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ABSTRACT 23	

Cephalopod beaks found in the diet of predators have been a major source of 24	

scientific information. In this study, we evaluated the usefulness of DNA and 25	

contaminants analysis (total mercury- T-Hg) in cephalopod beaks in order to assess their 26	

applicability as tools in marine ecology studies. We concluded that, when applying DNA 27	

techniques to cephalopod beaks from Antarctic squid species, when using flesh attached 28	

to those beaks, it was possible to obtain DNA and to successfully identify cephalopod 29	

species; DNA was not found on the beaks themselves. This study also showed that it is 30	

possible to obtain information on T-Hg concentrations in beaks: the T-Hg concentrations 31	

found in the beaks were 6 to 46 times lower than in the flesh of the same cephalopod 32	

species. More research on the relationships of mercury concentrations in cephalopod 33	

beaks (and other tissues), intra- and inter- specifically, are needed in the future. 34	

 35	

CAPSULE ABSTRACT: DNA and contaminants analyses for the first time in 36	

cephalopods beaks showed that flesh attached to beaks allows DNA species ID and beaks 37	

had 6-46 times less total mercury than flesh. 38	

 39	

1. Introduction 40	

Cephalopods (Mollusca: Cephalopoda) are widely recognized as playing a pivotal 41	

role in many marine ecosystems, being consumed by a wide range of predators (Boyle 42	

and Rodhouse, 2005; Clarke, 1996b; Hoving et al., 2014; Xavier et al., 2015; Xavier and 43	

Cherel, 2009). Their beaks are well known to resist digestion and can stay in predator 44	

stomachs for days, weeks or even months (Ashmole and Ashmole, 1967; Duffy and 45	

Jackson, 1986; Furness et al., 1984; Gales and Cheal, 1992; Jackson and Ryan, 1986; 46	
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Votier et al., 2003; Xavier et al., 2005). More than 28 000 beaks have been found in the 47	

stomach of a single sperm whale (Akimushkin, 1955; Clarke, 1977). 48	

In 1962, Malcolm Clarke showed the importance of cephalopod beaks for marine 49	

ecology (Clarke, 1962), as cephalopod soft bodies are rarely found in the stomach of their 50	

predators (Clarke, 1977; Clarke, 1980b). Back then, little was known about interactions of 51	

cephalopods with top predators, in particular the relevance of each cephalopod species in 52	

the diet of top predators. Consequently, the construction of reliable food webs including 53	

cephalopods then was difficult if not impossible. The efforts of Malcolm Clarke and 54	

colleagues catapulted our ability to understand diet composition of predators that feed on 55	

cephalopods by using their beaks (Cherel and Klages, 1998; Clarke, 1986, 1996a, b; 56	

Croxall and Prince, 1996; Klages, 1996; Smale, 1996). 57	

Cephalopod beaks in the diet of top predators have been acknowledged as good 58	

tools for a variety of studies on marine ecology. They can provide information on size, 59	

frequency of occurrence and mass of cephalopods that are part of a top predator’s diet 60	

(Clarke, 1980b; Xavier et al., 2005).  Beak data analyses have been used to monitor 61	

seasonal and annual changes in availability (Xavier et al., 2013; Xavier et al., 2003; 62	

Xavier et al., 2007b), to aid fisheries assessment and management (Xavier et al., 2007b), 63	

to assess potential competition between predators (Xavier and Croxall, 2007) and to 64	

evaluate the amount of potential scavenging both by a predator (Croxall and Prince, 1994), 65	

or to recognize a new species in a given area (Clarke et al., 2002). Information regarding 66	

age (Clarke, 1965; Perales-Raya et al., 2014; Perales-Raya et al., 2010), growth, 67	

reproduction (Clarke, 1980b, 1993; Hernández-Garcia et al., 1998; Jarre et al., 1991), 68	

distribution (Clarke, 1980b; Clarke et al., 2002; Liu et al., 2015; Xavier et al., 2002a; 69	

Xavier et al., 2006; Xavier et al., 2002b; Xavier et al., 2014), paleontology (Clarke and 70	

Maddock, 1988), feeding ecology, behavior (Castro and Hernández-Garcia, 1995; Franco-71	
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Santos and Vidal, 2014), spawning areas (Cherel and Weimerskirch, 1999), post-72	

spawning mortality (Xavier and Croxall, 2007), sexual dimorphism (Bolstad, 2006; 73	

Cherel et al., 2009a; Jackson, 1995), biomass estimations, cephalopod consumption 74	

(Clarke, 1987; Clarke, 1983; Clarke et al., 2002; Santos et al., 2001; Xavier et al., 2007b) 75	

and predator migrations (Clarke and Stevens, 1974) can also be provided by studying 76	

cephalopod beaks. Recent stable isotope analyses of beaks enabled the determination of 77	

habitat preferences and trophic levels for a wide range of cephalopods (Cherel et al., 78	

2011; Cherel and Hobson, 2005; Cherel et al., 2009b; Guerra et al., 2010). Also, 79	

cephalopod beaks exhibit unique characteristics with mechanical properties that can be 80	

applied to engineering and biomaterial research (Dilly and Nixon, 1976; Miserez et al., 81	

2007; Miserez et al., 2008; Uyeno and Kier, 2005). 82	

Despite the countless applications of cephalopod beaks in marine ecology studies, 83	

DNA-based identification and chemical contamination assessments have not yet been 84	

evaluated. DNA has been used as an important tool to identify and discover new 85	

cephalopod species as well as gain insights into their ecology and evolution (Allcock et al., 86	

2014; Strugnell et al., 2009; Strugnell and Lindgren, 2007; Xavier et al., 2015). Studies 87	

using DNA for the identification of cephalopods in stomach contents have also been 88	

conducted (Strugnell and Lindgren, 2007), relying on DNA extraction from tissues of 89	

recently consumed cephalopods (Strugnell et al., 2005).  90	

Another application not commonly applied to beaks is contaminants assessment. 91	

Mercury is listed as one the most hazardous substances, with all chemical forms 92	

(elemental, inorganic and organic) exhibiting toxicological characteristics, and thus 93	

increasingly raising environmental concerns. Once mercury enters the marine ecosystems 94	

it can be easily methylated by bacteria, which accelerates bioaccumulation and 95	

biomagnification along food webs, ultimately concentrating in top predators (Wiener et al., 96	
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2007). The methylation process increases toxicity with methylmercury being the most 97	

toxic form. Mercury uptake occurs mainly through diet (Mieiro et al., 2012) and it is 98	

accumulated in specific tissues (e.g. Muscle tissue stores most as methylmercury 99	

(Bustamante et al., 2006; Mieiro et al., 2011)). To our knowledge, no studies so far 100	

explored the possibility of using beaks to assess environmental and ecological relevant 101	

mercury concentrations. 102	

Our study aims to use cephalopod beaks from squid that occur in the Southern 103	

Ocean (here defined as south of the subtropical front) in order to: (1) Apply DNA 104	

barcoding to both beaks and muscle tissue attached to the beaks to assess its feasibility for 105	

cephalopod identification; (2) Assess the utility of beaks to evaluate total mercury 106	

accumulation in cephalopods by comparing concentrations in beaks and muscle; (3) 107	

Discuss the future applicability of DNA barcoding and mercury analysis in ecological 108	

studies of cephalopods. 109	

 110	

2. Material and methods 111	

2.1 DNA analyses 112	

Cephalopod lower beaks of two of the most common species in top predators diets 113	

(i.e. Kondakovia longimana and Moroteuthis knipovitchi; see Xavier and Cherel 2009) 114	

were collected from stomach contents of grey headed Thalassarche chrysostoma and 115	

black-browed T. melanophrys albatrosses breeding at Bird Island, South Georgia, 116	

following Xavier et al. (2003), Guerreiro et al. (2015) and Alvito et al. (2015). Lower 117	

beaks samples from adult Southern Ocean squid were fixed in ethanol (70–90%) and 118	

stored at –20 °C until DNA extractions were carried out. At the laboratory, the beaks were 119	

then macerated and proteinase K (20 µg/mL) was added overnight. DNA extraction was 120	
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performed using the JETFLEX Genomic DNA Purification Kit (Genomed, Germany). 121	

DNA yield was quantified using NanoDrop equipment (Thermo Scientific, USA). 122	

For DNA analyses of tissue samples that were attached to cephalopod beaks (i.e. 123	

from buccal mass), from more squid species common in the diet of top predators 124	

(Galiteuthis glacialis, Psychroteuthis glacialis, Gonatus antarcticus and Alluroteuthis 125	

antarcticus).  DNA extraction was done by using a Glass Fiber Plate DNA Extraction 126	

method (Ivanova et al., 2006).  127	

The primer pair LCO1490_t1 and HCO2198_t1 was used to amplify a 658 bp 128	

fragment of the COI gene. Samples which did not amplify successfully were re-run using 129	

a combination of overlapping primer sets: C_LepFolF,MLepR2 and MLepF1,C_LepFolR. 130	

The PCR thermal regime for all primer sets was: initial denaturing at 94 °C for 1 min; five 131	

cycles at 94 °C for 1 min, 45 °C for 1.5 min and 72 °C for 1.5 min; 35 cycles of 94 °C for 132	

1 min, 50 °C for 1.5 min and 72 °C for 1 min followed by a final cycle at 72 °C for 5 min. 133	

Each PCR product was cleaned by Sephadex. Prior to sequencing, the clean PCR product 134	

was diluted 1:10 with sterile water and 2-5 μL of it was sequenced in both directions 135	

using ABI 3730xl automated DNA sequencers. All sequences and supporting information 136	

have been deposited in the Barcode of Life Datasystems (BOLD) database (Ratnasingham 137	

and Hebert, 2007) in the project DIETA, and were submitted to GenBank (Accession 138	

numbers are given in Table 1).  139	

 140	

2.2 Mercury analyses 141	

Cephalopod lower beaks of some of the most important cephalopod species in top 142	

predator diets (Galiteuthis glacialis, Gonatus antarcticus, Kondakovia longimana, 143	

Moroteuthis knipovitchi and Psychroteuthis glacialis; see Xavier and Cherel 2009) were 144	

collected from stomach contents of albatrosses breeding at Bird Island, South Georgia as 145	
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well as Patagonian toothfish Dissostichus eleginoides from the South Sandwich Islands, 146	

following Xavier et al. (2002b), Xavier et al. (2003) and Seco et al. (2015). At the 147	

laboratory, all beaks were ground to a fine powder using liquid nitrogen for further 148	

analyses of mercury concentrations. Total mercury (T-Hg) was determined by atomic 149	

absorption spectrometry (AAS) with thermal decomposition and gold amalgamation, 150	

using an Advanced Mercury Analyser (AMA) LECO 254 (Costley et al., 2000). This 151	

method does not require previous sample treatment, and also allows for a small sample 152	

mass to be used. In this case, an average of 36mg per beak replicate was used for Hg 153	

determinations. The limit of detection of the AMA – LECO 254 analyzer is 0.01 ng of 154	

mercury. Accuracy and precision of the analytical methodology for T-Hg determinations 155	

were assessed by daily replicate analysis of certified reference materials (CRM), namely 156	

Tort-2 (lobster hepatopancreas). Precision of the method was always better than 9% (n= 157	

9), with a recovery efficiency of 105 ± 7% (n= 27). 158	

 159	

2.3 Statistical analyses 160	

For cephalopod beaks that could be identified to species level we used allometric 161	

equations to convert lower beak size to mantle length (ML) and body mass (g), in Xavier 162	

and Cherel (2009). After assessing the normality of the data, non-parametric tests were 163	

used to assess relationships between T-Hg and ML/body mass. Values on statistics are 164	

given as means ± standard deviation unless if stated. 165	

 166	

3. Results 167	

3.1 DNA extraction and sequencing analysis	168	

A total of 20 clean cephalopod lower beaks, with no visible tissue, were used for 169	

DNA extraction, with 10 beaks belonging to Kondakovia longimana (10.9 ± 0.9 mm 170	
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Lower Rostral Length (LRL); range: 8.9 – 12.0 mm LRL) and 10 beaks belonging to 171	

Moroteuthis knipovitchi (4.6 ± 0.5 mm LRL; range: 3.9 – 5.4 mm LRL). With the 172	

methods applied, it was not possible to retrieve any DNA. Another set of cephalopod 173	

beaks with visible flesh attached (i.e. buccal mass), were used to retrieve DNA for COI 174	

gene amplification. The buccal mass flesh used was identified as K. longimana (n=10), 175	

Galiteuthis glacialis (n=1), M. knipovitchi (n=6), Psychroteuthis glacialis (n=1), Gonatus 176	

antarcticus (n=1) and Alluroteuthis antarcticus (n=2). This DNA barcoding confirmed the 177	

identification of all species by beak morphology (Xavier and Cherel, 2009).	178	

 179	

3.2 Mercury concentrations 180	

The total mercury (T-Hg) levels of lower beaks from five squid species of the 181	

Southern Ocean were obtained (Table 2, Figure 1). Concentrations ranged from 0.004 (K. 182	

longimana and G. glacialis) to 0.047 mg kg-1 dry weight (M. knipovitchi), indicating low 183	

mercury concentrations in beaks. There were significant interspecific differences in T-Hg 184	

concentrations (Kruskall-Wallis H=14.56, p<0.01) between P. glacialis and K. longimana 185	

(Dunn’s test Q=3.11 p<0.05). The average T-Hg concentration found in species with 186	

larger beaks (K. longimana) was similar to species with smaller beaks (G. glacialis; Table 187	

2, Figure 1) but with the highest estimated ML (Table 3). M. knipovitchi, P. glacialis and 188	

G. glacialis showed a higher intra-species variability while T-Hg levels in beaks of 189	

individuals of G. antarcticus were more consistent (Table 2, Figure 1). No correlation was 190	

found between T-Hg concentration and the lower rostral length (Spearman correlation 191	

ρ=0.06 p=0.77) or with the body mass (Spearman correlation ρ= 0.009 p=0.96) of the 192	

studied species. However, there was a negative correlation between T-Hg concentration 193	

and the mantle length (Spearman correlation ρ=-0.487 p=0.02). When comparing the T-194	

Hg concentration of lower beaks (present data) with those in flesh/muscle (Anderson et 195	
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al., 2009) for the same cephalopod species from the same region of the Southern Ocean 196	

(Atlantic sector, around South Georgia), the levels found in the beaks were significantly 197	

lower than those found in flesh/muscle (Mann-Whitney U=0.00; p<0.01). The species 198	

showing least variability in T-Hg concentration in both studies were G. antarcticus and K. 199	

longimana. 200	

 201	

4. Discussion 202	

Given the difficulty to capture cephalopods, the use of recovered beaks from 203	

stomach contents from cephalopod predators has been widely used in ecological studies, 204	

particularly for the purpose of species identification (Clarke, 1980a; Clarke, 1986; Xavier 205	

and Cherel, 2009). However, there are only a few experts in the world trained to do this 206	

kind of identification (Clarke, 1986; Xavier et al., 2007a). In this study, we assessed the 207	

utility of a molecular approach, using DNA recovered from tissues attached to the beaks. 208	

We also assessed the utility of beaks to obtain information on mercury concentration in 209	

cephalopods.	210	

 211	

4.1 DNA extraction and sequencing analyses  212	

This study showed that it was possible to extract DNA directly from flesh attached 213	

to the beaks (i.e. from buccal mass), but not from the beaks themselves. The reason for 214	

the latter is likely caused by the beak’s composition. They do not contain living cells 215	

(Miserez et al., 2010), and any residue tissue on their surface will be digested after a 216	

longer time in a predator’s stomach. Larger buccal mass tissue bits attached to the beak 217	

contain enough DNA for further analysis and may allow using DNA barcoding to 218	

determine the species. We chose only species whose beaks could also be identified using 219	

beak morphology (Xavier and Cherel, 2009) in order to test if there is correspondence 220	
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between both methods. DNA barcoding confirmed the identification of species by beak 221	

morphology, which is a promising result as it provides researchers with two methods to 222	

choose from depending on the needs of their study. Surveys on the feeding ecology of 223	

cephalopod predators usually start with samples that contain clean beaks as well as beaks 224	

with flesh attached to them. A fair number of squid species found in the Southern Ocean 225	

(Rodhouse et al., 2014) have already been barcoded, and these sequences are publicly 226	

available through GenBank (Table 1) or BOLD.  However, there are numerous species 227	

living in the Southern Ocean that still unknown to science, without a barcode sequence 228	

(Xavier et al., 2015; Xavier and Cherel, 2009; Xavier et al., 2014). 229	

 230	

4.2 Mercury concentrations 231	

Our study showed that it is possible to measure total mercury (T-Hg) 232	

concentration in cephalopod (lower) beaks, using a simple and easily accessible 233	

laboratory methodology. The total mercury concentrations found on the lower beaks of 234	

the studied cephalopod species were 6 to 46 times lower than those reported from muscle 235	

tissue of the same species in the Southern Ocean (see Table 2). Such results might be due 236	

to mercury organotropism (Bustamante et al., 2006; Jackson et al., 2007), since mercury 237	

accumulation is tissue-specific and muscle is known to harbour significant levels of 238	

mercury, mainly in organic form (Bustamante et al., 2006). Preferential accumulation of 239	

mercury in muscle tissue has also been reported for fish and is a protection mechanism 240	

that prevents mercury accumulation in other vital organs (e.g. brain) (Mieiro et al., 2011). 241	

Despite the proteinaceous nature of cephalopod beaks (beaks can have a protein content 242	

varying from 5% to 60% wet weight according to the pigmentation gradient (Miserez et 243	

al., 2008)), their slow growth rate (they are usually not replaced throughout a cephalopods 244	

relative short life),  and mercury affinity for proteins, it seems that beaks are not a 245	
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structure with high accumulation potential (as the mercury values were very low; see 246	

results). In addition, the permanency of the beaks in the acidic contents of their predators’ 247	

stomachs may induce the release of Hg due to the chelating action (i.e. chemical broke 248	

down activity) of acids, which may disrupt the Hg bonds to proteins (Hajeb and Jinap, 249	

2009), and reduce Hg concentration in beaks. 250	

Mercury concentrations in cephalopods depend on both biological and 251	

environmental factors such as size, lifestyle, food availability, growth rate and 252	

geographical origin (Bustamante et al., 2006; Pereira et al., 2009; Villanueva et al., 2002). 253	

With respect to size, this study did not show any relation between the T-Hg concentration 254	

in beaks and the lower rostral length (see results). In fact, larger beaks of K. longimana, 255	

showed similar T-Hg values when compared with species with smaller beaks, such as G. 256	

glacialis. This suggests that bioaccumulation of mercury in beaks does not seem to be 257	

dependent on body size of cephalopods, which is in agreement with previous studies on 258	

other tissues by Raimundo et al. (2009) who found comparable Hg concentrations (based 259	

on octopod digestible gland samples) among individuals of different age/size. The same 260	

result was obtained for the relationship between estimated body mass and T-Hg in squid 261	

beaks in our study.  262	

In terms of assessing T-Hg and ML relationships, K. longimana can reach more 263	

than 1000 mm of mantle length (ML), whereas the other studied species generally have 264	

ML lower than 500 mm (Gröger et al., 2000; Lu and Williams, 1994; Lynnes and 265	

Rodhouse, 2002). For our study, the estimated ML of the specimens of G. glacialis and K. 266	

longimana were in the same range and had the highest ML registered, which may explain 267	

the similarity between the T-Hg concentrations found between these species. Both species 268	

showed the lower T-Hg burdens found in this study, possibly due to a somatic growth 269	

dilution of the metal, which can be corroborated by the negative correlation found 270	



	 12

between ML and T-Hg; It has been shown that rapid growth can greatly reduce the 271	

mercury concentration in aquatic organisms by causing a greater than proportional gain in 272	

biomass relative to the metal concentration (Karimi et al., 2007).  273	

Beaks from M. knipovitchi and P. glacialis showed T-Hg concentrations 3 times 274	

higher than G. glacialis and K. longimana, despite that their ML were lower, which is in 275	

line with the previous assumption that small species (with slower growth rate) may 276	

accumulate more mercury. G. antarcticus showed similar ML with M. knipovitchi and P. 277	

glacialis, but half of their T-Hg burden. This may be explained by the different feeding 278	

habits, different growth rates and distribution of these different species (Cherel et al., 279	

2009a; Collins and Rodhouse, 2006 ; Pierce et al., 2008; Xavier et al., in press). In 280	

summary, there are no clear relationships between T-Hg with beak size and body mass, 281	

but there is a relationship between T-Hg and ML, emphasizing that this issue must be 282	

further investigated.  283	

Finally, our results show intra-species variations of T-Hg concentrations, being 284	

particularly higher in M. knipovitchi , G. glacialis and P. glacialis (see Results; Figure 1). 285	

Further studies will be needed to assess why such variations occur. They may be caused 286	

by various parameters related to the ecology of Southern Ocean cephalopods, such as 287	

biological (e.g. growth rate, size, sex, metabolic rate), ecological (e.g. feeding and habitat 288	

use) and environmental (mercury availability, primary productivity) factors (Chouvelon et 289	

al., 2012; Harmelin-Vivien et al., 2009).  290	

The Antarctic seabed has been characterized as cold and thermally stable, without 291	

relevant changes in spatial or seasonal temperature (Xavier and Peck, 2015). As 292	

previously stated, mercury accumulation depends on a wide range of factors, namely 293	

abiotic factors, such as temperature, which not only affect the mercury cycle but also 294	

organism individual growth. Could mercury concentrations in Southern Ocean 295	
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cephalopods be different from elsewhere? Using T-Hg in muscle tissue as a measure, 296	

there are no major differences between mercury concentrations in squid species from the  297	

Southern Ocean (Anderson et al., 2009; McArthur et al., 2003) compared to 298	

taxonomically close ones from the North Eastern Atlantic (Anderson et al., 2009; 299	

Chouvelon et al., 2012), Adriatic and Mediterranean Sea (Perugini et al., 2009; Rjeibi et 300	

al., 2015) and adjacent waters to Peninsular Malaysia (Ahmad et al., 2015) (Table 3), 301	

which suggests comparable mercury levels in the aquatic environments of both areas. This 302	

evidence reinforces mercury persistency and its global distribution. 303	

In conclusion, when using DNA analyses, we can assess the identification of 304	

cephalopods only when there is flesh attached to beaks, as it was not possible to obtain 305	

DNA directly from the beaks using our methodology. However the success of DNA 306	

barcoding in cases where tissue remnants were still attached to beaks provides researchers 307	

with two tools that could be used in a complementary fashion to determine species 308	

identities in the stomach content of cephalopod predators (i.e. in some studies you can 309	

only be able to use DNA (only flesh available) while other studies only beaks are 310	

available). It is possible to assess the mercury concentrations of cephalopod beaks and 311	

despite the fact that T-Hg in beaks was lower than usually found in muscle tissue, beaks 312	

could be a tool to assess marine contamination in a wide range of cephalopod species 313	

(particularly oceanic squid species) that are more difficult to catch using traditional means 314	

(nets) (Clarke, 1977; Xavier et al., 2015; Xavier et al., 2007a).  Future studies in order to 315	

suggest some relationship with cephalopod measurements (like the inverse relationship 316	

with ML), studies should focus in testing the Hg concentrations with real measurements 317	

obtained from different size/sex cephalopods (rather than estimations from allometric 318	

equations).  319	

 320	
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Table	1:	Taxa	of	squid	known	to	inhabit	in	Southern	Ocean	waters,	following	599	

Rodhouse	et	al.	(2014;	19	species),	that	already	have	their	respective	COI	Accession	600	

number	(*	=	species	that	were	studied	in	this	study). 601	

Species name Accession number 

Alluroteuthis antarcticus* AF131871 

Bathyteuthis abyssicola AF000030 

Batoteuthis skolops AY557527 

Chiroteuthis veranyi AF000032 

Galiteuthis sp.* KF309247 

Gonatus antarcticus* AY681064 

Kondakovia sp.* EU735403 

Martialia hyadesi AB270940 

Mastigoteuthis psychrophila KC860979 

Mesonychoteuthis hamiltoni EU735397 

Moroteuthis ingens  AB264119 

Moroteuthis knipovitchi* AF131875 

Moroteuthis robsoni AB264117 

Psychroteuthis glacialis* AF131876 

Todarodes filippovae AB270935 

	602	

 603	

 604	

 605	

 606	

 607	

 608	

 609	

 610	

 611	

 612	

 613	
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Table 2: Total mercury concentration (mg kg-1, dry weight; mean values, standard 614	

deviation (SD), range and variation coefficient (%)) in cephalopod– beaks (present study) 615	

and muscle (Anderson et al. 2009). 616	

 617	

 
Beaks Muscle 

  n  [Hg] SD Range CV %  n [Hg] SD Range CV% 

Galiteuthis 

glacialis 4 0.008 0.004 0.004-0.011 45 3 0.23 0.07 0.18-0.31 30 

Moroteuthis 

knipovitchi 5 0.025 0.015 0.009-0.047 59 4 0.16 0.09 0.07-0.29 58 

Gonatus 

antarcticus 4 0.013 0.003 0.009-0.017 27 2 0.6 0.02 0.58-0.61 4 

Psychroteuthis 

glacialis 5 0.029 0.011 0.018-0.042 37 2 0.18 0.11 0.10-0.25 61 

Kondakovia 

longimana 6 0.008 0.003 0.004-0.013 34 2 0.1 0.02 0.08-0.11 22 
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Table 3: Total mercury concentration in cephalopod tissues from different sampling areas. N – sampling size; ML - mantle length (mean±SD or 

range (min-max)/ mm), Hg tissue T-Hg concentration (mean±SD (range)/mg kg-1, dry weight). See exceptions (a-d) below. 

Species Sampling area N ML                  Hg beaks                 Hg flesh  Hg digestive gland References 

Onychoteuthidae                        
Kondakovia longimana Southern Ocean 6 554±37.7 0.008±0.003 (0.007-0.013) – – – – Present study 

Southern Ocean 2 – – – 0.1±0.02 (0.08-0.11) – – Anderson et al. 2009 

Moroteuthis knipovitchi Southern Ocean 5 274±17.5 0.025±0.015 (0.009-0.047) – – – – Present study 
Southern Ocean 4 – – – 0.16±0.09 (0.07-0.29) – – Anderson et al. 2009 

Moroteuthis ingens Southern Ocean 15 243-364 – – 0.086±0.017 (0.06-0.13) – – McArthur et al. 2003 

Gonatidae                        
Gonatus antarcticus Southern Ocean 4 241±3.75 0.013±0.003 (0.009-0.017) – – – – Present study 

Southern Ocean 2 – – – 0.6±0.02 (0.58-0.61) – – Anderson et al. 2009 

Psychroteuthidae                        
Psychroteuthis glacialis Southern Ocean 5 296±8.15 0.029±0.011 (0.018-0.042) – – – – Present study 

Southern Ocean 2 – – – 0.18±0.11 (0.10-0.25) – – Anderson et al. 2009 

Cranchiidae                        
Galiteuthis armata  NE Atlantic 3 252±91 – – 0.252±0.041  (0.206–0.284) – – Chouvelon et al. 2012 
Galiteuthis glacialis Southern Ocean 4 425±21.5 0.008±0.004 (0.04-0.11) – – – – Present study 

Southern Ocean 3 – – – 0.23±0.07 (0.18-0.31) – – Anderson et al. 2009 
Teuthowenia megalops  NE Atlantic 4 134±12 – – 0.150±0.033  (0.111–0.192) – – Chouvelon et al. 2012 

NE Atlantic 1 180 – – – 0.205 – 0.172 Bustamante et al. 2006 

Ommastrephidae                        
Illex coindetii NE Atlantic 22 130±54 – – 0.193±0.078 (0.061–0.331) 0.192±0.076 (0.081–0.357) Bustamante et al. 2006 

Todaropsis eblanae NE Atlantic 9 101±43 – – 0.281±0.129 (130–500) 0.217±0.108 (0.120–0.463) Bustamante et al. 2006 
NE Atlantic 23 100±41 – – 0.206±0.201 – 0.128±0.099 – Pierce et al. 2008 

Todarodes sagittatus  NE Atlantic 22 260±42 – – 0.324±0.380  (0.139–1.998) – – Chouvelon et al. 2012 
NE Atlantic 5 98±34 – – 0.188±0.089 (0.073–0.289) 0.168±0.052  (0.112–0.231) Bustamante et al. 2006 
NE Atlantic 12 343±100 – – 0.425±0.194 – 0.280±0.105 – Pierce et al. 2008 
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Adriatic Sea 14 – – – 0.25±0.03d (0.02-0.62) – – Perugini et al. 2009 

Histioteuthidae                        
Histioteuthis reversa NE Atlantic 7 54±22 – – 0.219±0.087  (0.132–0.320) – – Chouvelon et al. 2012 

NE Atlantic 6 38±22 – – 0.102±0.031 (0.065–0.147) 0.088±0.044 (0.031–0.137) Bustamante et al. 2006 

Loliginidae                        
Alloteuthis sp. NE Atlantic 20 67±15 – – 0.098±0.011 – 0.072±0.011 – Pierce et al. 2008 

Alloteuthis subulata NE Atlantic 15 152±32 – – 0.196±0.040 (0.121–0.262) – – Bustamante et al. 2006 

Loligo vulgaris  NE Atlantic 36 179±56 – – 0.149±0.032 (0.072–0.200) – – Chouvelon et al. 2012 
NE Atlantic 21 151±47 – – 0.264±0.086 (0.113–0.398) 0.406±0.171 (0.113–0.681) Bustamante et al. 2006 
NE Atlantic 10 130-420 – – 0.05±0.02d (0.02-0.08) – – Lourenço et al. 2009 

 
Mediterranean 
Sea 

95 120-256 – – 0.072c,d (0.030-0.95) – – Rjeibi et al. 2015 

Loligo forbesi NE Atlantic 38 290±99 – – 0.260±0.119  (0.099–0.547) – – Chouvelon et al. 2012 
NE Atlantic 12 119±48 – – 0.179±0.053 (0.091–0.645) 0.235±0.104 (0.165–0.512) Bustamante et al. 2006 

 
NE Atlantic 

10
1 

129±78 – – 0.153±0.081 – 0.216±0.176 – Pierce et al. 2008 

Loligo duvaucelii 
Peninsular 
Malasya 

10 160-530a – – 0.199±0.162b (0.150-0.406) – – Ahmad et al. 2015 

Loligo uyii 
Peninsular 
Malasya 

4 240-384a – – 0.249b (0.099-0.324) – – Ahmad et al. 2015 

Loligo chinensis 
Peninsular 
Malasya 

7 306-600a – – 0.275±0.122b (0.158-0.309) – – Ahmad et al. 2015 

Loligo sibogae 
Peninsular 
Malasya 

6 217-612a – – 0.364±0.507b (0.194-1.506) – – Ahmad et al. 2015 

Loligo edulis 
Peninsular 
Malasya 

9 120-276a – – 0.267±0.156b (0.099-2.715) – – Ahmad et al. 2015 

 

a Possibly refers to the mantle length, but can also refers to total length (see Ahmad et al 2015) 

b Median±IQR 
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c Median 

d T-Hg in mg kg-1 wet weight; mean moisture content is indicated to be 78% in literature (Lourenço et al 2009; Rjeibi et al 2015) 
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Figure 1: Mercury concentration ([T-Hg]/ mg kg-1, dry weight) obtained from beaks 
according to size dimensions: (a) lower rostral length (LRL/mm), (b) estimated mantle 
length (ML/mm) and (c) estimated body mass (M/g) of five southern ocean cephalopod 
species. This figure is for visual comparison rather than for determining trends as these 
different species have different morphologies, physiology, life histories and growth rates. 
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