
CDO/powered descent scenario is 180 NM, while for the path
stretching scenario the distances considered range from 150
NM to 250 NM in 10 NM steps (i.e. 11 possible routes or
distances to go). The metering fix, where the RTA is fixed, is
set at an altitude of 3,000 ft, at a distance of 18 NM from the
runway.

Several RTAs are defined at the metering fix. They are
computed as a function of the ETA and the time window.
In total, 20 RTAs are defined: 10 earlier and 10 later than
the ETA. They are equally spaced in time within the available
powered time window. The same RTAs are considered for both
scenarios; in this way, it is possible to compute and compare
the fuel consumption in both cases depending on how far the
RTA is defined with respect to the ETA.

Constraints are required to model the vertical profile. In
order to accomplish that, the descent is divided in P = 2
different phases from the start of the descent until the metering
fix, with associated phase-dependent path, along with algebraic
and/or interior-point constraints. Table I wraps up these phases
and their associated constraints.
where M : Rnx → R is the Mach number; MMO and VMO
are the maximum operative Mach and CAS, respectively; and
GD is the green dot speed2.

For the path constraints of the generic model (see Eq. (9)),
the minimum descent gradient is set to −7◦. In addition, the

2For the Airbus A320, the green dot speed is the minimum operating speed
in managed mode and clean configuration, being approximately the best lift-
to-drag ratio speed
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TABLE I: Phases and associated constraints until the metering
fix for a generic arrival procedure
Phase binj ϕeq

j ϑin
j ϑeq

j

1

 M − MMO
vCAS − VMO
GD − vCAS

 -

[
250 kt − vCAS

vCAS −GD

] [
h− 10, 000 ft

]

2

[
vCAS − 210 kt
190 kt − vCAS

]
- -

[
h− 3, 000 ft

]

values for VMO and MMO are obtained from the BADA v4
global parameters file. Furthermore, additional thrust and the
use of speed-brakes (T and β respectively) are only allowed
for powered descents.

It should be noted that nominal flap/slat (and landing gear)
transitions are also considered as additional trajectory phases
(there are a total of 7 more phases), but are not depicted in
Table I. Finally, the terminal constraints of the generic model
(see Eq. (8)) are set at the runway, such that hF = 50 ft and
vCASF = 138 kt.

B. Earliest and latest trajectories

For illustrative purposes, Figure 3 shows the evolution of
altitude and speed as a function of the remaining distance to

the runway. The speed-brakes deflection is also shown. For all
cases, the distance to go is 180 NM and the cruise speed is
kept constant until the top of descent.

In the earliest neutral case (Figure 3(a)) it is observed how
the aircraft accelerates to MMO right after the TOD. This
descent at constant Mach implies an increase of the CAS
and, when reaching the VMO, the descent continues at this
maximum speed down to FL100, where a deceleration is
performed to comply with the 250 kt speed limit on CAS.
Figure 3(b), in turn, shows the latest neutral trajectory, which
slows down to the minimum allowed speed (GD) right after
the TOD. This speed is maintained until few nautical miles
before arriving to the runway, where another deceleration is
performed. In both neutral cases, no speed-brakes are used, as
the aircraft is performing a neutral CDO.

As expected, the results for the powered trajectories are
different, as the energy of the aircraft can be increased or
decreased by means of additional thrust and speed-brakes use.
In both earliest/latest cases, the descent starts before than
in the neutral cases. The earliest powered trajectory (Figure
3(c)) uses the elevator to descend the fastest possible and
accelerate to MMO. This descent is maintained until both
VMO and MMO are achieved, at an altitude close to the
crossover altitude, where the TAS is maximized. Then, the

(a) Earliest neutral CDO (b) Latest neutral CDO

(c) Earliest powered descent (d) Latest powered descent

Fig. 3: Earliest and latest trajectories (Airbus A320-231)
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altitude and speed are kept constant until a deceleration is
performed to comply with the FL100 speed limit. In the latest
powered case (Figure 3(d)), a descent at the maximum descent
gradient is performed in order to release potential energy as
fast as possible. In addition, speed-brakes are deployed during
this phase in order to decrease the speed of the aircraft until
GD speed is reached. In both powered cases speed-brakes
are used intermittently in the latter stages of the trajectory
to control the aircraft and keep an adequate speed for landing.

C. Fuel consumption comparison between descent type vs.
path stretching strategies

Figure 4 shows the fuel consumption for the two strategies
compared in this paper when an RTA different from the
aircraft’s ETA is assigned. The x-axis represents the RTA
time difference with respect to the ETA (located at 0) and
the y-axis represents the fuel consumption in kg. It has to be
taken into account that the cost index used to compute the
ETA is 30 kg/min, so the lowest fuel consumption does not
correspond to the trajectory arriving at the metering fix at that
time. As a result, for times immediately after the ETA the fuel
consumption decreases for both strategies.

Figure 4 leads to several interesting conclusions. First of all,
it is observed that for RTAs lying in the neutral time window
(the shaded area in the graph) both strategies show the same
behavior in terms of fuel consumption. This is understandable
as in both cases the aircraft performs a neutral CDO and
the route length remains the same. However, different results
can be observed when the RTA lies outside the neutral time
window. For RTAs later than the ETA, and if the path is
not stretched, aircraft are forced to fly powered descents in
order to meet the time constraint, which supposes an increase
in fuel consumption. This is observed in the blue line. On
the other hand, for a same RTA outside the neutral time
window and if aircraft fly neutral CDOs, the path needs to
be stretched in order to meet that time constraint. As a result,
the fuel consumption increases too, as it is observed in the
orange line. However, the increase in fuel consumption is
not the same in both strategies. At the beginning, the path
stretching strategy, where aircraft fly for a longer time in
cruise and a for a longer route distance, supposes a higher fuel
consumption. However, as the RTA assigned is further from
the ETA, the fuel consumed when flying powered descents
increases drastically, ending up with a higher consumption
value than the path stretching strategy, even when the distance
flown is lower. Finally, for RTAs outside the neutral time
window and before the ETA, flying powered descents leads to
a higher fuel consumption than in the path stretching case. In
this situation, and to meet a same RTA, the route is shortened if
neutral CDOs are flown. If the route distance remains constant,
a powered descent is flown.

V. CONCLUSIONS

This paper quantified the fuel consumption when aircraft are
assigned an RTA different from their ETA. Two strategies were
compared, one in which aircraft fly the planed route but are

Fig. 4: Fuel consumption results: Descent type vs. Path stretch-
ing

forced to fly powered descents and another one where the route
is stretched and neutral CDOs are flown. Results show that,
for RTAs later than the ETA, although in the beginning path
stretching represents a higher fuel consumption, in the end
flying powered descents is the strategy that consumes more
fuel. On the other hand, for RTAs earlier than the ETA, path
stretching represents an advantage with respect to powered
descents in terms of fuel consumption as shorter routes are
flown.

The results obtained in this work could be a starting point to-
wards defining a ground supporting tool to help ATC to decide
which would be the best decision under the TBO paradigm,
where advanced synchronisation mechanisms between ground
and airborne tools are expected. This work could also mean an
improvement on some of the authors’ previous works like [13],
focusing on sequencing and merging traffic in TMA. When it
is not possible to schedule all aircraft by flying neutral CDOs,
maybe flying powered descents or stretching the route could
help to accommodate all traffic and keep the safety of the
operation.

In the work presented in this paper, only one aircraft model
was considered, and the same initial conditions were assumed
for all cases. This is not a representative enough scenario to
conclude the behavior in terms of fuel consumption of flying
powered descents vs. flying longer routes. Other factors like
the wind or the aircraft mass could greatly affect the results
too. Furthermore, in this study it is assumed that the RTA
initially assigned to the aircraft would not vary during the
whole trajectory. However, in some cases, the ATC could
decide to issue a new RTA, so it is also important to take
that into account when optimizing the trajectory and be able
to adapt to RTA updates. In future work, a study in greater
depth will be performed, aiming at providing a solution for a
greater variety of scenarios.
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