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Abstract.  This paper analyses the numerical stability of a coupling procedure between a CFD 
code and a conduction solver in a partitioned approach. A finite volume method is used in the 
fluid partition and a finite element method in the solid partition. Since our goal is to get a 
global fluid-solid solution, the analysis of the transient in the solid is not of particular interest. 
Consequently, the numerical method is based on the coupling of a steady state in the solid 
with a time-dependent solution in the fluid. At the shared interface, Dirichlet (on the fluid 
side) and Robin (on the solid side) conditions are applied. An interface stability study is 
performed according to the normal-mode analysis of the theory of Godunov-Ryabenkii. The 
existence of an optimal coupling parameter is highlighted. 

1 INTRODUCTION 
Conjugate heat transfer (CHT) problems are encountered in many real-world applications 

such as cooling systems, building heating, ventilating flows, heat-exchanger equipment, etc. 
They arise in situations where considering only heat transport in the fluid is not sufficient. In 
such cases we must take into account the fully coupled problem, including conduction in the 
solid wall adjacent to the fluid. 

CHT is now widely used in engineering applications, but in most cases, arbitrary relaxation 
parameters or reference temperatures are used to stabilize the coupling procedure. This may 
have a significant negative impact on the convergence rate. Our intention in this paper is to 
recall that in a CHT problem based on Dirichlet-Robin interface conditions, there is an 
optimal coefficient in terms of stability and convergence. This coefficient has been 
highlighted recently [1] using a 1D model equation.  

This article is organized as follows. First the model equations of the CHT procedure are 
described briefly. Then, the coupling interface conditions and the coupling algorithm are 
presented. After that, the stability analysis according to the theory of Godunov-Ryabenkii is 
summarized. This analysis provides an optimal coupling coefficient. This coefficient is given 
and its influence on stability and convergence is discussed. 

2 MODEL EQUATIONS  
2.1 Time-scale discontinuity 

The CHT strategy presented in this paper is motivated by the desire to obtain rapidly a 
global fluid-structure steady solution. There is a significant discrepancy of the characteristic 
times, namely a fast transient process in the fluid, a very slow one in the structure. Hence, the 
thermal response of the solid can be very long (several hours or minutes). Since our goal is to 
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get a global fluid-solid solution, we must recognize that the analysis of the transient in the 
solid is not of particular interest. 

2.2  Solid solution  
If we want to obtain a steady-state solution of the heat equation in the solid domain, it is 

always possible to choose some initial data and march forward in time. But this approach is 
typically not an efficient way to compute the steady state solution, if this is all we want. 
Instead, if the boundary conditions are time independent and if we are interested only in 
computing the steady-state solution itself, then we can solve directly a second order ordinary 
differential equation (Laplace equation). As this procedure performs well in the solid when it 
is considered independently as a single subsystem, we should be able to use it in a coupled 
system. 

2.3 Fluid solution 
The same cannot be said for the fluid subsystem. In the vast majority of cases, the Navier-

Stokes (NS) equations are solved to steady-state by a time marching scheme. As a 
consequence, a time marching scheme will be employed in the fluid domain in our CHT 
model. As physically realistic time-dependent solutions are not sought, the unsteady fluid and 
steady solid procedures will be interactively solved and coupled until a global fluid-solid 
solution is obtained. 

2.4  Fluid-solid solution 
The simulation of this type of problems is generally accomplished by partitioned staggered 

schemes [2][3]. As mentioned above, we just want to obtain a stable global solution by 
coupling a transient fluid solution with a steady solid state. But solving a Laplace equation at 
each time step could change the solution too rapidly for stability to be maintained. The goal of 
this paper is to provide an optimal coupling coefficient that never introduces stability 
restrictions.  

3 COUPLING CONDITIONS AT THE FLUID-SOLID INTERFACE 
3.1  Discretized model 

The 1D discrete model is presented in Figure 1. This model is based on a finite-volume 
(FV) procedure on the fluid-side (x > 0) and a finite element (FE) procedure on the solid-side 
(x < 0). 
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      Figure 1 : Schematic of the fluid (x > 0) and solid (x < 0) domains for the discretized model 

3.2 Dirichlet-Robin procedure 
At the common interface (x = 0), coupling conditions are applied. Roux & Garaud [4] 

studied recently the behavior of interface conditions in a steady CHT problem. They first 
generalized the result obtained by Giles [5] and confirmed that Dirichlet conditions must be 
imposed in the fluid domain. Then, they pointed out from the Schur complement that the 
Dirichlet-Neumann condition may suffer considerably from destabilizing effects. On the 
contrary, it is indicated in the same work, that the Robin condition has many attractive 
features. First it can always be formulated in such a way that the associated local problem is 
well posed even though the Neumann problem is not. Second, the use of such a condition 
introduces an interface stiffness forcing the boundary to behave in the same way as the 
boundary of the other domain. Finally, it provides much better stability properties. 
Consequently a Dirichlet-Robin procedure will be considered here. In other words, in the first 
step of the coupling procedure in the interval [ ]1, +nn tt , the temperature coming from the solid 
is applied on the interface “0+ “ of the fluid domain 
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A numerical Robin condition is in turn used as a boundary condition for the interface “0-“ 
of the solid domain  
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The subscripts f and s denote the fluid and solid domain respectively. q  is the heat flux 
(W.m-2). The general Dirichlet-Robin condition considered in this paper introduces the 
numerical coupling parameter fα (W.m-2.K-1) the choice of which directly influences the 
stability of the coupled process. The expression of an optimal coefficient will be given in this 
paper. The coupling procedure is briefly described in the next section. 
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3 CSS PROCEDURE 
Many partitioned staggered procedures have been proposed to solve fluid-structure 

interaction problems. They can be categorized as either strongly-coupled or loosely-coupled. 
The strongly-coupled schemes involve predictor-corrector iterations and then increase the 
complexity of the implementation of a CHT problem as well as the computational cost at each 
time step. In this paper, we have employed the basic loosely-coupled conventional serial 
staggered (CSS) algorithm [6] whose generic cycle is described in Fig. 1 in the time interval 
[ ]1, +nn tt  with time step size nn ttt −=∆ +1 , where n corresponds to the coupling time level. This 
procedure is repeated until a global steady-state solution is obtained. 

    Figure 2 : CSS procedure

Our goal is not to discuss the pros and cons of coupling algorithms, but to present a 
stability analysis and a resulting ideal coupling parameter. For this, we need a basic algorithm 
and naturally, we choose the simplest. Developments that follow remain valid if we adopt 
another one. However, the results may vary slightly. 
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4 NUMERICAL TREATMENTS 
4.1 Numerical schemes 

 As mentioned previously, the fluid domain is discretized with a FV scheme and the solid 
domain with a FE scheme. On the interior mesh points we employ an implicit Euler-backward 
scheme for the time derivative. The diffusive term (heat flux) is computed in the same manner 
as the viscous terms in the NS equations, that is a second order accurate central difference 
formulation. The numerical treatments are summarized in Table 1. 

         Table 1 : Numerical treatments of the CHT procedure 

 FLUID 
DOMAIN 

SOLID 
DOMAIN 

Time stepping Implicit 
backward 

Implicit 
backward

Numerical approach Finite  
Volume   

Finite 
Element 

Spatial scheme 2nd order 
central 

2nd order 
central

Fluid-Solid Interface Dirichlet Robin 

4.2 Discretized system 
The numerical discrete CHT system is obtained after discretization of the diffusion 

equation & Dirichlet conditions on the fluid side and the Laplace equation & Robin 
conditions on the solid side. The resulting discrete system is obtained  
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where ),( tnxjTT n
j ∆∆= . ρ  is the density, fC  is the specific heat, fk  is the thermal 

conductivity of the fluid.                                                                                                                     
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5 OPTIMAL COUPLING COEFFICIENT 
5.1 Stability analysis and amplification factor 

This stability analysis is very similar to the standard Fourier stability method except that 
the Fourier analysis ignores boundary conditions and as these may affect the stability, the 
theory of Godunov & Ryabenkii (G-R) [7][8] is preferable. We introduce the normal mode 
solution for the case defined by the discretized system (3) by considering eigensolutions of 
the form  
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where z  is the “temporal amplification factor” and κ  is the “spatial amplification factor”. 
The discretized model (3) is stable in the sense of G-R if no solutions of the form (4) are 
admitted with 1,1 >< sf κκ , and z  > 1 as ±∞→j . Moreover, we exclude modes (4) 

with z =1 (neutrally stable modes). 
Introducing (4) into the interface conditions (3), after elementary transformations, we 

obtain the following temporal amplification factor    
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where D  is the Fourier number defined as follows 

                                         2
ff

f

xC

tk
D

∆
∆

=
ρ

                                                                              (6) 

Without going into too much detail, let us mention that the parameter β  in Eq. (5) 
accounts for the contributions to physical and geometric solid characteristics and controls the 
external boundary condition (see Fig. 1). The influence of this parameter on the global CHT 
procedure is crucial. 

5.2  Stability zones  

The function { }g
z 1

max
≥

 has been plotted in Figure 3 in terms of fα  for different Fourier 

numbers D . We have chosen typical fluid and solid physical parameters corresponding to air 
and steel respectively. We can observe that this function is defined and continuous and that 
each curve is composed of two half-lines with a singular point similar to a cusp at the 
intersection. At this point, { }g

z 1
max

≥
 attains its minimum value. 
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   Figure 3 : { }gmax  vs fα for various Fourier numbers 

In other words, the existence of a transition value for fα  is highlighted. At this transition 

value, the shape of the curve switches and turns back abruptly. This value is denoted )(opt
fα . 

5.3  Optimal coefficient  

It can be shown [1] that the transition occurs at a unique and remarkable value )(opt
fα

whose exact expression is given by   
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When the optimal value defined by (7) is employed, we obtain the best-case scenario with 
no additional computational effort. The point )(opt

fα  is the intersection of two opposite zones. 

The left half-line ( <fα )(opt
fα ) is controlled by Neumann conditions. It is a fast process prone 

to instability. The right half-line ( )(opt
fαα > ) is controlled by Dirichlet conditions. It is a low 

but always stable process. The intersection )(opt
fα is a perfect equilibrium between both. 
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5.4  Energy, stability and optimal coefficient 

First of all, let us recall that the Fourier number used in unsteady-state flow problems, 
whose expression is given by (6), is a dimensionless number that characterizes heat 
conduction: 

storageenergy  thermalof rate
rateconductionheat =D

The various curves in Fig. 3 can be interpreted easily in terms of the Fourier number D and 
the coupling coefficient fα .  

Low values of fα )( )(opt
ff αα <  will result in a rapid convergence, but in this case 

however D  must be sufficiently large to allow heat diffusion on the fluid side. Otherwise, a 
low Fourier number D  will soak up a lot of heat. It will be then necessary to enhance stability 
by increasing the coupling parameter. Thus, the energy transfer will be “frozen” by an 
increase of fα .  

But, likewise, large values of fα )( )(opt
ff αα >> will always lead to an extremely slow 

convergence. This is only consistent with small values of D  and corresponds to a slow 
diffusion of heat through the fluid subsystem. But it should be pointed out that relatively large 
Fourier numbers D  indicate fast propagation and energy in this case will be unnecessarily 
frozen by fα . As a result, this will have a very negative impact on the computing time. 

All these situations might happen in the same coupled computation. It is the reason why it 
is crucial to use a local coupling coefficient and it has been shown that )(opt

ff αα =  is the 
optimal choice in the case of the model equation adopted herein.  

6 CONCLUDING REMARKS 
We have shortly presented a stability analysis of a CHT problem using a Dirichlet-Robin 

procedure. An optimal coupling coefficient has been highlighted and discussed. It is a 
dynamic parameter with no increase in computational effort. The resulting coupling method 
can be regarded as an adaptive procedure to always obtain the fastest rate of convergence and 
the best stability properties. 

There are many other points that would have deserved special attention. First of all, the 
influence of the parameter β  that governs the external boundary condition and mimics the 
geometric and physical behavior of the solid domain. This key parameter has a direct impact 
on the global stability. The other important study to be carried out is to extend the present 
analysis to a general Robin-Robin procedure. These points, not presented here, have been 
thoroughly considered in a recent paper in the Journal of Computational Physics [1]. 
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