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Abstract. A coupled mode model is presented for the propagation of acoustic-gravity waves 
in layered ocean waveguides. The analysis extends previous work for acoustic waves in 
inhomogeneous environment. The coupled mode system is derived by means of a variational 
principle in conjunction with local mode series expansion, obtained by utilizing eigenfunction 
systems defined in the vertical section. These are obtained through the solution of vertical 
eigenvalue problems formulated along the waveguide. A crucial factor is the inclusion of 
additional modes accounting for the effects of spatialy varying boundaries and interfaces. This 
enhancement provides an implicit summation for the slowly convergent part of the local-
mode series, rendering the series rapidly convergent, increasing substantialy the efficiency of 
the method. Particular aspects of the method include high order Lagrange Finite Element 
Methods for the solution of local vertical eigenvalue problems in the case of multilayered 
waveguides, and Gauss-type quadrature for the computation of the coupled-mode system 
coefficients. The above aspects make the present method quite efficient for long range 
propagation in extended waveguides, such as the ones found in geophysical applications, e.g. 
ocean basins, as only few modes are needed for the accurate representation of the wave field. 

1 INTRODUCTION 
 Ocean waves generate acoustic modes in a wide range of acoustic frequencies, as a result of 
non-linear interactions of pairs of nearly opposing gravity waves having equal or nearly equal 
frequencies. In this case, the lower frequency part of the spectrum, nominally for frequencies 
lower than 2 Hz is caused by the nonlinearity of the hydrodynamic equations; see e.g.,  [1,2]. 
Also, in the low frequncy band, energetic acoustic–gravity waves appear as a result of seismic 
activity in the seabed and generation and propagation of tsunami waves; see, e.g., [3] and the 
references cited there. These waves propagating from the open sea to nearshore areas, interact 
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with various layers of the inhomogeneous ocean waveguide and the seabed, and are 
characterised by partial energy exchage of the modes, shoaling and scattering effects. 
Wave propagation and scattering in an inhomogeneous waveguide is an interesting 
mathematical problem finding important applications, as, e.g., underwater acoustic 
propagation and scattering in shallow water and seismoacoustics [4, 5], atmospheric acoustics 
[6] and other. Several methods for treating this, generally non-separable, boundary value 
problem have been proposed, ranging from fully numerical, finite element and finite 
difference methods, to semi-analytical ones, like wavenumber integration, boundary integral 
equation and coupled-mode techniques, as well as various asymptotic models, like ray theory 
and the adiabatic and parabolic approximations; see e.g., [5, 7]. Fully numerical methods are 
computationally intense and thus, their use is more appropriate for short-range/low-frequency 
propagation and local scattering problems.  In this work, a fast-convergent spectral model is 
presented for treating harmonic wave propagation and scattering problems in stratified, non 
uniform waveguides, governed by the Helmholtz equation. The method is based on a local 
mode series expansion, obtained by utilizing local eigenfunction systems defined through the 
solution of eigenvalue problems, formulated along the cross section of the waveguide. 
Following Belibassakis et al. [8] the local mode series are enhanced by including additional 
modes accounting for the effects of inhomogeneous waveguide boundaries and/or interfaces. 
The additional modes provide an implicit summation of the slowly convergent part of the 
local-mode series, rendering the remaining part to be fast convergent, increasing the 
efficiency of the method, especially in long-range propagation applications (see also [9] and 
[10]). Using the enhanced local mode expansion, in conjunction with an energy-type 
variational principle, a coupled-mode system of equations is derived for the determination of 
the unknown modal-amplitude functions. The numerical solution of the local vertical 
eigenvalue problems, in the case of multilayered waveguides, is obtained by means of h- and 
p-FEM (see, e.g., [8, 11]) exhibiting robustness and good rates of convergence. On the basis 
of the above, the coefficients of the coupled-mode system are calculated by numerical 
integration. Subsequently, the solution of the present coupled-mode system is obtained by 
using a finite difference scheme based on a uniform grid and using second-order central 
differences to approximate derivatives.  Particular aspects of the method include high order 
Lagrange Finite Element Methods for the solution of local vertical eigenvalue problems in the 
case of multilayered waveguides, and  Gauss-type quadrature for the computation of the 
coupled-mode system coefficients. The above aspects makes the present method quite 
efficient for long range propagation in extended waveguides, such as the ones found in 
geophysical applications, e.g. ocean basins, as only few modes are needed for the accurate 
representation of the unknown fields. Numerical examples are presented illustrating the 
efficiency of the present model, that can be naturally extended to treat propagation and 
scattering problems in more complicated 3D waveguides. 

2    PROBLEM DESCRIPTION 
Consider the multilayered waveguide of Fig.1. For simplicity we restrict ourselves to a 2D 
problem in an ocean acoustic environment, governed by Helmholtz equation. However, the 
present method and analysis can be naturally extended to more general 3D acoustic-gravity 
waveguides.  

894



K.A. Belibassakis, G.A. Athanassoulis, A.E. Karperaki,T.K. Papathanasiou 

3

Figure 1:  Multilayered two-dimensional acoustic waveguide.

The domain (1) (2) (3)D D D D= ∪ ∪ is decomposed into three parts ( )mD , 1,2,3m =  (see 
Fig. 1),  as follows: ( )1D  is the subdomain characterized by 1x a< nand ( )3D  is the subdomain 

characterized by 1x b> ( )b a> , and ( )2D  is the variable cross section subdomain lying 

between ( )1D  and ( )3D .  A similar decomposition is also applied to the (upper and lower) 
boundaries, as well as to the internal interfaces. The acoustic medium inside the domain is 
stratified. The physical properties of the layers, vary with respect to the ( , )x z  coordinates in 
the middle range-dependent subdomain ( )2D ,  and present only vertical variability in the two 
semi-infinite subdomains ( )1D  and ( )3D . Assuming that the whole domain consists of M
layers, a total number of 1M −  interfaces at  ( ), 1,2,..., 1jz h x j M= − = − ,  are considered, 
where ( )jh x  denotes the local depth of each interface (see Fig.1).  The waveguide is 
terminated below by a perfectly rigid (acoustically hard) horizontal boundary, located at 
z H= − . On the other hand, the waveguide is terminated above by an acoustically soft 
boundary, located at 0z = , corresponding to the free surface.  

The density , 1,2,..j j Mρ = , of each layer is assumed to be constant within the layer, 
presenting possibly sharp discontinuities at the interfaces. Moreover, the sound speed   
( ), , 1,2,..jc x z j M= ,   presents both vertical and horizontal variability in the middle 

subdomain ( )2D , and could also exhibit strong discontinuity at the interfaces. The sound 
speed becomes function only of z  in the two  semi-infinite subdomains ( )1D  and ( )3D ,   which 
are then range independent subdomains with respect to both geometry and physical 
parameters. This fact permits us to obtain complete expansions of the wave field in the above 
semi-infinite  regions by means of separation of variables, and consistently formulate the 
conditions of wave incidence and  transmission at x=a and x=b, respectively. 
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2.1   Governing Equations 
Restricting ourselves to monochromatic waves of angular frequency ω=2π f, the acoustic 

harmonic wave propagation problem inside the present  multi-layered waveguide is governed 
by the Helmholtz equation. The respective boundary value problem takes the form of finding 
the continuous function p  representing the acoustic pressure such that 

21 0k
p p

ρ ρ
 

∇ ⋅ ∇ + = 
 

 ,  in    D     (1) 

where the wavenumber ( , ) / ( , )k x z c x zω=  is a piecewise smooth function of the spatial 
coordinates, possibly presenting sharp discontinuities at the interfaces 

( ), 1,2,..., 1jz h x j M= − = − . Eq. (1) is supplemented by the following boundary conditions 

/ 0p z p∂ ∂ − = ,     on   the free surface   0z = , (2) 

/ / 0p n p z∂ ∂ = ∂ ∂ = ,   on  the perfectly rigid (terminating) boundary  at  z H= − , (3) 

where 2 / g ω=  is the frequency parameter of gravity waves (g=9.81m/s2), in conjunction 
with the interface conditions 

1

1 1

j j

p p

n nρ ρ +

∂ ∂
=

∂ ∂
  on  ( ), 1,2,..., 1jz h x j M= − = − .                                                             (4) 

In the previous equations /p n p∂ ∂ = ∇n  denotes the normal derivative, where n  is the unit 
normal vector on each boundary and interface. We consider a transmission problem forced by 
plane waves propagating in the positive x direction. The waves are incident from ( )1D , and 
then they are refracted and scattered in  the range dependent subdomain ( )2D , and finally 
transmitted in  ( )3D . In order to treat the present problem in the infinite domain, complete 
normal-mode type representations of the wave field in the regions of incidence ( )1D  and 
transmission ( )3D  are derived by separation of variables. In particular, the expansion of the 
wavefield in ( )1D  consists of incident and reflected (scattered) waves is as follows,  

( )(1) (1)(1) (1) (1) (1)

1

( )n nik x ik x
n n n

n

p A e B e Z z
∞

−

=

= +∑ (5) 

where the functions (1) ( )nZ z  and the numbers  (1) , 1,2,3...,nk n =  satisfy the following vertical 
eigenvalue problem in ( )1D

( )( )
2 (1) 2(1) (1) 2 (1)

2 ( ) 0n
n n

d Z
k z k Z

dz
 + − =  

,        (6) 

(1) (1)
(1)( 0) ( )( 0) 0,   0n n
n

dZ z dZ z H
Z z

dz dz
= = −

− = = = ,    (7a,b)

in conjunction with the interface condition, 
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( ) ( )1 1(1) (1)( 0) ( 0), 1,2, 1
j jn nZ h Z h j M− + = − − = − , (8) 
( ) ( )1 1(1) (1)

1

( 0) ( 0)1 1 , 1,2, 1j jn n

j j

Z h Z h
j M

z zρ ρ +

∂ − + − −
= = −

∂ ∂
, (9) 

where ( ) ( )(1) (1)/k z c zω= . Similarly, the expansion of the acoustic wavefield in the region of 

transmission ( )3D , consists only of outgoing radiated waves, and is given by 

( )(1)(3) (3) (3)

1
( )nik x

n n
n

p A e Z z
∞

=

= ∑ , (10)

where the eigenfunctions (3) ( )nZ z  and the corresponding eigenvalues  (3) ,nk 1,2,3...,n =  are 
obtained by similar as above vertical eigenvalue problems formulated in (3)D . From the 
properties of regular Sturm-Liouville problems ([12], [13]) the eigenvalues 

( )( ){ }2
, 1,2..m

nk n = , m=1,3,  are discrete, infinite, with continuously decreasing moduli, and 

thus,  the corresponding parameters ( ){ }, 1,2,3...m
nk n = , are subdivided into a finite real subset 

( ) ( ){ }, 1,2,3...m m
n pk n N=  and an infinite imaginary one ( ) ( ){ }, 1,....m m

n pi k n N= + ,  where ( )m
pN ,  

denotes the number of propagating modes in ( )mD , 1,3m = .  The first eigenvalue (n=1) and 
corresponding eigenvector is essentially associated with the free-surface gravity mode which 
presents fast decay in depth. 

Clearly, in order for the wave field to remain bounded at infinity, the coefficients of the 
expansion ( ) ( )1 10,n pA n N= > . On the other hand the terms ( ) ( )( ) ( ) ( )1 1 1expn n nA ik x Z z , ( )1

pn N≤ , 

constitute the given data associated  the incident wave field. Due to the linearity of the 
problem each one of the above terms could be separately considered as forcing of the present 
acoustic waveguide and the solutions is obtained by superposition of the responses. In 
addition, the terms ( )( ) ( ) ( )1 1exp n nik x Z z− , ( )1

pn N> , and ( )( ) ( ) ( )3 3exp n nik x Z z , ( )3
pn N> , are the 

evanescent modes in ( )mD , 1,3m = , respectively. These modes decay exponentially at large 
distances from the inhomogeneity in the two semi-infinite strips. By exploiting the 
representations (5) and (10), the problem can be formulated as a transmission boundary value 
problem in the bounded subdomain ( )2D ,  satisfying Eq. (1), (2) (3) and (4) and the following 
matching conditions:  

( ) ( ) ( ) ( )
( )

( )

( )

( )

2 1
2 1

2 1, , , , , 0,p p
p x z p x z x a H z

x x

∂ ∂
∂ ∂

= = = − < < (11a)

( ) ( ) ( ) ( )
( ) ( )2 3

2 3
1, , , , , 0p p

p x z p x z x b H z
x x

∂ ∂
∂ ∂

= = = − < < . (11b)
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2.2 Variational Formulation 

We proceed to formulate a functional   allowing us to state a variational formulation of 
the transmission problem. The admissible function space for the wave field ( ) ( ) ( )2 2,p x z D∈
(simply denoted from now on as p ), consists of globally continuous and piecewise smooth 
functions, possessing continuous second derivatives in the interior of each layer, such that 

( ) ( ), 0
, 0 0

p x z
p x z

z


∂ =
− = =

∂
(12)

For this purpose, we consider the following energy-type functional  

( ){ } ( ){ }( ) ( ) ( )
( )2

2 21 3 1 1 2 2

1

1 1, ,
2 2

x b

n n

x aD

p B A p k p dxdz p dxρ ρ 
ρ

=
− −

=

 = ∇ − + +  ∫ ∫

( ) ( ){ }( )
( ) ( ){ }( )3
3 3

3 31
2

z
n

n

z H

p A
p p A dz

x

η=

=−

∂ − −  ∂ ∫ ( ) ( ){ }( )
( ) ( ){ }( )1
1 1

1 11
2

z
n

n

z H

p B
p p B dz

x

η=

=−

∂ + −  ∂ ∫ . 

(13)

The present problem admits of an equivalent variational formulation expressed by 
( ){ } ( ){ }( )1 3; , 0n np B Aδ = (14)

Using Green’s theorem in conjunction with Eq. (12), the above variational equation takes the 
form   

( )( )
( )

( )( )
( )

( )( )
( ) ( )

1

2

3 1

1
11 1 2

3 1
3

z

z HD

z z

z H z H

p
p k p p dxdz p p dz

x

p p p
p p dz p dz

x x x

η

η η

ρ ρ δ δ

δ δ

=
− −

=−

= =

=− =−

+
∂

− ∇⋅ ∇ + − +
∂

 ∂ ∂ ∂
− − − − + ∂ ∂ ∂ 

∫ ∫

∫ ∫
( )

( )

3 3 1

1 1

1 1 0
j

z M

j j jz H z h x

p p p p
p dz p dx

x x N N

η

δ δ
ρ ρ

= −

= +=− =−

  ∂ ∂ ∂ ∂
− − − − =    ∂ ∂ ∂ ∂   

∑∫ ∫ , 

(15)

where 
( )j

j

z h x

dhp p p

N z dx x=−

∂ ∂ ∂
= +

∂ ∂ ∂
. The usefulness of the above variational principle hinges on 

the fact that it leaves us the freedom to choose any particular representation for the unknown 
field (2)( , )p x z D∈ . In this way, a variety of possible algorithms for the numerical solution of 
the present wave problem can be constructed.  

3   ENHANCED LOCAL MODE REPRESENTATION  

Inside the bounded domain (2)D , the solution ( , )p x z  may be set into a standard spectral-
type representation, based on local-mode series, as follows 
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1
( , ) ( ) ( ; )n n

n

p x z U x Z z x
∞

=

= ∑ . (16)

The family of local vertical basis functions ( ; )nZ z x  appearing in the above expansion, which 
are parametrically dependent on x ,  is obtained by formulating and solving local, vertical 
Sturm-Liouville problems in the z -intervals [ , 0]H− , for each horizontal position a<x<b. 
However, any finite truncation of the series (16) is incompatible with any of the sloping 
interface conditions, whenever ( ) 0jdh x dx ≠ , 1,2,... 1j M= − , rendering the above series to 

converge only in an 2L -sense, and the coefficients nU  to decay like ( )2O n− ; see Belibassakis 
et al [8]. To remedy this inconsistency, an additional mode associated with each interface is 
introduced, denoted by ( ) ( );j jU x Z z x , 2,.., 1,0j M= − + − . These modes are called sloping-
interface modes. Thus, we obtain the following enhanced local-mode series  

0

2 1
( , ) ( ) ( ; ) ( ) ( ; )n n n n

n M n

p x z U x Z z x U x Z z x
∞

=− + =

= +∑ ∑ . (17)

The vertical structure of the sloping-interface modes, for every horizontal position 
a x b< < , is any globally continuous and piecewise smooth function defined with support in 
the local vertical intervals 1 2[ ( ), ( )]M Mh x h x− −− − ,...., 1[ ( ),0]h x− , satisfying the following 
condition(s) 

1

1 1 1,    1,2,..., 1
j j

n n

j jz h z h

Z Z
j M

z zρ ρ +=− =−

∂ ∂
− = = −

∂ ∂
. (18)

Moreover, the function  ( )0 ;Z z x  should satisfy the homogeneous Dirichlet condition  at 

( )z xη= . Consequently, the M-1 terms ( ) ( );j jU x Z z x , 2,.., 1,0j M= − + − , are additional 
degrees of freedom in the bounded subdomain (2)D , permitting the consistent satisfaction of 
all interface conditions. The amplitude of the additional modes is given by  

1
1

1 1( ) , 1,2,.. 1
j j

j
j jz h z h

p p
U x j M

z zρ ρ−
+=− =−

∂ ∂
= − = −

∂ ∂
. (19)

From this last relation, it is evident that no extra mode needs to be introduced in the last 
layer terminated in the lower flat boundary, where a homogeneous Neumann condition is 
satisfied.  

The important effect of the additional modes is to significantly increase the rate of decay of 
nZ − Fourier coefficients of the acoustic wave potential (modal amplitudes). In this case, the 

modes associated with the enhanced series exhibit a rapid decay rate:  ( ) ( ) 4
nU x C x n−≤ , 

n →∞ , [ ],x a b∀ ∈ . The bound ( )C x  is a continuous function on [ ],a b  and, thus, the 
previous estimate is global: ; see also [9,10]. If the additional modes are not included, then the 
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rate of decay of the modes in the standard series (16) is only ( )2 .nU O n−= The above result 
is obtained by means of repetitive use of integration by parts, in conjunction with the 
properties of the local Sturm-Liouville system, and will be illustrated through appropriate 
numerical examples in a subsequent section. 

4   FEM SOLUTION OF THE LOCAL  VEP    
In this section we will describe the finite element method, as applied to the solution of the 
vertical eigenvalue problem (vep). In the following we adopt the notation by Hughes [11]. We 
assume that for all x in the interval a<x<b, it is 2( ; ), ( ; ) ( ,0)z x k z x L Hρ ∞∈ − .  

Let us introduce the (Sobolev) function spaces { }1 1
( ) : ( ,0),  x [a,b]E xH u u H H∈ − ∈≜ . The 

continuous vertical eigenvalue problem, at each horizontal position, can now be stated  in 
variational form as follows 

Find 1
0 ( )( , ) E xp Hλ ∈ ×ℝ  such  that   ( , ) ( , )a w p b w pλ=  , 1

( )E xw H∀ ∈ ,                              (20)
Where 

[ ]
0 01 2 1 1

0
( , )

zH H

dw dp
a w p dz k wpdz wp

dz dz
ρ ρ ρ − − −

=− −
= − +∫ ∫ ,       (21a)

0 1( , )
H

b w u wpdzρ−

−
= −∫ , (21b)

Assume a partition of[ ,0]H− , of the form 1 2 1..... 0NH z z z +− = < < < = , with N ∈ℕ  and 
N M>  ( M  being the number of layers in the waveguide). The partition is such that x∀  the 
interface positions coincide with 1M −  nodes. We introduce the sequence of finite element 
sub-spaces, 

{ }
1

1

[ , ]
( ,0) : P (z), 1,2,..., ,  , x [a,b]  

i i

h h h

z z
V u H H u i N

+

∈ − ≡ = ∈ ∈ℓ≜ ℓ ℕ

where ( )P zℓ  is a polynomial of degree ℓ .  Obviously 1
( )

h
E xV H⊂ . The discrete variational 

formulation of the vertival eigenvalue  problem takes the following form: 

Find ( , )h h hp Vλ ∈ ×ℝ  such that ( , ) ( , )h h h h ha w p b w pλ=  , h hw V∀ ∈                                 (22)

In the following analysis we assume piecewise linear, quadratic and cubic interpolations 
for the finite element solution, i.e. 1, 2and3=ℓ . Regardless of the interpolation degree, the 
desired solution has the form,  

1

( )
N

h
j j

j

p c N z
=

= ∑ . (23)

where h
jN V∈ . Introducing the above expansion in Eq. (22), the discrete variational 

formulation finally becomes an eigenvalue matrix equation of the form: 
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λ=A u Bu  ,                                                                                                                   (24)

where the elements of the N N×  matrices A  and Β  are ( , )ij i ja a N N=  and ( , )ij i jb b N N= , 
, 1,2,..,i j N= , respectively. 

4.1   Numerical solution of VEP
As demonstrative examples we consider the case of an acoustic environment of total thickness 
(depth) 1000H m= , consisting of two layers of thickness 100m (upper) and 900m (lower) 
and equal thickness 500m, respectively. In the first case the position of the internal interface is 
at a depth  1 100h m= , and in the second at 1 500h m= . Moreover, two frequencies have been 
considered 2f Hz=  and 0.08f Hz= . Both the density and speed of sound are assumed to be 
constant within each layer. For the upper layer corresponding to water these quantities are 

3
1 1 /g cmρ = , 1 1500 / secc m= , and for the lower layer 3

2 1.5 /g cmρ = , 2 1700 / sc m= , 
corresponding to sediment. Details concerning the exact analytical solution of this problem  
are included in the APPENDIX 1. 

The first  5 eigenfunctions for f=2Hz  are shown in Fig. 2. A zoom on the upper 10m is shown 
in the right subplot, illustrating the layered structure of the free-surface (gravity) mode (n=1), 
which presents exponetial decay in depth. Corresponding resuts for the lower frequency 
f=0.08Hz are plotted in Fig.3, for two positions of the interface at 100m (left subplot) and 
500m (right subplot), which is indicated by using thick dashed lines. In the above plots the 
first eigenfunction (n=1) associated with the free-surface (gravity) mode is normalizad with 
its maximum value at z=0, while the rest of the modes (n=2,3,4…) are normalizad with 
respect to their values at the bottom (z=-H). With increasing frequency parameter  , a 
positive sway of the first eigenvalue, is observed leading to the formation of a boundary layer  
visible in the sublot of  Fig. 2. The eigenvalues as computed with the finite element method,  
using 20,40,80N =  elements,  are in perfect match when compared against   the  exact 
solution for the first modes.A series of numerical results are shown for the case of placing the 
interface at 1 100h m=  and 0.08f Hz= . In Fig. 4 a comparison between the first exact and 
computed eigenvalues is shown for different number of elements, 20, 40and80N = , and two 
different interpolation degrees, 1and 2p = .  It is observed that the error of the numerical 
solution for the eigenvalues is found to increase with increasing eigenvalue numbers. The  
convergence of the finite element solution for the 5th, 10th and 15th eigenvalues is 
demonstrated in Fig. 5. Convergence rates are observed for increasing interpolation degree, 

1, 2and3p =  and are found to be  2, 4 and 6 respectively. Enhanced rates have been obtained 
by raising the degree ℓ  of the piecewise polynomials. 

5   THE COUPLED - MODE SYSTEM 

Having obtained the eigenfunctions associated with the local vertical problem, [ , ]x a b∀ ∈ , we 
proceed to  the calculation of the mode amplitudes  ( ){ }, 2,.., 1,0,1,2,.........jU x j M= − + − . 
To this respect we substitute the enhanced local mode representation (17) in the variational 
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principle (15), and express the variation of the unknown field (2)( , )p x z D∈ , through the 
variations of the modal amplitudes 

1

( , ) ( ; ) ( )n n
n M

p x z Z z x U xδ δ
∞

=− +

= ∑   .                                                          (25)

Figure 2: First 5 eigenfunctions for f=0.2Hz. The position of the interface is at 100m  is indicated in the left 
subplot by thick dashed lines. A zoom on the upper 10m is shown in the right subplot, illustrating the layered 

structure of the free-surface (gravity) mode (n=1). 

Figure 3: First 5 eigenfunctions in the low frequency case f=0.08Hz. The position of the interface at 100m (left 
subplot) and 500m (right subplot) is indicated by thick dashed lines. 

Next, by considering only the variations ( ), 2,..,0,1,...nU x n Mδ = − + , in a x b< < , we 
obtain from the first term in the left hand side of Eq. (16)  the following coupled-mode system 
(CMS) of second-order ordinary differential equations, with respect to the mode amplitudes, 

( ), 2,..,0,1,2,..nU x n M= − + , 

( ) ( ) ( ) ( ) ( ) ( )
2

2
2

0n n
mn mn mn n

n M

d U x dU x
a x b x c x U x

dx dx

∞

=− +

+ + =∑ , (26)
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where 2,..,0,1,2,...m M= − +  The x -dependent coefficients ,mn mna b  and mnc  are defined in 
terms of ( ; )nZ z x  in a x b< <  and are given by 

Figure 4: Comparison between the computed eigenvalues against the exact solution (thick line) for 1p =  (left) 
and 2p =  (right). 

Figure 5: Convergence of the finite element solution for the 5th, 10th  and 15th eigenvalues, using 1, 2and3p = . 

,mn n ma Z Z= ,    (27)

1

1 1

1 12 , ( ) ( )
M

jn
mn m n j m j

j j j

dhZ
b Z Z h Z h

x dxρ ρ

−

= +

 ∂
= + − − −  ∂  

∑ ,           (28)

2 2 1
2

, ,2 2
1

, ( )
M

jn n
mn n m n z n x m j

j

dhZ Z
c k Z Z Z Z Z h

x z dx

−

=

 ∂ ∂
= + + + + − ∂ ∂  

∑        .     (29)
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In the above relations, 1, : ( ) ( )
H

f g f z g z dz
η
ρ −

−
= ∫  is the weighted inner product of 

2( ,0)L H−  function spaces, for all x in a x b< < . Further, the quantities  n x
Z  are defined by 

,
1

1 1

j j

n n
n w

z h z hj j

Z Z
Z

w wρ ρ+ −=− =−+

 ∂ ∂
= − 

∂ ∂  

   , 1,2,..., 1j M= − .     (30)

From the last four terms in the left-hand side of the variational equation (16), defined on the 
vertical interfaces at x a=  and x b= , respectively, we obtain the following end-conditions 
for the mode amplitudes ( )nU x , 

( ) ( ) ( )
1/ , 0,1, 2,...m m m

n n n n nC dU dx D U F n+ = = , 1,3m = ,      (31)

where the coefficients ( ) ( ) ( ), , , 1,3m m m
n n nC D F m = , are defined in terms of the physical 

parameters at the end points x a=  and x b= . 

6   NUMERICAL RESULTS AND DISCUSSION 
In the present work, the numerical solution of the above coupled-mode system is obtained 

by truncating the series (17) and using a finite difference scheme based on a uniform grid and 
second-order central differences to approximate derivatives. In order to further enhance the 
efficiency of the present model, future work is focused on the application of p-Finite Element 
Methods, in conjunction with grid adaptation techniques based on the spatial variability of the 
system coefficients ,mn mna b  and mnc . 

As an example, we consider underwater acoustic propagation in a coastal environment, 
characterized by variable seabed boundary. As before, the upper layer (layer 1) is sea water of 
density and speed of sound 3

1 11 / , 1500 / sg cm c mρ = = . The lower layer (layer 2) 
corresponds to sand-silt-clay sediment with properties 3

2 1.5 /g cmρ = , 2 1700 / sc m= , 
terminated at the impermeable (rigid) bottom which is located at a depth 100z m= − . The  
geometry of the internal interface is defined as 

1
3000( ) 500 450 tanh 2 0.5  ,  

4000
x

h x a x bπ
 −  = − − ≤ ≤      

     ,                             (32)

where a=2800m and b=7200m.  
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Figure 6: Acoustic pressure (real part). Frequency 0.08 Hz. Excitation by the first surface (gravity) mode, n=1. 
Parameters: 3

1 11 / , 1500 / sg cm c mρ = = , 3
2 21.5 / , 1700 / sg cm c mρ = = . 

Figure 7: Acoustic pressure (modulus). Frequency 2 Hz. Excitation by the second interior (acoustic) mode n=2, 
and acoustic parameters same as in Fig.6. 

Numerical results concerning the real part of the calculated wave field and its modulus, forced 
by the first incident mode n=1, when the waveguide is excited at frequency 0.08f Hz=  and 
by the second incident mode n=2, for 2f Hz= are shown in Fig. 6 and 7, respectively, as 
obtained by present method. In the case of Fig.4 there is only one propagating mode (n=1), 
while in Fig.7 the number of propagating modes is 3 (n=1,2,3) both in the regions of 
incidence and transmission. The local-mode series is truncated by keeping 5 totally modes, 
and the coupled-mode system is discretized using 1200 segments, which were proved to be 
enough for numerical convergence. It can be seen that in the low frequency case 

0.08f Hz= the gravity mode interacts very little with the rest of the modes. Near the shallow 
end of the domain  small part of the energy is transmitted from the upper medium (water) to 
the lower medium (sediment). Also, in the case of higher frequency 2f Hz=  the interaction 
of the first acoustic mode (n=2) with the gravity mode (n=1) is very small and the generated 
free-surface elevation is negligible. Thus, the acoustic mode is difficult to be observed  at the 
free surface, however  this could become possible at lower depths under the free surface. 
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Figure 8: (a) Pressure at depth 50m for frequency f=0.08Hz with excitation by the free surface (gravity) mode 
n=1 of unit amplitude, and for f=2 Hz with excitation by the second interior (acoustic) mode n=2 of 10 times 

smaller amplitude.  (b) Pressure signal at depth 50m at the shallow end of the domain b=7200m. 

As an example we present in Fig.6 the pressure distribution at depth 50m (location of the 
seabed in the shallow end of the domain) calculated for frequency f=0.08Hz with excitation 
by the free surface (gravity) mode n=1 of unit amplitude, and for f=2 Hz with excitation by 
the second (acoustic) mode n=2 of 10 times smaller amplitude, which is in compatibility with 
the spectrum characteristics of tsunami waves generated by bottom dislocation.   For this 
example the pressure signal at depth 50m at the shallow end of the domain is plotted in the 
right subplot of Fig.8, where the acoustic-gravity waves associated with the mode n=2 are 
clearly observable as high frequency ripples. The latter travel at significant higher speed that 
the free surface waves associated with the first mode at f=0.08Hz leaving an option for an 
advance warning sufficient for evacuation and protection. 

7   CONCLUSIONS 
In this work an improved coupled-mode method is presented for the efficient solution of 

the problem of time-harmonic propagation and scattering of acoustic-gravity waves in a non 
uniform stratified waveguide. The problem is governed by the Helmholtz equation, with 
variable coefficients, in conjunction with the linearized free-surface boundary condition 
associated with gravity waves.  Our method is based on an enhanced local-mode series for the 
representation of the wave field, including additional modes, accounting for the effects of the 
inhomogeneous interfaces. In the case of multilayered waveguides, the local vertical 
eigenvalue problems are treated by h- and  p-FEM, exhibiting robustness and good rates of 
convergence.  In order to further enhance the efficiency of the present model, current work is 
focused on the application of hp-FEM for the solution of the coupled systen on thehorizontal 
plane, in conjunction with grid adaptation techniques based on the spatial variability of the 
system coefficients. Among several other advantages, the present method can be naturally 
extended to treat wave propagation and scattering problems in 3D  multi-layered waveguides. 
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APPENDIX  

In the case of two layers 1,2 , with constant physical properties 1 1,cρ , 1 1k cω=   and 

2 2,cρ , 2 2k cω=  respectively,  the exact analytical solution of the vertical eigenvalue problem 
is given by   

[ ](1) 1 1( ) cos( ) sin( )n n n nZ z B b z zλ λ= +    ,           [ ](2) 2( ) cos ( )n n nZ z B K z Hλ= +    ,                (A1) 

where 
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2 2
1 1n nk kλ = −     ,              2 2

2 2n nk kλ = −     ,                                                                      (A2) 

and 

1n
nb

λ


= ,                             
( )

1 1 1 1

2 2

cos( ) sin( )
cos

n n n
n

n

b h h
K

h

λ λ
λ

− + −
= .                                                (A3)  

In this case, the eigenvalues nk  are found as the roots of the equation 

[ ] [ ]2 1
1 1 1 1 2 2 1 1 1 1

1 2

sin( ) cos( ) tan( ) sin( ) cos( )n
n n n n n n n

n

b h h h h b h
ρ λ λ λ λ λ λ
ρ λ

+ − = − − ,                          (A4) 

which expresses the continuity of 1 /Z zρ − ∂ ∂  across the interface  at 1z h= − .  The remaining 
constants 


 , 1,2,....n = , of the above solution can be fixed by appropriate normalization.  
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