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Beam optics control is of critical importance for machine performance and protection. Nowadays, turn-
by-turn (TbT) beam position monitor (BPM) data are increasingly exploited as they allow for fast and
simultaneous measurement of various optics quantities. Nevertheless, so far the best documented
uncertainty of measured β-functions is of about 10‰ rms. In this paper we compare the β-functions
of the ESRF storage ring measured from two different TbT techniques—the N-BPM and the Amplitude
methods—with the ones inferred from a measurement of the orbit response matrix (ORM). We show how
to improve the precision of TbT techniques by refining the Fourier transform of TbT data with properly
chosen excitation amplitude. The precision of the N-BPMmethod is further improved by refining the phase
advance measurement. This represents a step forward compared to standard TbT measurements. First
experimental results showing the precision of β-functions pushed down to 4‰ both in TbT and ORM
techniques are reported and commented.
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I. INTRODUCTION

Performance of today’s accelerators puts stringent require-
ments on beam optics control. Moreover, the time spent on
optics measurements should be minimized to maximize
machine availability. Traditionally, beam optics measure-
mentmethods based on the beam closed orbit have been used
in synchrotron light sources [1], but the time needed for the
measurement could reach several tens of minutes. On the
other hand, analysis of turn-by-turn (TbT) beam position
monitor (BPM) data allows for simultaneous measurement
and correction of various optics quantities as demonstrated in
[2–6]. Several beam optics correction methods were com-
pared in [7–9], with typical relative error in the measured
β-functions of about 10‰ rms. In machines requiring a
β-beating within 10‰ [10], it is then necessary to devise
optics measurements with better accuracy and precision.
A general analytical study of errors of TbT techniques is

reported in [11]. Different linear optics measurement
methods applied to the ESRF storage ring were already

compared in [12]. Both works revealed that the key
points for a better accuracy are the dependence on the
lattice models, as well as by the amplitude of the betatron
oscillation vs the BPM resolution and the lattice non-
linearities. In machines with strong nonlinear magnetic
elements, such as third-generation and future light sources,
the linear analysis of TbT data can be biased by nonlinear
terms if the beam excitation is too large. In the case of the
ESRF storage ring, it is found that amplitudes greater than
1 mm at βx ¼ 38 m (action variable, Jx ¼ 1.3 × 10−8 m)
are already affected by such terms. In principle lower
excitations would be possible by firing the kicker magnet
with a weaker current, though the one used at the ESRF
storage ring suffers from stability and reproducibility issues
at low pulse currents.
We applied two beam optics measurement techniques to

TbT data from the ESRF storage ring: the N-BPM method
[13] and the Amplitude approach [14]. Both procedures are
based on the harmonic analysis of TbT data from all BPMs.
The beam is excited in both planes by pulsed magnets
(kickers inducing free oscillations). The Amplitude tech-
nique evaluates the β-function from the amplitude of the
tune spectral line at each BPM and is biased by BPM
calibration errors as discussed for example in [15]. The
N-BPM method extracts the β-function from the BPM
phase advance computed from the phase of the tune line as
described in [13]. The β-functions measured with these two
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techniques are compared to those inferred from the meas-
urement and fit of the orbit response matrix (ORM), i.e., of
the closed orbit response to a unit change of orbit corrector
strengths [16]. The machine model is fitted to reproduce
the measured matrix, namely dipole and quadrupole tilts,
dipole and quadrupole strength errors, as well as BPM
calibration factors. This fit provides an effective model
(called the ORMmodel). The ORMmeasurement routinely
carried out at the ESRF takes about 20 minutes. More
generally, the measurement time scales with the length of
the storage ring, whereas the one of the TbT techniques is a
matter of at most seconds. However, the switch between
TbT and orbit modes may require up to twenty minutes, as
the ESRF storage ring is equipped with BPM electronics
[17], which are not suitable for quick switch between
the modes.
In lepton machines synchrotron radiation results in the

damping of the TbT transverse motion after a pulsed
excitation influencing the analysis of TbT data in two
main aspects. First, the evaluation of BPM phase advance,
from the phase of the tune spectral line, shows a depend-
ence on the choice of the first turn of the TbT batch of
data to be analyzed (even at the level of single turns).
A correction to this issue was found in [18]. Second, the
natural reduction of the oscillation amplitude over time can
be used to obtain a batch of TbT data for the harmonic
analysis a few milliseconds after the kicker pulse (strong
enough to ensure its stability) with an amplitude suffi-
ciently low to prevent non-linear terms from spoiling the
linear analysis of the tune line.
Here we define the terms of: accuracy—the difference to

the true value and precision—the spread of the measure-
ments including the known systematic effects. Assuming
we have the quantity which has a true value of 1.00, 1.00�
0.01 is precise and accurate, 0.90� 0.01 is precise, but
inaccurate and 1.0� 0.1 is imprecise but accurate estimate
of the value.
The paper is structured as follows. In Sec. II the

measurement setup is outlined, whereas an error analysis
of the different measurement techniques based on single-
particle simulations of the ESRF storage ring is detailed in
Sec. III. Experimental results are eventually discussed and
compared in Sec. IV.

II. DEDICATED OPTICS MEASUREMENT

A special sextupole setting was designed and imple-
mented to have both linear chromaticity and amplitude
detuning close to zero, resulting in at least several hundred
turns of exploitable data for the harmonic analysis.
Optics measurements were performed with transverse

oscillation decoherence times of about 740 and 1850 turns
in the horizontal and vertical planes, respectively. The
synchrotron radiation damping time is about 2500 turns.
The fractional betatron tunes were close to nominal values
at 0.4414 in the horizontal plane and 0.3899 in the vertical

plane. The measured linear chromaticity was −1.0 and
þ0.2 in the two planes (compared to the operational values
of 8 and 13, respectively). 330 bunches with a total current
of 7 mAwere stored to avoid beam instabilities and position
interlocks during the beam excitation. Prior to TbT mea-
surements, linear lattice errors (β-beating, dispersion and
coupling) were measured and corrected via ORM analysis
reaching typical operational values, i.e. ∼5% and ∼3% rms
β-beating in the two transverse planes and an emittance
ratio of ϵy=ϵx ≃ 1‰. A second ORM was measured and
fit to evaluate the β-functions to be used as reference.
After that, BPMs were switched to TbT mode and data
with maximum amplitude in the range from 0.7 mm
(J0 ¼ 6.5 × 10−9 m) to 1.4 mm (J0 ¼ 2.6 × 10−8 m) at
β ¼ 38 m were acquired. The beam was excited by kickers
located at βx ¼ 5.1 m and βy ¼ 30.5 m. The time differ-
ence between the ORM and TbT measurements was about
3 hours. TbT measurements were repeated for 5 different
beam energies (with a �0.168% span of Δp=p). For each
kicker and energy setting, ten acquisitions were taken.

III. PRECISION AND ERROR ANALYSIS

The performance of a harmonic analysis depends,
among other elements, on the number of analyzed turns.
Simulations have been carried out in order to evaluate the
best number of turns and kicker strength ensuring the
highest measurement precision. Single particles with vari-
ous initial transverse displacements were tracked along the
lattice of the ESRF storage ring. The lattice β-functions are
shown in Fig. 1. The average horizontal and vertical
β-functions are comparable.
BPM noise in TbT mode is estimated from singular

value decomposition (SVD)-cleaning [19–21] of measured
data. The decomposed TbT data are recomposed using
only the 12 largest singular values, this way the noise
floor is removed and the data are cleaned. The rms of the

FIG. 1. The lattice β-functions along the ESRF storage ring.
The markers refer to BPM positions.
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differences between the raw and cleaned data for each
BPM provided an average noise of 9.6 μm in the horizontal
plane and 8.8 μm in the vertical plane. This BPM noise
was added to the simulated TbT data before being ana-
lysed using different numbers of turns with the initial
displacement of 0.55 mm (horizontal) and 0.15 mm
(vertical) at βx ¼ 38 m and βy ¼ 2.9 m (initial actions:
Jx0 ¼ 4.0 × 10−9 m and Jy0 ¼ 3.9 × 10−9 m). Note that
the actions of the horizontal and vertical kicks are very
similar. The errors of the retrieved BPM phase advance and
β-beating as a function of the number of turns are shown in
Figs. 2 and 3, respectively. Because the errors disappeared
by removing the sextupoles in the simulation it can be
concluded that they are dominated by lattice nonlinearities.
As expected from [22], the degradation of the accuracy

in evaluation of phase advance and β-function below 1200
turns (blue curves in Figs. 2 and 3) is largely removed when
the tune averaged over all BPMs is used to define the tune
spectral line (red curves), instead of using the tune peak
detected at each single BPM. Therefore in the analysis of
experimental data the tune line is forced to be equal to the
average tune.
Larger transverse beam excitations modify the content of

the tune spectral line, whose amplitude and phase include
non-linear terms (proportional to the initial amplitude)
stemming from sextupoles in the case of ESRF storage ring
[4,11]. Figure 4 shows the artificial β-beating, inferred from
the N-BPMmethod, applied to simulated data with different
initial displacements. Up to 45‰ peak artificial β-beating is
observed with an initial amplitude of 4.4 mm at βx ¼ 38 m
(Jx0 ¼ 2.5 × 10−7 m). To decrease the inaccuracy to 2‰

in the measurement of the horizontal β-functions an initial
displacement below 0.7 mm (always at βx ¼ 38 m) is
needed, as shown in Fig. 5. The requirement is more relaxed
in the vertical plane, for which an initial displacement below
0.17 mm at βy ¼ 2.9 m, which is equivalent to 0.62 mm at
βy ¼ 38 m in the horizontal plane, decreases the inaccuracy
to 1‰. It is factor 2 lower compared to the horizontal plane.
As the beam dynamics becomes nonlinear both phase and
amplitude of the tune line are perturbed [11]. This may in
turn cause a significant disagreement between the two
methods at large amplitudes, as seen in Fig. 5.
TbT data with the lowest amplitude of the oscillation

(0.7 mm) were chosen for the analysis since in this case
the linear optics measurements are the least perturbed by
amplitude detuning and nonlinearities. Moreover, the
natural transverse damping induced by synchrotron radiation
has been used to further decrease the systematic effect of

FIG. 2. Simulated rms phase-advance error computed from
single-particle simulations of the ESRF storage ring lattice as a
function of the number of turns used for the analysis in two cases
where the betatron tune is calculated from a single BPMs or
averaged over the set of all BPMs (realistic noise has been added to
BPM TbT data). The initial displacement of 0.55 mm (horizontal)
and 0.15 mm (vertical) at βx ¼ 38 m and βy ¼ 2.9 m (initial
actions: Jx0 ¼ 4.0 × 10−9 m and Jy0 ¼ 3.9 × 10−9 m).

FIG. 3. Simulated rms of artificial β-beating computed by
N-BPM from the same single-particle simulations of Fig. 2.

FIG. 4. Simulated artificial β-beating computed by N-BPM
from single-particle simulations of the ESRF storage ring lattice
at different initial displacements (βx ¼ 38 m and βy ¼ 2.9 m)
corresponding to actions from ∼5 × 10−9 m to ∼2.5 × 10−7 m.
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sextupoles, in our case by analyzing only a batch of data 200
turns after the kick (for larger kicks longer delay may be
needed). Such a shift ensures amaximal transverse oscillation
only slightly above 0.5 mm (horizontally, still at βx ¼ 38 m)
and 0.15 mm (vertically, βy ¼ 2.9 m). After the raw data are
SVD-cleaned, harmonic analysis is performed using an FFT
with frequency interpolation by Jacobsen’s method with bias
correction [23]. The analyses and errors specific to the TbT
methods are described in the following subsections.

A. N-BPM method

The β-function evaluated from the N-BPM method [13]
is a weighted average of β-functions obtained from various
combinations of BPM triplets, using model transfer matri-
ces in between them. Therefore, uncertainties in the model
influence the measurement of β-functions. Ten thousand
lattices were simulated, to estimate the resulting systematic
error on the β-function calculated from phase advances
between a given combination of BPMs. To account for the
effects of various sources of error, the estimated misalign-
ments and uncertainties of magnetic properties were added
to simulated lattices. The estimated uncertainties were
tailored down in order to realistically reproduce the
measured rms β-beating. The corresponding estimates of
lattice uncertainties are shown in Table I.
The N-BPM method is influenced by phase advance

measurement errors, therefore it is sensitive to errors in the
synchronization among the BPMs. A phase advance
variation has been observed both in simulation and in
the measurement, when analysing the TbT data delayed
even by a single turn. The variation resulted in rms
β-beating up to 10‰ (with a delay of 3 or 4 turns as
shown in Fig. 6). This was found to be an effect of the

transverse damping. In order to refine the phase advance
measurement we implemented the phase correction given
in [18] for a signal approximated by

xk ¼ Ae−αk cos ðνkþ ϕþ ϵÞ; ð1Þ

where k, A, and α are the turn number, the amplitude and
the damping coefficient. ν, ϕ, and ϵ are the betatron tune,
the phase of the tune spectral line and the correction to the
phase (all in radians), that is given by

ϵ ¼ e1 − e2
e3 − e4

; ð2Þ

where

e1 ¼
1

2

X

k

Ae−2αk sin 2ðνkþ ϕÞ

e2 ¼
X

k

xke−αk sin ðνkþ ϕÞ

e3 ¼
X

k

xke−αk cos ðνkþ ϕÞ

e4 ¼
X

k

Ae−2αk cos 2ðνkþ ϕÞ:

FIG. 5. Simulated rms of artificial β-beating computed by
N-BPM and Amplitude methods from the same single-particle
simulations with different diagonal initial displacement as in
Fig. 4. The error bars refer to the mean (single-BPM) error bars
averaged over all BPMs.

TABLE I. Estimated Gaussian uncertainties of the ESRF lattice
using the ORM inferred model.

Uncertainty σORMmodel

Longitudinal quadrupole misalignment 0.2 mm
Longitudinal BPMs misalignment 0.2 mm
Transverse sextupole misalignment 10 μm
Quadrupole gradient 0.1‰
BPM resolution (horizontal plane) 9.6 μm
BPM resolution (vertical plane) 8.8 μm

FIG. 6. Measured β-beating when analyzing the TbT data
delayed by different number of turns.
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A robust estimator of the amplitude and damping
coefficient has been developed and a sample of TbT data
with its estimated exponential envelope is shown in
Fig. 7. The correction gives stable results only if the
average orbit is subtracted from the data. This improved
the robustness of phase advance measurement, resulting in
rms β-beating decreased to at most 0.4‰, typically even
0.2‰.
In order to account for the systematic error in the

evaluation of the β-beating from nonlinear terms polluting
the tune spectral line, single-particle simulations were run
with initial amplitudes equivalent to those of the measure-
ments. For each amplitude, the resulting artificial β-beating
was quantified, as in Fig. 5, and its rms value was included
in the systematic error associated to the analysis of
experimental data.

B. Amplitude method

The betatron motion at a given BPM is described by
Eq. (1). The undamped amplitude of the tune spectral line is

A ¼ C
ffiffiffiffiffiffiffiffi
2βJ

p
; ð3Þ

where J is the action (invariant along the ring), while C
and β are the BPM gain (≃1) and β-function, respectively.
All are entangled, as only the product C

ffiffiffiffiffi
βJ

p
is observable.

By assuming BPM gain is the same for all monitors, a way
to extract C

ffiffiffi
J

p
(and hence the β-function at the BPMs) is to

impose that model and measured average β-functions be
equal, i.e. K · C2hβðmeasÞJi ¼ hβðmodÞi, where K is a global
scaling factor. This approach adds in turn two systematic
effect, because the average β-function increases with the
rms β-beating [11,24] and C changes between BPMs.
The BPM calibration errors can be indirectly estimated
by comparing the β-functions obtained from N-BPM and
Amplitude methods, the former not being affected by these
errors.
The dependence of average β-beating on rms β-beating

of perturbed lattices with respect to the unperturbed model
has been simulated. This turns out to be quadratic
(in agreement with [24]), as shown in Fig. 8. The measured
β-functions are corrected for this effect of rms β-beating.

The uncertainty in the simulated average β-beating (for a
given rms β-beating) was included in the experimental
systematic error, together with the artificial β-function
accuracy mentioned above. The error in the analysis of
experimental data consists of these systematic errors and
statistical errors of β-function measurement.

C. ORM method

To the best of our knowledge, no theoretical study on the
accuracy of the ORM method has been published so far.
In order to evaluate a systematic error for the ESRF storage
ring, numerical simulations have been carried out. Ten
different sets of linear lattice errors generating the measured
rms β-beating have been created. The ORM analysis has
been simulated on those sets and the fitted models have
been used to compute ten sets of β-functions at the BPMs.
These have been compared to the expected values, yielding
an rms uncertainty of about 3‰. The inclusion of the BPM
resolution at 10 nm level did not deteriorate that accuracy.
In order to estimate the statistical error, we carried out 5
consecutive ORM measurements which resulted in a rms
uncertainty of about 5‰ in the horizontal plane and
about 2‰ in the vertical plane. This gives the measured
β-function precision of 6‰ in horizontal plane and 4‰
in vertical plane.

IV. COMPARISON OF RESULTS

In order to measure the β-functions most precisely, the
batch of TbT data 200 turns after the kick with the lowest
amplitude was analyzed. In this case the linear optics is the
least disturbed by amplitude detuning and non-linearities.
The average relative precision of β-functions obtained by
different methods is shown in Table II. The N-BPM
precision is mainly consisting of the statistical error, and

FIG. 7. TbT BPM position readings with estimated exponential
envelope.

FIG. 8. Average β-beating vs rms β-beating (binned) of
perturbed simulated lattices with respect to the unperturbed
model of the ESRF storage ring (simulations).
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remains at the level of 4‰ even if lattice uncertainties are
tripled. The precision of the Amplitude method is domi-
nated by BPM gain errors, the contribution of all other
sources of error together are less than 5‰.
The measured β-beating is shown in Table III and Fig. 9.

A drift of the closed orbit of about 15 μm rms was observed
between ORM and TbT measurements: simulations sug-
gest that about 5‰ of the difference in the β-beating

between ORM and TbT techniques can be attributed to this
orbit drift.
Phase advances between the neighboring BPMs (a more

robust observable) were measured from TbT data and
compared to those obtained from the ORM model. The
difference is shown in Figure 10. The agreement is
generally better in horizontal plane. Error bars shown in
Fig. 10 are from the TbT measurement only, as there is no
estimate of phase advance error inferred from the ORM
method.
At a longitudinal location of around 500m, there is a local

insertion optics. A larger than the average discrepancy is
visible along that region both in thehorizontalβ-beating from
the Amplitude method (Fig. 9) and in the phase advance
beating between TbT measurement and ORM model
(Fig. 10).This suggests the existence of local errors not
included in the ORMmodel, inwhich the phase advances are
not fit. The failure of the ORM method to reproduce the
lattice errors, has been already observed in [25].
Finally, we compare the normalized dispersion D=

ffiffiffi
β

p
,

where D stands for dispersion. Normalized dispersion was
measured from closed orbit using ORM and from TbT data,
their difference shown in Fig. 11. Differences between the
two measurements are well within the error bars.

FIG. 9. Measured β-beating with respect to the ORM model.

TABLE II. Relative precision of β-functions obtained by differ-
ent methods.

Mean relative precision of βs x [‰] y [‰]

N-BPM 4 4
Amplitude 15 12
ORM 6 4

TABLE III. Measured β-beating between different methods.

Rms β-beating x [‰] y [‰]

N-BPM vs Amplitude 17 12
Amplitude vs ORM model 20 13
N-BPM vs ORM model 11 9
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V. CONCLUSIONS AND OUTLOOK

Three optics measurement methods were used and their
results compared for the ESRF storage ring. A precision of
4‰ for evaluation of β-functions was obtained in both
planes by the N-BPM method, as well as in the vertical
plane from the ORM method. The horizontal plane from
the ORM is slightly worse, reaching a precision of 6‰. The
β-beating measured by N-BPMmethod and ORM are agree
to the 10‰ level, which gives an experimental upper limit
estimate of the accuracy of the methods. Nevertheless, there
is the issue of the time between the two measurements and
possible orbit drifts may account for 5‰. The agreement
between the Amplitude method and the other two tech-
niques is similar in the vertical plane, but factor 2 worse in
the horizontal plane (up to 20‰).
Similar measurements were performed in the ALBA

storage ring [9], which has the same BPM hardware and
software. The BPM measurement noise at ALBA is about

7 μm [26], most probably due to lower level of mechanical
vibrations making the beam more stable. The N-BPM
method reached 8‰ precision in the horizontal plane and
6‰ in the vertical plane [26] as defined in the Introduction.
By counteracting the effect of oscillation damping and by
using smaller kick amplitudes, as it is done here, most
probably ALBA measurement precisions could be further
improved.
Nevertheless, the 4‰ precision of the N-BPM method is

expected to be limited to optics with low decoherence only,
while the ORM method performance is less affected for
optics with larger chromaticity and amplitude-dependent
detuning. The quick decoherence of TbT BPM data can be
overcome by replacing pulsed magnets (kickers) as source
of excitation with AC-Dipoles [27], or shakers [28]. The
beam is excited every turn (undergoing the forced oscil-
lation), this way arbitrary transverse oscillation amplitudes
are maintained for arbitrary number of turns independently
of the optics. The induced forced oscillation would allow
for thousands of exploitable turns at sufficiently low
amplitude. The AC-Dipole has a variety of applications
[22,29–32], however a detailed systematic study on the
interplay between such excitation, radiation damping, and
diffusion is still missing. The applicability of such device in
the realm of lepton machines still needs to be assessed.
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