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Abstract. A method for simulation-based multidisciplinary robust design optimization
(MRDO) affected by uncertainty is presented, based on variable-accuracy metamodelling.
The approach encompasses a variable level of refinement of the design of experiments
(DoE) used for the metamodel training, a variable accuracy for the uncertainty quantifi-
cation (UQ), and a variable level of coupling between disciplines for the multidisciplinary
analysis (MDA). The results of the present method are compared with a standard MRDO,
used as a benchmark and solved by fully coupled MDA and fully accurate UQ, without
metamodels. The hull-form optimization of the DTMB 5415 subject to stochastic speed
is presented. A two-way steady coupled system is considered, based on hydrodynamics
and rigid-body equation of motion. The objective function is the expected value of the
total resistance, and the design variables pertain to the modification of the hull form. The
effectiveness and the efficiency of the present method are evaluated in terms of optimal
design performances and number of simulations required to achieve the optimal design.

1 INTRODUCTION

The design of complex engineering system requires simulation-based analysis, address-
ing the interaction of mutually coupled disciplines. Real world applications are affected
by uncertainty and require uncertainty quantification (UQ) and multidisciplinary robust
design optimization (MRDO) formulations. Simulation-based design (SBD) for shape
optimization has been used in diverse engineering fields, including naval applications [1].
SBD has been widely extended to multidisciplinary design optimization (MDO) problems,
including ship design [2]. The assessment of uncertainty in SBD has been presented in
[3], whereas a MRDO application addressing operational uncertainties has been shown
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in [4]. In order to reduce the MDO and MRDO computational costs, metamodels have
been widely applied in several engineering fields. In naval applications, a metamodels-
based UQ may be found in [5, 6] and a dynamic radial basis function metamodel for UQ
applications in ship hydrodynamics has been presented in [7]. The numerical solution
of the MRDO represents a challenge from both the algorithmic and computational view-
points, especially if computationally expensive simulations are required. Simulation-based
multidisciplinary analysis (MDA), UQ, and design optimization need to be effective and
efficient, in order to define an optimal solution at a reasonable computational cost.

The objective of the present work is the development and validation of a variable-
accuracy method for simulation-based MRDO. Specifically, the optimal solution is identi-
fied by variable-accuracy, metamodel-based design optimization. The focus is on two-way
steady problems and the method encompasses (a) a variable level of refinement of the
design of experiments (DoE) used for the metamodel training, (b) a variable accuracy in
the UQ analysis and (c) a variable level of coupling between disciplines in MDA [8].

The SBD application pertains to the hull-form optimization of the DTMB 5415 model,
an open-to-public early concept of the DDG-51, a USS Arleigh Burke-class destroyer,
widely used for both experimental [9] and numerical investigations [2]. Herein, the SBD
optimization is aimed at the reduction of the expected value of the total resistance in
calm water, considering stochastic speed. The two-way MDA is defined by the steady
hydrodynamics provided by a linear potential flow solver and the rigid body equation of
motion. The convergence of MDA is achieved iteratively, for each value of the stochastic
speed. Monte Carlo method coupled with Latin Hypercube Sampling (LHS) [8] is used for
UQ. The optimization is performed using a single objective deterministic particle swarm
optimization (PSO) algorithm [10], using a thin plate spline (TPS) metamodel built on
subsequent DoEs, obtained with variable UQ accuracy and MDA coupling. The results
are compared to a benchmark solution, obtained by optimization without metamodel and
a high level of UQ accuracy and MDA coupling.

2 PROBLEM FORMULATION

The single-objective MDO problem is formulated as

minimize f(x, a), x ∈ X ⊆ RNDV (1)

whereas the MRDO extension to problems affected by uncertainty reads

minimize µ(f) =

∫

Y

f(x,y, a)p(y)dy, x ∈ X ⊆ RNDV (2)

where x collects NDV deterministic design variables, f is the deterministic objective func-
tion, µ in Eq. 2 is the expected value of f and p(y) is the probability density function of
the stochastic environmental and operating conditions, collected in y. Box and functional
constraints may apply, if required.

The function f depends on several interconnected disciplines. The input of the i-th
discipline ∆i is defined by the set of design variables, x = [xT

i ,x
T
S ]

T , the set of output
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parameters provided by other disciplines ∆j (i �= j), {aj}i �=j, and, for Eq. 2, the set
of uncertain parameters y = [yT

i ,y
T
S ]

T . Variables indicated by xS are shared by all (or
part of) the disciplines, whereas the corresponding xi are assumed to be local to the i-th
discipline ∆i. Similarly, the vector yS is shared by all (or part of) the disciplines involved
and yi is local to the i-th discipline ∆i only (see, e.g., [4]).

In MDO, once the multidisciplinary equilibrium, a = [aT
1 , . . . , a

T
N∆

]T , is achieved (gener-
ally by iterative procedures), the deterministic objective function f = f(x, a) is evaluated
and an optimization algorithm is put on top of MDA.

In MRDO, the multidisciplinary equilibrium is conditional to y ∈ Y and UQ is needed
on top of MDA (as shown in the top box of Fig. 1). Once the multidisciplinary equilibrium
is achieved, the deterministic objective function f = f(x,y, a) is evaluated, the stochastic
objective function µ(f) is assessed by UQ, and finally an optimization algorithm is put
on top of UQ (see Fig. 1).

3 VARIABLE-ACCURACY METHOD FOR MRDO

A metamodel is interposed between UQ and the optimizer, as shown in Fig. 1. The
variable-accuracy metamodel-based MRDO is based on subsequent optimization stages,
characterized by: (a) a refinement of the DoE used for the metamodel training, (b) a
variable accuracy in the UQ analysis and (c) a variable level of coupling in MDA.

At the first stage, the training points are distributed in the whole design domain and
the corresponding objective function values are obtained considering both a low level of
accuracy in UQ and a weak coupling between disciplines. After the first optimization
stage, a refined subdomain centered in the current optimum is defined. A new training
set is used, with the corresponding objective function values obtained increasing both the
accuracy of UQ and the coupling in MDA. The procedure is iterated for an appropriate
number of stages, achieving fully accurate UQ and fully converged MDA, at the last
optimization stage. The pseudo-code of the methodology is presented in Fig. 2, where
NOS is the number of optimization stages and NTP is the number of training points per
optimization stage.

4 SBD FRAMEWORK FOR MRDO

The SBD optimization framework encompasses three essential and interconnected ele-
ments: (a) the analysis tools, (b) the optimization algorithm, (c) the tool for the design
modifications. The present toolbox includes a steady potential flow code, coupled with
rigid-body equation of motion, a UQ tool based on MC-LHS simulation, a TPS meta-
model, a deterministic version of the PSO algorithm, and a tool for geometry modifications
based on orthogonal basis functions.
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Figure 1: Metamodel-based MRDO
method.

For 𝑖𝑖 = 1, 𝑁𝑁𝑂𝑂𝑂𝑂 
   Define 𝑁𝑁𝑇𝑇𝑇𝑇 training points, 𝐱𝐱(𝑖𝑖) ∈  𝑋𝑋(𝑖𝑖) 
   For 𝑗𝑗 = 1, 𝑁𝑁𝑇𝑇𝑇𝑇 
      Do while UQ tolerance not achieved     
        Define (new) LHS samples, 𝐲𝐲 ∈ 𝑌𝑌
         Do while MDA tolerance not achieved  
            For 𝑞𝑞 = 1, 𝑁𝑁∆ 
               Solve ∆𝑞𝑞  
            End 
            Evaluate 𝑓𝑓 𝐱𝐱 𝑖𝑖 , 𝐲𝐲, 𝐚𝐚  
         End 
      End 
   End 
   Build  the TPS metamodel for 𝜇𝜇(𝑓𝑓) 
   Optimize 𝜇𝜇(𝑓𝑓) by PSO 
   Define a new design domain 𝑋𝑋(𝑖𝑖+1), 
      based on current optimum 
End 

Figure 2: Pseudo-code of the variable-
accuracy metamodel-based MRDO method.

4.1 Tools for multidisciplinary analysis

The hydrodynamics is solved using the code WARP (WAve Resistance Program), de-
veloped at CNR-INSEAN. Wave resistance computations are based on linear potential
flow theory. For details of equations, numerical implementation and validation see [11].
The wave resistance is evaluated with the transverse wave cut method [12], whereas the
frictional resistance is estimated using a flat-plate approximation, based on the local
Reynolds number [13]. The inputs (x1 and y1) of the hydrodynamic solver are the design
variables and the speed, respectively, along with sinkage (σ) and trim (τ) values (collected
in a2). The corresponding outputs (collected in a1) are the hydrostatic and hydrodynamic
forces and moments.

The steady rigid-body equation of motion is evaluated for the 2DOF (sinkage and trim)
problem and includes the equilibrium of the vertical forces Fz, and y-moments My. The
incremental sinkage (∆σ) at the center of gravity (CG) and trim (∆τ) are evaluated by
the linearized equations, ∆σ = Fz/ρgSWL (where ρ is the water density, g is the gravity
acceleration and SWL is the waterline surface area), and ∆τ = My/ρgIWL (where IWL is
the waterline-area moment of inertia about the y-axis, passing at CG). The inputs are the
hydrostatic and hydrodynamic forces and moments (a1), and the weight force, whereas
the outputs (a2) are formed by sinkage and trim values.

The MDA achieves the equilibrium solution for a1 and a2 by an iterative procedure.
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4.2 UQ method

The integral in Eq. 2 is approximated as µ(f) = 1/NUQ

∑NUQ

i=1 f(x,yi), using the MC
method. LHS is applied by dividing the uncertain parameter domain with NUQ = 2k + 1
(k ∈ N) evenly spaced bins [8].

4.3 TPS metamodel

A TPS metamodel is used for the design optimization. Given a set of training points
{xi}, i = 1, . . . , NTP, and the corresponding objective function values f(xi), the objec-
tive function f(x) is approximated, using radial-basis functions (RBF), as per f̂(x) =
∑NTP

i=1 di ϕ[r(x,xi)], where ϕ(r) = r2 log r is the RBF kernel, with r = ‖x− xi‖. The
coefficients di are the solution of {ϕ(xi,xj)}{dj} = {f(xi)}. Herein, the training set is
distributed in the design domain using Hammersley sequence sampling (HSS) [8].

4.4 Optimization algorithm

The deterministic version of the PSO algorithm is used for the optimization [10]. The
swarm dimension is set to 4 · NDV, the swarm is initialized using HSS over the design
variables domain and its boundaries. The PSO coefficients are set as χ = 0.721, c1 =
c2 = 1.655, [10]. The number of function evaluations is set to NPSO = 512 ·NDV.

4.5 Shape modification method

Shape modifications are represented in terms of orthogonal basis functions ψj (j =
1, ..., NDV), defined over surface-body patches as

ψj(ξ, η) := αj sin

(

pjπξ

Aj

+ φj

)

sin

(

qjπη

Bj

+ χj

)

ek(j) (ξ, η) ∈ [0;A]× [0;B] (3)

where αj is the j-th (dimensional) design variable; pj and qj define the order of the basis
function in ξ and η direction respectively; φj and χj are the corresponding spatial phases;
Aj and Bj are the patch extension in ξ and η respectively, and ek(j) is a unit vector.
Modifications may be applied in x, y or z direction (k(j) = 1, 2, 3 respectively).

5 OPTIMIZATION PROBLEMS

The objective function for the problem in Eq. 1 is the total resistance (f = RT ) of the
DTMB 5415 [9] in calm water at 24 [kn], whereas the objective function for the problem
in Eq. 2 is the expected value of the total resistance in calm water, evaluated over a
stochastic speed y, with y ∈ [18; 30] [kn] following a uniform probability density function.

Two (normalized) design variables, x1 = α1/2 and x2 = α2, are used. The shape
modifications are obtained as per Eq. 3 with j = 1, 2 and k = 2. The associated
parameters are p1 = 2.0, φ1 = 0.0, q1 = 1.0, χ1 = 0.0, α1 ∈ [−2.0; 2.0] and x1 ∈ [−1.0; 1.0];
p2 = 1.0, φ2 = 0.0, q2 = 2.0, χ2 = 0.0, α2 ∈ [−1.0; 1.0] and x2 ∈ [−1.0; 1.0]. Geometric
constraints include fixed length between perpendiculars (LBP) and displacement.
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Potential flow calculations are performed using a 150x30 panel grid for the hull surface.
The computational domain for the free surface is defined within 1 hull length upstream,
3 lengths downstream and 1.5 lengths aside, discretized with 30x44, 90x44 and 30x44
surface panels, respectively. The grid convergence analysis is provided in [14].

6 NUMERICAL RESULTS

Benchmark solutions for both deterministic MDO and stochastic MRDO are presented
in the following, and compared to the variable-accuracy metamodel-based results.

6.1 Benchmark solution for MDO

Convergence of iterative MDA is conducted for both design variables and stochastic pa-
rameter at domain center (x1 = x2 = 0.0, y = 24 [kn], corresponding to Fr = y/

√
gLBP =

0.330). Fig. 3 shows the solution change for total resistance, pitch and vertical force
coefficients, sinkage and trim (respectively Ct = 2Fx/ρy

2SWL, CMy = 2Mh
y /ρy

2SWL,
CFz = 2F h

z /ρy
2SWL, σ and τ , where Fx is the total resistance, Mh

y is the hydrodynamic
moment, F h

z is the hydrodynamic force) versus MDA iterations.
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Figure 3: MDA convergence (x1 = x2 = 0,
y = 0.330).
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Figure 4: Sensitivity analysis for calm-water
total resistance at Fr = 0.330.

A benchmark tolerance of 10−4 is set for all parameters and the maximum number
of MDA iteration N

(max)
MDA is set equal to 14. The corresponding maximum number of

discipline evaluations is defined as N
(max)
S = NPSO ·N (max)

MDA and summarized in Tab. 1.
The sensitivity analysis for the resulting RT is shown in Fig. 4, versus x1 and x2. The

benchmark MDO results are included in Tab. 2, in terms of optimal design variables,
objective function value and number of discipline evaluations.
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Table 1: MDO and MRDO maximum number of simulations.

Problem ID Evaluations
MDO NPSO 512 ·NDV

N
(max)
MDA 14

N
(max)
S 7,168 ·NDV

Problem ID Evaluations
MRDO NPSO 512 ·NDV

N
(max)
UQ 33

N
(max)
MDA 14

N
(max)
S 236,554 ·NDV

Table 2: MDO and MRDO results.

Problem Design var. 1 Design var. 2 Obj. [kN]

∣∣∣∣
Obj.(B) −Obj.

Obj.(B)

∣∣∣∣% NS/NDV

MDO (benchmark) 0.99 0.99 573.64 - 5,024
Variable-coupling MDO 0.96 0.99 571.30 0.41 674
MRDO (benchmark) 1.00 0.53 712.34 - 167,587
Variable-accuracy MRDO 0.98 0.36 712.82 0.07 18,876

6.2 Variable-accuracy MDO

Three subsequent optimization stages are considered, the MDA coupling is increased
at each stage, whereas the number of training points NTP is fixed for each stage. The
tolerance for the solution change of Ct, CMy, CFz, σ and τ is set to 10−2, 10−3 and 10−4

for first, second and third optimization stage, respectively.
In order to define NTP: (1) a target number of total evaluations N

(T)
S = 0.1N

(max)
S

is assumed; (2) at the j-th stage, the number of evaluations is calculated as N
(j)
S =

NTP · N (j)
MDA; (3) a target number of MDA iterations is defined according to Fig. 3,

providing N
(T )
MDA = 4, 7, 14 for first, second and third optimization stage. Accordingly,

NTP equals 29.

Table 3: Metamodel-based MDO and MRDO evaluations.

Problem ID Stage 1 Stage 2 Stage 3 NS/NDV

Variable-coupling MDO NTP 29 29 29

N
(j)
S 87 210 377 674

Variable-accuracy MRDO NTP 39 39 39

N
(j)
S 1,209 4,680 12,987 18,876
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Variable-coupling metamodel-based MDO results are included in Tab. 2 and are found
in close agreement with the benchmark values. The number of evaluations for each op-
timization stage is summarized in Tab. 3. The number of evaluations associated to the
variable coupling metamodel-based MDO is about 13.4% of the corresponding benchmark
value in Tab. 2. Figure 5 shows the subsequent metamodel-based optimization stages,
with the corresponding optima.
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Figure 5: Metamodel-based MDO with subsequent refinement of design variable domain.

6.3 Benchmark solution for MRDO

Convergence of UQ is studied versus the number of samples NUQ = 2k + 1, k ∈ N,
for x1 = x2 = 0.0 and a benchmark tolerance for MDA equal to 10−4. Fig. 6 shows the
solution change of the expected value of the total resistance (∆µ/µ) versus NUQ.
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Figure 6: UQ convergence (x1 = x2 = 0,
y ∈ [0.250, 0.410]).
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Figure 7: Sensitivity analysis for calm water
expected value of total resistance.

A benchmark tolerance for solution change is set to 2·10−2 and a number ofN
(max)
UQ = 33

is set. The maximum number of evaluations is defined as N
(max)
S = NPSO ·N (max)

UQ ·N (max)
MDA
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and summarized in Tab. 1.
The sensitivity analysis for each design variable is shown in Fig. 7, whereas the bench-

mark MRDO results are included in Tab. 2.

6.4 Variable-accuracy MRDO

Three subsequent optimizations stages are considered, the UQ accuracy, together with
the MDA coupling, is increased at each stage, whereas the number of training points NTP

is fixed for each optimization stage. The tolerance for the solution change of the expected
value of the total resistance is set to 5 · 10−2, 3 · 10−2 and 2 · 10−2, for the first, second
and third optimization stage, respectively. The MDA tolerances are the same as for the
MDO problem.

In order to define NTP: (1) a target number of total evaluations N
(T)
S = 0.1N

(max)
S is

assumed; (2) the number of evaluations for the j-th optimization stage is expressed as

N
(j)
S = NTP ·N (j)

UQ ·N (j)
MDA; (3) a target number of UQ samples is selected according to Fig.

6), which provides N
(T )
UQ = 9, 17, 33 for the first, second and third optimization stage;

(4) the target number of MDA iterations is the same as the MDO problem. Accordingly,
NTP is found equal 39.

Metamodel-based MRDO results are included in Tab. 2 and are found in close agree-
ment with benchmark values. The number of evaluations for each optimization stage are
summarized in Tab. 3. The number of simulations associated to the variable-accuracy
metamodel-based MRDO is about 11.3% of the corresponding benchmark values in Tab.
2. Figure 8 shows the subsequent metamodel-based optimization stages with the corre-
sponding optima.
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Figure 8: Metamodel-based MRDO with subsequent refinement of design variable domain.

Figure 9 (a) and (b) show the MDO and MRDO optimal shapes, compared to the
original. It is worth noting that the optimal MRDO and MDO configurations fall in
different points of the design variable domain. Nevertheless, the corresponding shapes are
similar, as also found in earlier research for a catamaran configuration [5].

Finally, a parametric analysis of the total resistance versus Fr is presented in Fig. 9 (c),
for the optimal and original configurations. The performances of benchmark and variable-
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(a) (b) (c)

Figure 9: (a) Optimal MDO hull shape vs original, (b) Optimal MRDO hull shape vs original, (c)
Parametric analysis of the total resistance vs Fr number.

accuracy solutions are found in close agreement for both MDO and MRDO, and present
an overall improvement in the whole speed range. Moreover, MDO and MRDO solutions
perform similarly; however the MRDO solution presents an overall best performance,
whereas the performance of the MDO solution is found slightly better for deterministic
Fr = 0.330.

7 CONCLUSIONS

A methodology for simulation-based multidisciplinary design optimization for prob-
lems affected by uncertainty has been presented. The approach encompasses a variable-
accuracy metamodel-based design optimization, with (a) a variable level of refinement of
the DoE used for the metamodel training, (b) a variable accuracy in the UQ analysis, and
(c) a variable level of coupling in MDA.

The methodology has been applied to the resistance optimization of the the DTMB
5415 model, within a stochastic speed range. A potential flow solver has been coupled
with the rigid body equation of motion (steady), the UQ has been performed by MC-LHS,
a TPS metamodel has been used for the design optimization, and a PSO algorithm has
been used for the optimization. Two design variables have been used, for the hull form
modification.

Both deterministic MDO and stochastic MRDO have been solved. MDO and MRDO
variable-accuracy metamodel-based solutions have been found in very close agreement
with the corresponding benchmark solutions (obtained by fully convergent UQ and MDA,
without metamodels). The present method allowed for a reduction of the computational
cost by 13.4% and 11.3% for MDO and MRDO, respectively (Tab. 3).

The parametric analysis, conducted for the optimal designs over the speed range, re-
vealed that the MRDO solution presents an overall best performance, whereas the MDO
solution shows the best deterministic performance. As in earlier research, MDO and
MRDO solutions have been found similar.

Future work will focus on the use of different surrogate techniques. Specifically, the
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current a priori definition of the training points for the metamodel will be replaced by
dynamic metamodelling techniques (e.g. [7]). The sensitivity of the results to diverse
metamodels will be also investigated. The extensions to higher-dimensional problems
(with more than two design variables) will be also addressed.
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shape optimization by Karhunen-Loève expansion. Computer Methods in Applied
Mechanics and Engineering (2015), 283(0):1525 -1544.

[2] Campana, E.F., Peri, D., Tahara, Y. and Stern, F. Shape optimization in ship hy-
drodynamics using computational fluid dynamics. Computer Methods in Applied Me-
chanics and Engineering (2006) 196(1-3):634-651.

[3] Du, X. and Chen, W. Efficient uncertainty analysis methods for multidisciplinary
robust design. AIAA Journal (2002) 40:545-552.

[4] Diez, M., Peri, D., Fasano, G. and Campana, E.F. Hydroelastic optimization of a keel
fin of a sailing boat: a multidisciplinary robust formulation for ship design. Structural
and Multidisciplinary Optimization (2012) doi:10.1007/s00158-012-0783-7.

[5] Diez, M., He, W., Campana, E.F. and Stern, F. Uncertainty quantification of Delft
catamaran resistance, sinkage and trim for variable Froude number and geometry
using metamodels, quadrature and Karhunen-Loeve expansion. J Mar Sci Technol
(2013) doi 10.1007/s00773-013-0235-0.

[6] He, W., Diez, M., Campana, E.F., Stern, F. and Zou, Z. A one-dimensional polyno-
mial chaos method in CFD-Based uncertainty quantification for ship hydrodynamic
performance. Journal of Hydrodynamics (2013) 25(5):655-662.

[7] Volpi, S., Diez, M., Gaul, N.J., Song, H., Iemma, U., Choi, K.K., Campana, E.F.
and Stern, F. Development and validation of a dynamic metamodel based on stochas-
tic radial basis functions and uncertainty quantification. Structural Multidisciplinary
Optimization (2014) doi 10.1007/s00158-014-1128-5.

11

962



C. Leotardi, E.F. Campana and M. Diez

[8] Leotardi, C., Diez, M., Serani, A., Iemma, U. and Campana E.F. A framework for
efficient simulation-based multidisciplinary robust design optimization with applica-
tion to a keel fin of a racing sailboat. Proceedings of the 1st International Conference
in Engeneering and Applied Sciences Optimization (2014) pp. 1177-1193, ISBN: 978-
960-99994-5-8.

[9] Stern, F., Longo, J., Penna, R., Olivieri, A., Ratcliffe, T. and Coleman, H. Inter-
national Collaboration on Benchmark CFD Validation Data for Surface Combatant
DTMB Model 5415. Proceedings of the Twenty-Third Symposium on Naval Hydro-
dynamics (2000) Val de Reuil, France, September 17-22.

[10] Serani, A., Diez, M., Leotardi, C., Peri, D., Fasano, G., Iemma, U. and Campana E.F.
On the use of synchronous and asynchronous single-objective deterministic Particle
Swarm Optimization in ship design problems. Proceedings of the 1st International
Conference in Engeneering and Applied Sciences Optimization (2014) pp. 1218-1240,
ISBN: 978-960-99994-5-8.

[11] Bassanini, P., Bulgarelli, U., Campana, E.F. and Lalli, F. The wave resistance prob-
lem in a boundary integral formulation. Surv. Math. Ind. (1994) 4:151–194.

[12] Telste, J.G. and Reed, A.M. Calculation of Transom Stern Flows. Proceedings of the
Sixth International Conference on Numerical Ship Hydrodynamics (1994) 23–69.

[13] Schlichting, H. and Gersten, K. Boundary-Layer Theory, Springer-Verlag, Berlin
2000.

[14] Serani, A., Diez, M. and Campana E.F. Single- and multi-objective design optimiza-
tion study for DTMB 5415, based on low fidelity solvers. INSEAN Technical Report
2015-TR-002 (2015).

12

963




