| Title | Catalytic Decomposition of Pyridine with Goethite-Rich Limonite in the Coexistence of Fuel Gas or Coke Oven Gas Components | |------------------|--| | Author(s) | Ogawa, Ayumu; Mochizuki, Yuuki; Tsubouchi, Naoto | | Citation | ISIJ International, 56(7), 1132-1137
https://doi.org/10.2355/isijinternational.ISIJINT-2016-052 | | Issue Date | 2016-07-15 | | Doc URL | http://hdl.handle.net/2115/79333 | | Rights | 著作権は日本鉄鋼協会にある | | Туре | article | | File Information | ISIJ Int. 56(7)_ 1132-1137 (2016).pdf | # **Catalytic Decomposition of Pyridine with Goethite-Rich Limonite** in the Coexistence of Fuel Gas or Coke Oven Gas Components Ayumu OGAWA, Yuuki MOCHIZUKI and Naoto TSUBOUCHI* Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 5, Kita-ku, Sapporo, 060-8628 Japan. (Received on January 29, 2016; accepted on March 28, 2016) Catalytic performance of limonite in the decomposition of 100 ppmv pyridine (C₅H₅N) in the coexistence of fuel gas or coke oven gas (COG) components has been studied mainly with a cylindrical quartz reactor at 750-850°C under a high space velocity of 51 000 h⁻¹ to develop a novel hot gas cleanup method of removing the nitrogen in tar as N2. The limonite catalyst achieves the almost complete decomposition of C₅H₅N in He at 500-850°C and gives a high N₂ yield of more than 85 N% at 500°C. When the decomposition run is performed in the presence of fuel gas or COG components, the coexistence of 20% CO/10% H₂ at 750°C or 50% H₂/30% CH₄/5% CO at 850°C deactivates the limonite with remarkable formation of deposited carbon. On the other hand, the addition of a small amount of H₂O or CO₂ to these atmospheres can improve the catalytic activity without carbon deposition. When 3% H₂O or 10% CO₂ is added to 20% CO/10% H₂, C₅H₅N conversion and N₂ yield at 750°C become 80-95% and 65-80 N%, respectively, and the extent of the improvement is larger with the CO₂ than with the H₂O. The addition of 5% CO₂ to 50% H₂/30% CH₄/5% CO also restores the conversion or the yield at 850°C to the high level of about 90% or 60-70 N%, respectively, and both values at 950°C are comparable to those at 500°C in inert gas. KEY WORDS: hot gas cleanup; pyridine decomposition; N₂ formation; limonite; fuel gas; coke oven gas. ### 1. Introduction Advanced integrated gasification combined cycle (A-IGCC) and fuel cell (A-IGFC) systems are expected to be among the most environmentally acceptable powergenerating technologies from coal. A-IGCC and A-IGFC are estimated to achieve high generation efficiencies of more than 57 and 65%, respectively, which corresponds to a reduction of greater than 30% of CO₂ emissions compared to current pulverized coal-fired plants. 1) Coal-derived fuel gas is composed mainly of syngas ($CO/H_2 = 2$), with low concentrations of CO₂, CH₄ and H₂O.²⁻⁵⁾ Undesirable impurities, such as hydrogen halide, H₂S, COS, NH₃, HCN, alkali metals and trace elements, are also included in raw fuel gas.²⁻⁵⁾ Cold gas cleaning methods using Venturi water scrubbers and selective amine-based absorbents are conventional technologies to efficiently remove these solid and gaseous impurities from fuel gas before a gas combustion process with gas turbine or fuel cell.^{6–8)} However, a hot gas cleanup method that purifies fuel gas at temperatures of \geq 300°C can reduce the loss of heat energy of the hot raw gas (>700°C) and high capital cost for large waste water treatment facilities used in wet processes. 1,3,4,9,10) Coke oven gas (COG) produced during coal carbonization is generally used as a fuel source for coke ovens and other combustion units in ironworks, and it has recently attracted much attention as a low cost source of hydrogen. 11) In conventional processes, the hot raw COG (>800°C) must be quenched to near room temperature using aqueous ammonia solution to remove tarry materials contained in COG. 11) On the other hand, the catalytic or noncatalytic reforming of COG is a promising technology effectively utilizing heat energy of the hot COG. 12-15) Upon coal carbonization, part of the nitrogen present in coal is retained in the solid phase, and the rest is released as volatile-N (N₂, NH₃, HCN and tar-N). 16) It is well-known that NH₃, HCN and tar-N not only serve as a source of NO_x but also poison catalyst materials used for COG reforming. Our research group has been working on the decomposition of NH₃ or model tar-N compounds (pyridine or pyrrole) using inexpensive iron catalysts. 17-26) We have found that fine particles of metallic iron (α -Fe) formed from low-valued iron ore (limonite) show higher activity in the decomposition of NH₃ compared to Ni-, Cu-, Mo- and Ru-based catalysts reported previously. ^{2,19–23,26)} The limonite can achieve almost complete decomposition of 2 000 ppmv NH₃ diluted with inert gas at 500°C¹⁹⁾ and exhibit stable activity in the presence of fuel gas components at 850°C. 20-23,26) We have recently shown that limonite-derived α-Fe can give a N₂ yield of more than 80% in the decomposition of 100 ppmv pyridine (C₅H₅N) in inert He at 500°C under a high space velocity of 51 000 h⁻¹.²⁵⁾ In this paper, therefore, we focus on investigating the catalytic performance of an Australian limonite in the decomposition of C₅H₅N in the coexistence of fuel gas or COG components to develop a novel gas ^{*} Corresponding author: E-mail: tsubon@eng.hokudai.ac.jp DOI: http://dx.doi.org/10.2355/isijinternational.ISIJINT-2016-052 cleaning method for removing tar-N as N₂. #### 2. Experimental ### 2.1. Catalyst Material and Preparation An Australian natural limonite ore comprising about 70% of goethite (α -FeOOH) was employed as a catalyst precursor in the present study. The metal composition of the limonite was: Fe, 44; Si, 9.4; Al, 7.2; Mg, 0.15; Ca, 0.07 mass%-dry. The as-received limonite was sieved to select the 250–500 μ m size fraction, and the Brunauer-Emmett-Teller (BET) specific surface area was measured at 40 m²/g. 25) ### 2.2. Pyridine Decomposition Catalytic decomposition of C₅H₅N was carried out with a cylindrical fixed-bed quartz reactor (8 mm i.d.) under ambient pressure. The details of the experimental apparatus have been described elsewhere. 17) The temperature was controlled by a K-type thermocouple attached to the exterior surface of the reactor. Approximately 0.25 g of the limonite was first charged into the reactor with quartz wool, and a flow of high-purity He (>99.99995%) was then passed through the reactor until the concentration of N₂ in the experimental system was decreased to less than 20 ppmv. The height of catalyst bed in the reactor was about 7.0 mm. After taking precautions against leakage, the reactor was heated electrically up to 500°C. At this temperature, the He was replaced with high-purity H₂ (>99.9999%), and the catalyst material was reduced with the H₂ for 2 h. The reduced limonite catalyst is present as α -Fe with the average crystalline size of 25 nm as mentioned later (Section 3.4). After the reduction pretreatment, the atmosphere was restored to the He, and the reactor was held at a temperature between 300-950°C. The C₅H₅N decomposition experiment began by passing 100 ppmv C₅H₅N diluted with the He, simulated fuel gas (20% CO/10% H₂, 20% CO/10% H₂/3% H₂O and 20% CO/10% H₂/10% CO₂) or simulated COG (50% H₂/30% CH₄/5% CO and 50% H₂/30% CH₄/5% CO/5% CO₂) over the catalyst bed. The space velocity was maintained at 51 000 h⁻¹ throughout the run. # 2.3. Gas Analysis The amount of N₂ produced in the decomposition of C₅H₅N was measured at 3 min intervals with a high-speed micro gas chromatograph (Agilent) equipped with a thermal conductivity detector. Concentrations of C₅H₅N, NH₃ and HCN were determined at 2 min intervals with a photoacoustic multigas monitor (Innova). In the C₅H₅N decomposition runs in the coexistence of CO, CO2, CH4 and/or H2O, the C₅H₅N, NH₃ and HCN were analyzed independently by the Gastec standard detector tube (Gastec) because the analytical accuracy of the multigas monitor may be deteriorated by CO, CO₂, CH₄ and/or H₂O. The amount of C₅H₅N fed was calculated using the concentrations of C5H5N before and after reaction. The yield of N2, HCN or NH3 was estimated using the amounts of both C₅H₅N fed and N₂, HCN or NH₃ formed, respectively, and it was expressed in percent on a nitrogen basis. # 2.4. Catalyst Characterization The powder X-ray diffraction (XRD) (Shimadzu) measurements of catalyst samples as received, after H_2 reduction and after C_5H_5N decomposition were performed with Mn-filtered Fe-K α radiation. The average crystallite size of α -Fe was determined by the Debye-Scherrer method. To avoid rapid oxidation of α -Fe particles upon exposure to laboratory air, the limonite after H_2 reduction or C_5H_5N decomposition was passivated using 2% O_2/He at room temperature and then recovered from the reactor. ¹⁹⁾ #### 3. Results and Discussion #### 3.1. Decomposition of Pyridine in Inert Gas The results for the decomposition of 100 ppmv C₅H₅N in inert He with the limonite catalyst have mostly been shown elsewhere²⁵⁾ and are thus summarized simply in **Table 1**. In a blank experiment with quartz wool alone at 850°C, C₅H₅N conversion was less than 1%. At 300–500°C, the conversion and N₂ yield after 4 h increased with increasing temperature in many cases (Table 1). The reason for it may be that the extent of the transformation of C5H5N into N2 is larger at a higher temperature. The limonite also provided a high N₂ yield of more than 80 N% for at least 10 h at 500°C.25) At a temperature of more than 600°C, although the conversion was greater than 99% during 4 h reaction, the yield decreased gradually after 3 h (Table 1). The catalysts after reaction at 300-500°C were apparently homogeneous, however, the samples after the reaction at $\geq 600^{\circ}$ C were divided into two layers. According to XRD analyses, the upper layer was rich in crystallized carbon and cementite (Fe₃C) derived from C₅H₅N decomposition, whereas the lower layer was rich in α -Fe formed upon the H_2 reduction. Thus, the decrease in N_2 yield observed at $\geq 600^{\circ}$ C may be ascribed to the adsorption of C₅H₅N onto the carbon deposited at the upper layer and/or the transformation of catalytically active α -Fe into the carbide species. We have recently shown that the limonite-catalyzed N₂ formation from C₅H₅N in inert gas takes place via a cycle mechanism involving α -Fe and the nitride species (for example, Fe₂N, Fe₃N and Fe₄N).²⁵⁾ When N₂ yields at 600–850°C were compared, as provided in Table 1, the yield was larger at a higher temperature. The reason may be that the extent of the transformation of nitrogen element incorporated in C₅H₅N-drived carbona- **Table 1.** C_5H_5N conversion and yield of N_2 , HCN or NH_3 in the limonite-catalyzed decomposition of C_5H_5N in inert He at different temperatures. | Temperature (°C) | C ₅ H ₅ N
conversion
(%) ^a | N ₂ yield (N%) ^a | HCN
yield
(N%) ^a | NH ₃ (N%) ^a | Ref. no | |------------------|---|--|-----------------------------------|-----------------------------------|-----------| | 300 | 5 | <1 | 5 | <1 | 25) | | 350 | 7 | 1 | 3 | <1 | 25) | | 400 | 7 | 7 | 3 | <1 | 25) | | 450 | 88 | 76 | 2 | <1 | 25) | | 500 | >99 | 85 | 2 | <1 | 25) | | 600 | >99 | 72 | 2 | <1 | This work | | 750 | >99 | 74 | 3 | <1 | This work | | 850 | >99 | 78 | 2 | <1 | This work | | | | | | | | ^aAfter 4 h reaction ceous materials into N_2 is larger at a higher temperature.²⁵⁾ The yield of HCN or NH₃ was less than 5 N% and 1 N%, respectively, under all conditions. It has been reported that most of the nitrogen in pyridine is decomposed into cyanide species at above $800^{\circ}\text{C}.^{27)}$ It might thus be possible that the limonite catalyzed the decomposition of C_5H_5N into HCN, which might subsequently be transformed into $N_2.^{24)}$ # 3.2. Decomposition of Pyridine in the Coexistence of Fuel Gas Components **Figure 1** presents the effect of the limonite catalyst on C_5H_5N decomposition in the presence of syngas (20% CO/10% H_2) at 750°C. C_5H_5N conversion after 2 h reaction was as high as >95%, which was comparable to the value in inert He (Table 1). On the other hand, N_2 yield decreased to less than 30 N% after 2 h. The yields of NH_3 and HCN were always less than 10 N%. Since the formation of CO_2 and carbonaceous materials occurred under the present conditions, the catalyst deactivation observed in Fig. 1 may be ascribed to the carbon deposition by the disproportionation of CO in the syngas (Eq. (1)). $$2CO \rightarrow C + CO_2$$(1) On the other hand, the high C_5H_5N conversion in Fig. 1 may originate from the adsorption of C_5H_5N onto the deposited carbon formed during the reaction. As well-known, fuel gas from air-blown coal gasifiers contains small amounts of H_2O and CO_2 . Thus, the effect of H_2O or CO_2 addition to syngas on C_5H_5N decomposition was investigated. **Figure 2** shows the influence of 3% H_2O addition on C_5H_5N decomposition under flowing 20% CO/10% H_2 at 750°C. The comparison with Fig. 1 revealed that the cofeeding of the H_2O could maintain the C_5H_5N conversion or N_2 yield at the level of more than 80% or about 65 N%, respectively. NH_3 yield was approximately 20 N% during 4 h reaction, and HCN was always negligibly small. Although the C_5H_5N conversion was about 95% in He, the value lowered to 80–90% with the co-feeding of the H_2O . In addition, N_2 yield after 1 h reaction also decreased from 75% in He (Fig. 1) to 65% in the case of H_2O co-feeding (Fig. 2). The reason for it may be that part of nitrogen in C_5H_5N is transformed into unmeasured N-species other than Fig. 1. Influence of the coexistence of syngas (20% CO/10% H_2) on C_5H_5N decomposition with limonite at 750°C. the N-forms mentioned above. **Figure 3** presents the concentration of CO_2 evolved in the runs shown in Figs. 1 and 2. Approximately 1 000–2 000 ppmv of CO_2 was produced during C_5H_5N decomposition under flowing syngas alone. This result points out that Eq. (1) occurs significantly. In the coexistence of the H_2O , as seen in Fig. 3, the concentration at a steady state was about 7 000 ppmv, which was much higher than that without the H_2O added. It is thus likely that the following $CO-H_2O$ reaction (Eq. (2)), that is, the water gas shift reaction, takes place in the process of C_5H_5N decomposition. $$CO + H_2O \rightarrow CO_2 + H_2 \dots (2)$$ No significant carbon formation was also observed after the decomposition reaction in the H_2O -containing syngas. This may be ascribed to the suppression of carbon deposition (Eq. (1)) by the CO_2 produced through Eq. (2) and/or the occurrence of the reaction (Eq. (3)) of deposited carbon with the H_2O added. $$C+H_2O \rightarrow CO+H_2$$(3) It has recently been shown that limonite-catalyzed steam gasification of coal chars can proceed remarkably around $800^{\circ}\text{C.}^{28)}$ Fig. 2. Effect of 3% H₂O addition on C₅H₅N decomposition under flowing 20% CO/10% H₂ at 750°C. Fig. 3. Concentration of CO₂ evolved during C₅H₅N decomposition at 750°C in the coexistence of syngas alone or 3% H₂O-containing syngas. Figure 4 shows the results under flowing 10% CO₂-containing syngas. When the CO₂ was added to 20% CO/10% H₂, C₅H₅N conversion or N₂ yield after 4 h was almost the same level as the corresponding value (Table 1) observed at 500°C in inert He. NH₃ and HCN were \leq 5 N% and almost zero, respectively. The co-feeding of a higher concentration of CO₂ may lower the driving force for Eq. (1) to a larger extent so that the CO₂ added may improve the activity of the limonite catalyst more effectively compared with 3% H₂O addition (Fig. 2). When the decomposition run given in Fig. 4 was carried out at 650°C, the catalytic performance of the limonite was decreased by carbon deposition, which may come from a higher driving force ($\Delta G = -2.1 \text{ kcal/mol}$) for Eq. (1) at 650°C compared with that ($\Delta G = 2.1 \text{ kcal/mol}$) at 750°C. The catalytic activity in the CO₂-containing syngas at 850°C was almost the same level as that (Fig. 4) at 750°C. It is thus probable that the addition of 10% CO₂ to syngas can restore the catalytic performance of the limonite to the high level at $\geq 750^{\circ}$ C. # 3.3. Decomposition of Pyridine in the Coexistence of Coke Oven Gas Components It is well-known that a typical COG is composed of 54-59% H₂, 24-28% CH₄, 4-7% CO, 3-5% N₂ and 1-3% CO₂ with impurities. ¹⁵⁾ The present section therefore focuses on investigating the effect of the coexistence of H₂, CH₄, CO and/or CO₂ on the limonite-catalyzed C₅H₅N decomposition. **Figure 5** presents the effect of the limonite catalyst on C_5H_5N decomposition in the presence of 50% $H_2/30\%$ CH₄/5% CO at 850°C. C_5H_5N conversion was about 90% during 1 h reaction, whereas N_2 yield decreased with increasing time on stream beyond 30 min to be less than 30 N% after 1 h. On the other hand, HCN and NH₃ yields were almost constant for 1 h. The difference in the behavior of N_2 , HCN and NH₃ formation may occur due to the transformation of C_5H_5N into unmeasured N-species, because the catalyst used in this atmosphere was covered with a large amount of deposited carbon, which is likely to be derived from CH₄ (Eq. (4)) and/or CO (Eq. (1)) in the atmosphere. It is probable that the remarkable occurrence of carbon formation is the main reason for the catalyst deactivation observed in Fig. 5. **Fig. 4.** Effect of 10% CO₂ addition on C₅H₅N decomposition under flowing 20% CO/10% H₂ at 750°C. $$CH_4 \rightarrow C + 2H_2 \dots (4)$$ Figure 6 shows the influence of 5% CO2 addition on C₅H₅N decomposition under flowing 50% H₂/30% CH₄/5% CO at 850°C. The added CO₂ could improve the catalytic activity of the limonite remarkably compared with the observation (Fig. 5) without CO₂ added. The conversion was stable at about 90%, and N₂ yield was 60–70 N% during 4 h reaction. NH₃ and HCN were also about 20 N% and almost zero, respectively. No significant carbon deposition was observed under the conditions applied. It is probable that the decrease in carbonaceous materials by CO₂ addition is responsible for the activity improvement observed in Fig. 6. When the temperature was decreased to 750°C, the conversion decreased steeply at the initial step of the reaction to be about 60% after 1 h. At 950°C, on the other hand, the conversion was as high as >95% for 4 h, and N₂ was stable at about 80 N%. Thermodynamic calculations indicate that the driving force for the methane decomposition reaction (Eq. (4)) described above is greater at a higher temperature $(\Delta G = -5.2 \text{ kcal/mol at } 750^{\circ}\text{C}, -7.8 \text{ kcal/mol at } 850^{\circ}\text{C}$ and -10 kcal/mol at 950°C). However, the catalytic activity of the limonite was higher at $\geq 850^{\circ}$ C than at 750°C. The reason for this difference is not clear at present, but the occurrence of the Boudouard reaction (the reverse reaction Fig. 5. Influence of the coexistence of 50% $H_2/30\%$ CH₄/5% CO on C_5H_5N decomposition with limonite at 850°C. **Fig. 6.** Effect of 5% CO₂ addition on C₅H₅N decomposition under flowing 50% H₂/30% CH₄/5% CO at 850°C. of Eq. (1)) may lead to the increased activity at high temperatures of $\geq 850^{\circ}$ C. The ΔG values for the Boudouard reaction at 750–950°C are estimated to be -2.1 to -10 kcal/mol, and the driving force is thus larger at a higher temperature. #### 3.4. Iron Forms of the Limonite after Reaction As described above, the co-feeding of 20% CO/10% H₂ at 750°C or 50% H₂/30% CH₄/5% CO at 850°C with 100 ppmv C₅H₅N lowered the catalytic performance of the limonite considerably compared with the observation in inert He (Table 1, Figs. 1 and 5). On the other hand, the addition of H₂O or CO₂ to the syngas and main COG composition restored the catalytic activity (Figs. 2, 4 and 6). The used limonite catalysts were thus subjected to the XRD measurements to identify crystalline forms of Fe species. The α -FeOOH in as-received limonite was transformed into α -Fe with the average crystalline size of 25 nm after H₂ reduction.²⁵⁾ Figure 7 presents the XRD profiles for the limonite used in the presence of fuel gas components. As seen in Fig. 7(a), α -Fe was transformed predominantly into Fe₃C after C₅H₅N decomposition at 750°C in the coexistence of syngas alone. The formation of Fe₃C may be expressed as follows: $$3\text{Fe} + \text{C} \rightarrow \text{Fe}_3\text{C} \dots (5)$$ The ΔG value for Eq. (5) at 750°C is calculated to be 0.2 kcal/mol. The carbide species may also be produced by the direct reaction (Eq. (6)) of α -Fe with CO fed. $$3\text{Fe} + 2\text{CO} \rightarrow \text{Fe}_3\text{C} + \text{CO}_2 \dots (6)$$ The ΔG for Eq. (6) at 750°C is 2.3 kcal/mol, which means that the driving force for Eq. (6) is smaller than that for Eq. (5). Thus, Eq. (5) may be likely to be the main reaction for the formation of Fe₃C. It may therefore be reasonable to see that carbon formed by Eq. (1) and/or CO coexisted Fig. 7. XRD profiles for limonite samples after C₅H₅N decomposition in syngas/He at 750°C (a), H₂O/syngas/He at 750°C (b) and CO₂/syngas/He at 650°C (c), 750°C (d) and 850°C (e). react with catalytically active α -Fe to provide Fe₃C, which causes the deactivation of the limonite catalyst. When 3% H_2O or 10% CO_2 was added to syngas at 750°C, the XRD peaks attributable to Fe_3C and crystallized carbon disappeared almost completely, and α -Fe became the main species (Figs. 7(b) and 7(d)). The similar XRD profile was also observed with the used limonite after the reaction at 850°C in the CO_2 -containing syngas (Fig. 7(e)). The disappearance of Fe_3C may be ascribed to the suppression of carbon deposition (Eq. (1)) by CO_2 coexisted or produced through Eq. (2), the gasification of C_3H_5N -derived carbon by the Boudouard reaction or H_2O coexisted (the reverse reaction of Eqs. (1) or (3), respectively), and/or the transformation of Fe_3C into α -Fe by the reaction of Fe_3C with H_2O (Eq. (7)) or CO_2 (Eq. (8)). $$Fe_3C + H_2O \rightarrow 3Fe + CO + H_2 \dots (7)$$ $$Fe_3C + CO_2 \rightarrow 3Fe + 2CO \dots (8)$$ The ΔG values for Eqs. (7) and (8) at 650–850°C are estimated to be 0.1 to -5.8 and 1.4 to -6.1 kcal/mol, respectively. It is thus probable that the two oxidizing gases can protect catalytically active α -Fe from being carbonized and/or covered with deposited carbon, and the extent of the protection is larger at a higher temperature. After C_5H_5N decomposition at 650°C in 10% CO_2 -containing syngas, as seen in Fig. 7(c), the diffraction peaks of Fe₃C and crystallized carbon were detected, whereas α -Fe did not appear. The reason may be that the driving force ($\Delta G = -2.1$ kcal/mol) for Eq. (1) at 650°C is larger than that ($\Delta G = 1.4$ kcal/mol) for Eq. (8) at this temperature. **Figure 8** illustrates the XRD patterns for the limonite used in the coexistence of COG components. After the decomposition reaction at 850°C in 50% $H_2/30\%$ CH₄/5% Fig. 8. XRD profiles for limonite samples after C_5H_5N decomposition in 50% $H_2/30\%$ CH₄/5% CO/He at 850°C (a) and 50% $H_2/30\%$ CH₄/5% CO/5% CO₂/He at 750°C (b), 850°C (c) and 950°C (d). CO, the XRD signals attributable to α -Fe, Fe₃C and crystallized carbon appeared (Fig. 8(a)). The ΔG values for the CO disproportionation (Eq. (1)) and the methane decomposition (Eq. (4)) reactions at 850°C are calculated to be 6.3 and -7.8 kcal/mol, respectively. The crystallized carbon is considered to be predominantly formed via Eq. (4). On the other hand, the formation of Fe₃C may proceed through the following equation (Eq. (9)) in addition to reactions involving deposited carbon (Eq. (5)) and/or CO (Eq. (6)). $$3Fe + CH_4 \rightarrow Fe_3C + 2H_2$$(9) The ΔG value for Eq. (9) at 850°C is -8.0 kcal/mol, which is lower than that for Eq. (5) ($\Delta G = -0.2 \text{ kcal/mol}$) or 6 $(\Delta G = 6.1 \text{ kcal/mol})$ at 850°C. It is thus likely that the catalyst deactivation observed in Fig. 5 comes mainly from the occurrence of Eq. (4) and/or Eq. (9). When 5% CO₂ was added to 50% H₂/30% CH₄/5% CO above 850°C, the diffraction lines of crystallized carbon and Fe₃C disappeared almost completely, and α -Fe became the predominant Fe form (Figs. 8(c) and 8(d)). The disappearance of the former two species may be ascribed to the suppression of carbon formation (Eq. (1)) by CO₂ coexisted, the CO₂ gasification of CH₄- and C₅H₅N-derived carbonaceous materials (the reverse reaction of Eq. (1)), and/or the transformation of Fe₃C into α-Fe by the reaction between Fe₃C and CO_2 (Eq. (8)). On the basis of the above-mentioned results, it is evident that the coexistence of CO₂ can suppress the deactivation of the limonite catalyst in 50% H₂/30% $CH_4/5\%$ CO at ≥ 850 °C. At 750°C, as seen in Fig. 8(b), the weak XRD peaks of Fe₃C were observed. This may be ascribed to a lower driving force for the Boudouard reaction (the reverse reaction of Eq. (1)) at 750°C compared with those at 850 and 950°C (section 3.3). To clarify the mechanism of the limonite-catalyzed N₂ formation from C₅H₅N in the coexistence of fuel gas or COG components should be the subject of future work from a scientific point of view. #### 4. Conclusions Catalytic decomposition of 100 ppmv C₅H₅N in the presence of fuel gas or COG components with limonite rich in α -FeOOH has been studied mainly with a cylindrical quartz reactor under the conditions of 0.1 MPa, 750–850°C and 51 000 h⁻¹. The principal conclusions are summarized as follows: - The limonite catalyst exhibits very high activity for the decomposition of C₅H₅N in inert He at 500–850°C, and C₅H₅N conversion and N₂ yield at 500°C reach almost 100% and more than 85 N%, respectively. - (2) In the coexistence of 20% CO/10% H₂ at 750°C or 50% H₂/30% CH₄/5% CO at 850°C, the limonite is considerably deactivated due to the remarkable occurrence of carbon deposition. - (3) On the other hand, the addition of 5-10% CO₂ to the syngas and main COG composition can suppress carbon formation and consequently improve the catalytic activity of the limonite significantly. - (4) The XRD analyses reveal the transformation of α -FeOOH-derived active α -Fe into Fe₃C in the coexistence of 20% CO/10% H₂ alone or 50% H₂/30% CH₄/5% CO alone. When the H₂O or CO₂ is added to the syngas at 750°C and the main COG composition at 850°C, on the other hand, α -Fe is the only Fe form. - (5) On the basis of the above-mentioned results, it is likely that the two oxidizing gases can work for keeping the limonite surface as catalytically active α -Fe. #### Acknowledgments The present study was supported in part by the Steel Foundation for Environmental Protection Technology (SEPT). The authors acknowledge the supply of limonite from Kobe Steel Ltd and Mitsubishi Chemical Corp. in Japan. #### **REFERENCES** - A. Tsutsumi: CCT J., 11 (2004), 17. - S. C. Mitchell: Hot Gas Cleanup of Sulfur, Nitrogen, Minor and Trace Elements, IEA Coal Research, London, (1998), CCC/12. - S. Benson: Fuel Cells Use with Coal and Other Solid Fuels, IEA Coal Research, London, (2001), CCC/47. - E. Suzuki: Proc. 2003 Gasification Technologies Conf., Gasification Technology Council, Arlington, (2003), 11 - MEGA-GSP Technology, Future Energy GmbH, Freiberg, (2005), - C. Henderson: Clean Coal Technologies, IEA Coal Research, London, (2003), CCC/74. - N. Holt: Proc. 2004 Gasification Technologies Conference, Gasification Technologies Council, Arlington, (2004), 25 - S. J. Mills: Coal Gasification and IGCC in Europe, IEA Coal Research, London, (2006), CCC/113. - K. V. Thambimuthu: Gas Cleaning for Advanced Coal-Based Power Generation, IEA Coal Research, London, (1993), IEACR/53 - A. Dittler, G. Hemmer and G. Kasper: High Temperature Gas Cleaning, vol. II, G. Braun ems Gmbb, Karlsruhe, (1999) - T. Aramaki: J. Jpn. Inst. Energy, 85 (2006), 342 - K. Miura, M. Kawase, H. Nakagawa, R. Ashida, T. Nakai and T. - Ishikawa: *J. Chem. Eng. Jpn.*, **36** (2003), 735. M. Onozaki, K. Watanabe, T. Hashimoto, H. Saegusa and Y. Katayama: *Fuel*, **85** (2006), 143. - 14) L. Li, K. Morishita and T. Takarada: J. Chem. Eng. Jpn., 39 (2006), 461. - 15) H. Cheng, X. Lu, X. Liu, Y. Zhang and W. Ding: J. Nat. Gas Chem., **18** (2009), 467. - N. Tsubouchi, Y. Mochizuki, Y. Ono, K. Uebo, N. Sakimoto and T. Takahashi: *Energy. Fuels.*, **27** (2013), 7330. 16) - 17) Y. Ohtsuka, C. Xu, D. Kong and N. Tsubouchi: Fuel, 83 (2004), 685. - C. Xu, N. Tsubouchi, H. Hashimoto and Y. Ohtsuka: Fuel, 84 (2005), 1957 - 19) N. Tsubouchi, H. Hashimoto and Y. Ohtsuka: Catal. Lett., 105 (2005), 203 - N. Tsubouchi, H. Hashimoto and Y. Ohtsuka: Catalytic Decomposition of Ammonia in Fuel Gas Components with Inexpensive Limonite at High Temperatures, eds. by C. Kanaoka, H. Makino and H. Kamiya, Advanced Gas Cleaning Technology, Jugei Shobo, Tokyo, (2005), 483. - N. Tsubouchi, H. Hashimoto and Y. Ohtsuka: Energy. Fuels., 21 (2007), 3063 - 22) N. Tsubouchi, H. Hashimoto and Y. Ohtsuka: Powder Technol., 180 (2008), 184. - 23) Y. Ohtsuka, N. Tsubouchi, T. Kikuchi and H. Hashimoto: Powder Technol., 190 (2009), 340. - T. Matsuyama, N. Tsubouchi and Y. Ohtsuka: J. Mol. Catal. A-Chem., 356 (2012), 14. - N. Tsubouchi, A. Ogawa and Y. Mochizuki: Appl. Catal. A-Gen., 499 (2015), 133. - N. Tsubouchi, H. Hashimoto and Y. Ohtsuka: J. Mol. Catal. A-Chem., 407 (2015), 75. - A. E. Axworthy, V. H. Dayan and G. B. Martin: Fuel, 57 (1978), 29. K. Murakami, M. Sato, K. Sugawara, N. Tsubouchi and Y. Ohtsuka: - Proc. 48th Conf. Japan Institute of Energy for Coal Science, JIE, Tokyo, (2011), 94.