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Abstract Decadal to multidecadal variations in sea level extremes unrelated to mean sea level changes
have been investigated using long tide gauge records distributed worldwide. A state space approach has
been applied that provides robust solutions and uncertainties of the time evolving characteristics of
extremes, allowing for data gaps and uneven sampling, both common features of historical sea level time
series. Two different models have been formulated for the intensity and for the occurrence of extreme sea
level events and have been applied independently to each tide gauge record. Our results reveal two key
findings: first, the intensity and the frequency of occurrence of extreme sea levels unrelated to mean sea
level vary coherently on decadal scales in most of the sites examined (63 out of 77) and, second, extreme
sea level changes are regionally consistent, thus pointing toward a common large-scale forcing. This vari-
ability of extremes associated with climate drivers should be considered in the framework of climate change
studies.

1. Introduction

Extreme sea levels resulting from the combined effects of mean sea level (MSL), tidal oscillations, and storm
surges are a serious potential threat for coastal environments and assets. Changing climatic and topo-
graphic conditions may alter one or more of these contributions to extreme sea levels, thus leading to
increased or decreased coastal vulnerability at the seaside. MSL varies in a wide range of spatiotemporal
scales due to ocean warming/cooling, water redistribution, and water mass variations associated with
changes in the land ice volume and in land hydrology. There is scientific consensus on the rise of MSL since
the beginning of the twentieth century [Church and White, 2011; Jevrejeva et al., 2008; Hay et al., 2015] at
both global and regional scales, as a consequence of an increased ocean warming and enhanced land-
based ice melting. In some regions, the increase in MSL may induce significant changes in tidal ranges as
well [Arns et al., 2015; Mawdsley et al., 2015]. Conversely, long-term changes in storm surges, which are asso-
ciated with changes in the intensity, occurrence, and paths of storms and low-pressure systems, are more
unclear [e.g., Von Storch, 2014; Dangendorf et al., 2014]. Indeed, the IPCC AR5 [Church et al., 2013] establishes
only ‘‘low confidence’’ in the long-term trends for these phenomena.

The uncertainty in long-term variability of sea level extremes is partly due to the inherent definition of an
extreme as a rare event; the number of extreme events is small (typically a few every year), and this hinders
our ability to compute robust statistics on their temporal distribution. Also, remarkable is the scarcity of
high-frequency sea level observations, especially when long time series are concerned. The relatively low
number of such long records is a constraint for the study of the spatial distribution of changes in extreme
events. Nevertheless, long and good quality sea level time series with high-frequency (hourly) sampling do
exist and have been explored in earlier works. Global studies have been carried out, for example, by Men�en-
dez and Woodworth [2010] who investigated changes in extremes in recent decades using more than 250
tide gauge records, and Merrifield et al. [2013] who used 145 good quality stations longer than 10 years to
estimate the contributing factors to high waters. Many other works have a more regional or even local
focus, mostly because of the geographical variability of extreme sea levels, especially when they are consid-
ered in combination with MSL and tides, and sometimes also due to the availability of particular series of
data. Examples of recent regional studies are Marcos et al. [2009] in Southern Europe; Thompson et al.
[2013], Ezer and Atkinson [2014], and Wahl and Chambers [2015] along the U.S. coasts; McInnes et al. [2009]
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and Haigh et al. [2014] in Australia; examples of local studies are Woodworth and Blackman [2002] in Liver-
pool, Talke et al. [2014] in New York, and Dangendorf et al. [2014] in Cuxhaven, among many others.

Extreme sea levels are characterized by a strong nonstationary nature. There are different approaches to
address nonstationarity in extremes: some authors have used parametric methods that assume statistical
distributions of sea level extremes varying as linear trends and/or following determined climate proxies
[Men�endez and Woodworth, 2010; Letetrel et al., 2010; Marcos et al., 2011; Cid et al., 2015]. Other works are
based on nonparametric approximations that analyze changes in extremes using sliding time windows
[Mudersbach and Jensen, 2010; Talke et al., 2014; Wahl and Chambers, 2015]. In the same line, Butler et al.
[2007] adopted a locally varying model for the parameters of the distribution. It must be noted that in all
these cases a priori constraints are imposed on the way the extremes vary, either because they must follow
a given temporal pattern or because the size of the time window conditions the temporal scale of variabili-
ty. Furthermore, these methods rely on Maximum Likelihood Estimation (MLE) to adjust the observed
empirical distribution of extreme values to a theoretical one, typically Generalized Extreme Value (GEV) or
Generalized Pareto Distribution (GPD). However, the convergence of MLE is not necessarily ensured, espe-
cially when only a few measurements are available. In order to avoid this limitation, we have chosen to use
state space models for analyzing changes in both the intensity and the frequency of occurrence of extreme
sea levels. The major advantages of this methodology, besides that no assumptions are made regarding the
temporal evolution of the extremes, are that uneven data sampling and data gaps are allowed in the time
series and that estimates at each time step are derived using all observations available.

Earlier studies have reported long-term changes in extremes that are in most cases driven by MSL variations
or changes in tidal constituents [Zhang et al., 2000; Woodworth and Blackman, 2004; Marcos et al., 2009;
Men�endez and Woodworth, 2010; Weisse et al., 2014]. That is, linear trends on the storm surge component
are generally nonsignificant. This does not mean that variability does not exist in this contribution, but
rather that a linear model is not suitable to describe it. This fact calls for less limited methods to determine
the time evolution of the rate of sea level rise than just the fitting of linear and quadratic curves to long
time spans of observations. Our purpose here is to examine and describe the observed spatial and temporal
variations in both the intensity and the frequency of sea level extremes that are unrelated to MSL changes
and tides. To do so, we will base our analyses on long and high-frequency tide gauge measurements cover-
ing most regions of the world. We concentrate our assessment on the variability of the storm surge compo-
nent of extreme sea levels, which, for simplicity, throughout this paper, will be referred to as sea level
extreme.

In the following, we describe the data set we use to derive the series of extremes at the tide gauge sites
(section 2). Section 3 is devoted to the explanation of the methods used, paying special attention to
the state space models that have been applied in the context of extremes. The results are presented for
the intensity (section 4) and frequency (section 5) of sea level extremes, followed by a general discussion
in section 6. Finally, some concluding remarks summarizing the most important findings are provided in
section 7.

2. Sea Level Tide Gauge Records

Hourly sea level observations compiled in the Global Extreme Sea Level Analysis (GESLA) tide gauge data
set [Men�endez and Woodworth, 2010] have been used. This data set consists of 675 stations of variable qual-
ity and length, obtained from the international databases at the University of Hawaii Sea Level Center and
the Global Sea Level Observing System, and complemented with additional observations from national
data providers. Two more stations not included in GESLA were added: Marseille time series, recently recov-
ered, analyzed, and distributed [Woppelmann et al., 2014] and Cuxhaven [Dangendorf et al., 2014]. Those sta-
tions that were available at the international databases were updated with the most recent years of
observations. We initially selected the time series with at least 50 years of data and 70% of completeness,
resulting in 122 stations.

Tidal oscillations were removed from each of this initial set of time series using the matlab UTide software
[Codiga, 2011] applied to the entire time series. One of the advantages of this package with respect to other
freely available utilities is that it allows for unevenly distributed temporal sampling in the sea level records.
This is a rather important issue when analyzing long time series, as it is common to find time shifts and
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changes in the internal clock of the instrument that would not be accounted for otherwise. Nevertheless, it
must be remarked that tidal residuals (i.e., observed sea level minus the tidal components) often contain
remaining tidal signals, indicating that the timing of the observations was not perfectly estimated in the his-
torical records. This may represent a shortcoming, especially in regions where tidal oscillations are much
larger than the storm surges. Tidal residuals for each record were then visually inspected in order to detect
and remove isolated spikes and unrealistic jumps. In some tide gauge stations from the Pacific Ocean, there
were clear signatures of tsunamis; although real sea level extremes, these were removed since our focus is
on storm surges. There were tide gauge records for which the storm surges were indistinguishable from the
residual tides (Balboa station is an example of large tides of �5 m and small surges of only a few cm) and
therefore these were withdrawn from our analysis. The final set resulted in 77 tide gauge stations for which
we could reliably compute the storm surge component. Their spatial distribution is mapped in Figure 1 and
they are listed in Table 1 together with their location and period of operation. There is a geographical bias
of the tide gauge stations, with the majority of them being located along the European and North American
coasts. The bias is not the result of our stringent selection criteria, but rather related to the limitation of the
historical sea level data set [Holgate et al., 2013].

3. Methods

Hourly tidal residuals were deseasoned by removing the mean annual and semiannual components esti-
mated by the means of a harmonic analysis. As our focus is on changes in storminess that are unrelated to
MSL variations, we have also removed this contribution. To do so, MSL at each station was computed apply-
ing a Butterworth low-passed filter of order 2 and 1 year cutoff period to the detided and deseasoned time
series. Hourly surge records were built by removing the MSL signal from the detided and deseasoned time
series and were then used to generate the two complementary data sets described below.

The first data set is aimed at representing the changes in the intensity of the extreme sea levels. It consists
of selecting the five highest values per year for each hourly surge record. To ensure the independence of
events, a separation of at least 72 h between two successive extremes was imposed. Years were defined as
starting on 1 April in order to avoid splitting either boreal or austral winters into subsequent blocks. This is
especially relevant for stations located at mid and high latitudes, for which extreme sea level episodes

Figure 1. Map with the location of tide gauge stations.
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mostly occur during the winter season
[Men�endez and Woodworth, 2010]. Only
those years with at least 7 months of
data were considered in the analyses.

The second data set accounts for
changes in the occurrence of extreme
sea level events. It was constructed
selecting the number of events per year
over a given threshold. For this purpose,
three different thresholds were used,
namely 99th, 99.5th, and 99.9th percen-
tiles computed over the entire period of
the record, representing from moderate
to strong episodes. The same event-
independence criterion as in the first
data set was applied.

In the following, we use the state space
approach for extreme sea level time
series defining suitable models for each
of the two data sets. The state space
model of a continuous-time dynamic
system is a useful framework for treating
complex physical problems in the time
domain defined by a first-order differen-
tial equation and a relation between the
observations and the unobserved states.
The first-order differential equation is
called the state equation and is generally
written as:

_h5G h; tð Þ1x; x � N d 0;W tð Þð Þ (1)

and the relationship between the obser-
vations and states is the observation
equation:

y tð Þ5F h; tð Þ1m; m � Nm 0; V tð Þð Þ (2)

where y(t) are the observations at time, h
are the unobserved states, and v and w
are zero mean Gaussian errors with
covariance matrices V and W, respec-
tively. In order to deal with a tractable
problem, usually functions F and G are
discretized and the differential equation
in (1) is rewritten as a difference equa-
tion according to:

ht115Gt htð Þ1 xt; xt � N d 0;Wtð Þ (3)

yt5Ft htð Þ1 tt; tt � Nm 0; Vtð Þ (4)

In general, our goal will be to estimate
the posterior probability density func-
tion of the state h given all observations
p(ht|y1:n), which is provided by the

Table 1. Tide Gauge Data Set, Location, and Period of Operation

Name Latitude (8N) Longitude (8E) Period

Marseille 43.2790 5.3540 1849–2012
Ceuta 35.9000 25.3167 1944–2010
Brest 48.3830 24.5000 1846–2011
Newlyn 50.1000 25.5400 1915–2009
Milfordhaven 51.7023 25.0143 1953–2006
Dover 51.1144 1.3225 1934–2006
Sheerness 51.4431 0.7500 1952–2006
Immingham 53.6329 20.1869 1953–2006
North Shields 55.0074 21.4398 1946–2006
Cuxhaven 53.8667 8.7167 1918–2014
Esbjerg 55.4667 8.4333 1950–2001
Smogen 58.3667 11.2167 1910–2008
Varberg 57.1000 12.2167 1886–1982
Hornbaek 56.1000 12.4667 1891–2011
Klagshamn 55.5167 12.9000 1929–2008
Gedser 54.5667 11.9333 1891–2011
Ystad 55.4167 13.8167 1886–1987
Kungsholmsfort 56.1000 15.5833 1886–2008
Olandsnorraudde 57.3667 17.1000 1886–2008
Landsort 58.7500 17.8667 1886–2006
Stockholm 59.3200 18.0800 1889–2011
Draghallan 62.3333 17.4667 1898–1966
Ratan 64.0000 20.9167 1891–2008
Vardo 70.3333 31.1000 1947–2003
St. Johns 47.5667 252.7167 1935–2008
Charlottetown 46.2333 263.1167 1911–2008
Halifax 44.6800 263.6100 1920–2010
Eastport 44.9100 266.9900 1929–2011
Portland 43.6600 270.2500 1910–2011
Boston 42.3500 271.0500 1921–2011
Newport 41.5100 271.3330 1930–2011
New London 41.3550 272.0867 1938–2012
New York 40.7000 274.0200 1920–2011
Atlantic City 39.3500 274.4200 1911–2011
Baltimore 39.2667 276.5833 1902–2006
Charleston 32.7820 279.9250 1921–2011
Fort Pulaski 32.0330 280.9020 1935–2011
Mayport 30.3950 281.4317 1928–2000
Key West 24.5530 281.8080 1913–2011
St. Petersburg 27.7600 282.6267 1946–2012
Pensacola 30.4030 287.2120 1923–2011
Galveston 29.3300 294.7400 1904–2011
Cristobal 9.3670 279.8830 1907–2011
Cananeia 225.0167 247.9250 1954–2005
Buenos Aires 234.6667 258.5000 1905–1961
Antofagasta 223.6500 270.4000 1945–2002
San Diego 32.7130 2117.1730 1906–2011
La Jolla 32.8670 2117.2500 1924–2011
Los Angeles 33.7170 2118.2720 1923–2011
San Francisco 37.8000 2122.4670 1897–2011
Crescent City 41.7450 2124.1833 1933–2012
Astoria 46.2200 2123.7670 1925–2011
Neah Bay 48.3683 2124.6167 1934–2012
Tofino 49.1540 2125.9130 1909–2008
Victoria 48.4200 2123.3700 1909–2011
Seattle 47.6000 2122.3333 1901–2006
Vancouver 49.2870 2123.1100 1909–2008
Point Atkinson 49.3370 2123.2530 1914–2008
Campbell River 50.0420 2125.2470 1967–2008
Queen Charlotte City 53.2520 2132.0720 1957–2008
Prince Rupert 54.3170 2130.3240 1908–2008
Ketchikan 55.3333 2131.6250 1918–2012
Sitka 57.0517 2135.3417 1938–2012
Adak 51.8633 2176.6317 1950–2012
Hilo 19.7333 2155.0667 1927–2012
Honolulu 21.3000 2157.8600 1905–2011
Nawiliwili Bay 21.9667 2159.3500 1954–2012
Johnston Is. 16.7383 2169.5300 1947–2012
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Bayesian methodology. When analyzing
climatic time series, there are two major
advantages of space state modeling:
first, no assumptions are made regarding
the temporal variability of the observa-
tions and, second, uneven data sampling
and gaps in the time series are allowed
(although the price to pay is an increase
in the uncertainties).

A well-known model is the Gaussian
state space model with continuous
states and discrete time (GSSM) that cor-

responds to the case in which G and F are linear operators. Then equations (3) and (4) adopt in this case the
following form:

ht115Gtht 1 xt; xt � N d 0;Wtð Þ (5)

yt5Ftht 1 tt; tt � Nm 0; Vtð Þ (6)

The GSSM will be completely described by Gt, Ft, Wt, Vt, and the initial state value h0. Under these assump-
tions, the Kalman Filter method [Kalman, 1960] provides efficient recursive formulas for calculating the pos-
terior probability density functions of the state ht given the history of observations up to the time step t
p(ht|y1:t), which are also Gaussian. The Kalman Filter uses past and current observations to predict the cur-
rent states; an extension of this is the Kalman Smoother, which uses all available observations at all times to
generate the posterior density given all observations p(ht|y1:n). Despite its simplicity, this formulation has
many applications in real environmental problems [e.g., Lee and Berger, 2003; Kurtenbach et al., 2012; Laine
et al., 2014]. However, all the strength of this methodology relies on the linear-Gaussian properties that do
not always hold, especially when extreme events are concerned.

Our aim is to determine the latent nonstationary time evolution of the intensity and occurrence of sea level
extremes. To do so, we will assume the following state equations:

at115at 1 bt 1 xt;1; xt;1 � N 0;Wtð Þ (7)

bt115bt 1 xt;2; xt;2 � N 0;Wtð Þ (8)

That is, the time series is changing as a Markovian local level model at affected by bt which is regarded as
the velocity of those changes. Equations (7) and (8) are related to equation (5) by:

ht5
at

bt

 !
; Gt5

1 1

0 1

 !
:

The statistical properties of the data of each set of observations considered here are clearly differentiated
and therefore the observation equation (6) will take different forms in each case according to:

p ytjhtð Þ5p ytjGt at btð ÞT
� �

(9)

While the highest extremes per year follow a Generalized Extreme Value (GEV) Distribution, the number of
extremes per year can be represented by Poisson distributions. We have therefore analyzed the two data
sets separately, as described below.

3.1. Space State Model of Extremes Intensity
When assessing the changes in the intensity of the extremes, the observation equation (9) is defined as:

ytjlt � GEV lt; r; fð Þ (10)

That is, the intensities of the extremes follow a GEV distribution with location lt, scale r, and shape f
parameters. Among these three parameters, only the location, which controls the magnitude of the
extremes, is considered to be time varying. The shape parameter has been shown to remain essentially

Table 1. (continued)

Name Latitude (8N) Longitude (8E) Period

Midway Is. 28.2167 2177.3667 1947–2012
Wake Is. 19.2833 166.6167 1950–2012
Pago Pago 214.2833 2170.6833 1948–2012
Wellington Harbour 241.2833 174.7833 1944–2013
Fort Denison 233.8550 151.2256 1914–2004
Port Adelaide_inner 234.9258 138.5997 1933–1999
Port Adelaide_outer 234.9258 138.5997 1940–2004
Port Pirie 233.1770 138.0102 1941–2004
Fremantle 232.0531 115.7459 1897–2004
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constant [Davison and Ramesh, 2000]. Some tests were carried out allowing temporal variations in the
scale parameter, but these showed that it did not change more than 3% with respect to its averaged
value and in turn increased significantly the confidence intervals; therefore, it was kept constant too. The
state equations are defined thus for the location parameter, that is, in equation (7), we define at5lt . Here
the location parameter is modeled by means of a nearly constant velocity model, with the 2 3 2 covari-
ance matrix defined as:

Wt5q
Dt3=3 Dt2=2

Dt2=2 Dt

 !
(11)

Note that the observations yt here are five-variate observations in time, corresponding to the five extremes
per year of the data set.

Once the probability distribution function of the location parameter is known, the results can be expressed
in terms of the return levels for a given period. The M-year return levels, defined as the probability of a
given value to be exceeded once every M years, at each time step t are computed as:

RL5lt2
r
1

12 2log 12
1

5M

� �� �21� �
:

Therefore, return levels will follow the same temporal variability as the location parameter.

As commented above, our aim here is to make inferences about the states conditional on all observations.
Note, however, that the scale factor q of the error covariance matrix Wt in equation (11) is unknown and
thus needs to be determined. Note also that our observation equation is not Gaussian and thus the Kal-
man Filter cannot be used to solve the model. Here we opt to use a novel technique named particle Mar-
kov chain Monte Carlo (PMCMC) sampler to solve our state space model. A PMCMC sampler is a method
that combines a particle filter with a Markov chain Monte Carlo sampler to make statistical inferences
[Andrieu et al., 2010], and is especially fitted to address the problem of simulating state trajectories in
state space models. One of the key features of the PMCMC is that it samples directly from the joint poste-
rior density of the states and the parameters. In our case, this means that the PMCMC allows us to sample
from p(ht,q|y1:n), which implies that the scale factor q is updated together with the states. In particular,
here we use a state-of-the-art PMCMC sampler referred to as particle Gibbs with ancestor sampling
(PGAS) [Lindsten et al., 2014]. PGAS shows good mixing of the Markov kernel as compared to other parti-
cle Gibbs sampler enabling us to use a smaller number of particles and thus to reduce the computational
cost of the algorithm.

The PGAS algorithm that we use is the same as in section 5.1 (algorithm 3) of Lindsten et al. [2014]. Here we
use 500 particles and the number of iterations for the MCMC is set to 20,000 with a burning period of 2000.
Here we use multinomial resampling as the resampling scheme. Finally, we ascribe an inverse Wishart prior
distribution (one dimensional) to the parameter q. The inverse Wishart distribution is convenient because it
is a conjugate prior for the likelihood function in our state equation, making it easy to sample from the pos-
terior p(q|h1:n,y1:n) in our PGAS implementation.

In order to assess the skill of the PGAS method, we have tested its performance on synthetic time series in
which the location parameter has been predefined. We have used random walks to generate two 150 years
long time series of the location parameter, showing three and one oscillations, respectively (black curves in
Figure 2). For each case, a GEV distribution with realistic scale and shape parameters was used to generate
100 time series of five extremes per year. Each of these series was then analyzed using the PGAS algorithm
to estimate the time-varying location parameter. The comparisons between the true predefined location
parameter and the estimations for the 100 synthetic time series are plotted in Figure 2, when the five
extremes per years were used in the model (red curves). The 95% probability envelopes are also plotted for
the time series having the highest correlation with the true values. The fitting between the calculated and
the true location parameters is very satisfactory in both cases with very little dispersion in the 100 realiza-
tions. Note also that most curves fall within the 95% confidence interval, indicating that the estimated confi-
dence intervals provide a realistic measure of the robustness of our estimates. Also, the correspondence
among the estimated curves is consistent, showing average correlations of 0.87 and 0.81, respectively. For
completeness, we have also computed the location parameters applying the PGAS method to one extreme
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per year. Results (supporting information
Figure S1) show weaker correspondence
and consequently lower correlations of
0.59 and 0.61. Therefore, in our analyses,
we have chosen five extremes per year.

3.2. Space State Model of Extremes
Occurrence
Occurrences of extreme events follow a
Poisson distribution, where the Poisson
counts are assumed to be conditionally
independent over time given the latent
process. Therefore, the observational den-
sity in equation (9) is defined by:

ytj#t � Poisson ut � e#t
� 	

(12)

where ut is the exposure, namely the popu-
lation depending on time, which in our
case is constant and has no impact on the
computations (ut 5 1). And #t5log ktð Þ,
with kt being the intensity value in the
Poisson distribution, i.e., the mean number
of extreme events per unit of time. In other
words, ytj#tð Þ5ut e#t 5utkt . The state equa-
tion (7) is defined in this case for the inten-
sity value as:

#t 5 at1�t; �t � N 0; r2
�

� 	
with et being an additional white noise
component which captures the extra varia-
tion of the series. Furthermore, in this case,

the errors wt,i in equations (7) and (8) are uncorrelated normal distributions, implying that the covariance
matrix Wt is diagonal and takes the form:

Wt5
r2

a 0

0 0

 !
:

The Poisson state space model is solved by using the methodology applied to the exponential family of
state space models. The algorithm used here is the KFAS (Kalman Filter and Smoother for Exponential
Family State Space Models) algorithm developed by Helske [2015] and available at http://cran.r-project.org/
package5KFAS. The Poisson model is approximated by a Gaussian model by replacing the observations by
pseudoobservations using the log-link function #t5log ktð Þ. Estimates for #t are computed by using Kalman
filtering and smoothing from the approximating Gaussian model, based on the simulation smoothing algo-
rithm by Durbin and Koopman [2002].

In order to ensure the suitability of the model, the standardized recursive residuals were computed for each
time series. These were checked to have approximately zero mean and unit variance as well as nonsignifi-
cant autocorrelations, which were found to be true for all considered time series.

4. Changes in Extreme Intensity

Results of the PGAS algorithm are illustrated in Figure 3 for a selected set of tide gauge stations representa-
tive of different regions. Supporting information Figure S2 contains the results for the rest of the stations of
our data set. Changes in the distribution of the location parameter are represented with their 95% probabil-
ity envelope (blue curves). Likewise, changes in 50 years return levels (RL50) that are derived from the time-

Figure 2. Synthetic time series of the location parameter generated with a
random walk (black curves), and estimations of the location parameter
using PGAS for 100 time series (red lines) using five extremes per year.
Shading corresponds to the 95% probability envelopes of series that is most
correlated with the true values.
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Figure 3. Five highest extremes per year (black dots) and their corresponding time-varying location parameter (blue) and 50 years return level (red) with the 95% confidence interval.
Units are in mm.
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varying probability distribution functions are also shown with their 95% probability (red curves). Note that the
PMCMC is able to estimate the parameters of the distribution even in absence of observations, although with
larger confidence intervals. The results for each individual station highlight the nonstationary nature of the
extreme distributions, with changes that are often above their 95% uncertainty ranges. Decadal variability
becomes evident in most stations, as in San Francisco or Marseille (Figure 3), two of the longest high-frequency
tide gauge records. Gradual centennial trends are, on the contrary, more difficult to identify and can be
detected in only a few locations. For instance, this is the case at Honolulu and Cananeia stations (Figure 3).

Values of RL50 shown in Figure 3 and supporting information Figure S2 have very different ranges, from
less than 40 cm in Honolulu, La Jolla, Nawiliwili Bay, and Pago Pago to more than 4 m in Cuxhaven. The
amplitudes of the extreme surges are largely controlled by the intensity of the storms hitting the coast and
by morphological features such as continental shelves. Highest extremes are found at high-latitude stations,
as in the North and the Baltic Seas, in agreement with previous studies that attributed sea level extreme
intensity with atmospheric activity (e.g., Dangendorf et al. [2013], in the German Bight; Merrifield et al.
[2013], globally). However, atmospheric storminess is not the only element that impacts on the extreme
intensity, as demonstrated the fact that nearby stations that are subject to the same atmospheric forcing
may have significantly different averaged return levels. Other factors, such as local bathymetry and orienta-
tion also play a role in the amplitude of the surges, as well as the shape of the ocean in front of the coast
(i.e., in shallow shelf seas surges become much higher than in open ocean regions).

Given the large differences of RL50 among stations, even at the regional scale, the consistency of the
observed temporal variability in extreme intensity is explored on the basis of the changes in RL50 relative
to the mean value at each station. The results are plotted in Figure 4, in which stations have been sorted fol-
lowing the coastlines (the same order as in Table 1, see also Figure 5 for approximate location). Once the
tide gauge stations are ordered regionally, coherent decadal to multidecadal variations of extreme inten-
sities become evident. For example, around the mid-twentieth century a decrease in extreme intensity (in
RL50) is observed in northern Europe, whereas an increase is found in Southern Europe. Interestingly, during
the same period, positive values are also observed along the North American coasts in the Atlantic and the
Pacific. From Figure 3, it is evident that a linear trend is not able to describe the long-term behavior in the
intensity of sea level extremes. This is further demonstrated by computing the averaged changes for the
entire period, plotted a squares in Figure 4.

A complementary way of highlighting the decadal variability in sea level extremes is presented in Figure 5.
Averaged changes in RL50 for 20 year periods have been computed at each station by fitting a linear trend
for the selected period and multiplying the slope by the period length. Three periods have been chosen,
based on the variability shown in Figure 4, namely 1940–1960, 1970–1990, and 1990–2010. Only those sta-
tions with at least 15 years of valid data during the corresponding period have been included. According to
the maps shown in Figure 5, 1990–2010 has been a period of enhanced storminess in southern Europe and
the North American coasts, when compared to previous decades; however, this decadal increase in stormi-
ness is comparable to the changes recorded during the mid-twentieth century in the same regions.

Our results contrast with some earlier works. For example, Mudersbach and Jensen [2010] analyzed the tide
gauge in Cuxhaven using annual maxima fitted to a GEV distribution with time-varying location and scale
parameters. They found relatively large values of the location parameter prior to 1950 and recently. How-
ever, they did not remove MSL, which has been shown to drive to a large extent the magnitude of extremes
[Marcos et al., 2009; Men�endez and Woodworth, 2010], explaining thus the discrepancies with our results.
Butler et al. [2007] analyzed decadal variations in storm surges in the North Sea. At Dover station, their
results show a distinct behavior in terms of return level variability. However, they used the 20 largest values
per year, thus focusing on relatively moderate extreme events. Furthermore, they used a likelihood
approach, which as explained below may also impact the results. Talke et al. [2014] analyzed a long recon-
structed sea level time series at New York and obtained the same evolution as that depicted by our results.
In a recent paper, Wahl and Chambers [2015] analyzed extreme sea levels unrelated to MSL along the U.S.
coastlines. We found similar temporal evolution in return levels in some of the common stations (their
Figure 8), such as Key West, Mayport, Boston, and Portland; but we also found very distinct behavior in
other stations such as Victoria and Astoria. There are three major differences between our approach and
that followed by Wahl and Chambers [2015]: the separation of their analyses into seasons, the number of
extremes per year selected, and the methodology applied to extract return levels which in their case
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corresponds to a MLE of the GEV parameters for time windows of 37 years. The first factor may be relevant
for low-latitude stations, in which seasonal extremes are equally important in summer and winter and they
are originated by different mechanisms. The two latter can be critical. To illustrate this, we analyzed the syn-
thetic series described in section 3.1 using MLE with sliding time windows of 37 years with five and one
extremes per year. The results are shown in supporting information Figure S3 and demonstrate that this
method has limited ability to capture the time-varying changes in the location parameter, especially when
only one extreme per year is considered (supporting information Figures S3c and S3d). Average correlations
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Figure 4. Changes in RL50 relative to their mean values at each tide gauge station. Squares on the right represent the changes in RL50
fitting a linear trend. Units are in mm.
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Figure 5. Averaged changes of RL50 (in mm) at each tide gauge station for the periods quoted. Those stations with less than 15 years for
the selected period are indicated by black dots.
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for the two cases are 0.29 and 0.36 with one extreme per year and 0.44 and 0.59 with five extremes per
year. Results can be satisfactory only when the variations in return levels are longer than the time window
used and the number of extremes is large enough (e.g., supporting information Figure S3b).

5. Changes in Extreme Occurrence

The variability in the occurrence of extremes is shown in Figure 6 for the same selected set of representative
stations as in Figure 3. Results for the rest of locations can be found in the supporting information (Figure
S4). The variations in the number of events per year, together with their 95% confidence bounds are shown
for events exceeding the 99th, 99.5th, and 99.9th percentiles. In the same line as with the changes in inten-
sity, the extreme episodes often present decadal to multidecadal variations in their frequency that are larger
than the associated uncertainties. In order to improve the representation of the decadal variability of the
number of events, the changes are plotted with respect to their average value and the stations have been
sorted regionally in the same manner as in Figure 4. The results for the number of events exceeding the
99.5th percentile are plotted in Figure 7 and reveal, once again, a clear spatial pattern. This spatial structure
moreover matches the pattern obtained with the intensity of extremes (Figure 4), indicating coherent
changes in strength and frequency in sea level extremes. This point will be further discussed in the next sec-
tion. Overall, the picture is the same when the 99th or 99.9th percentiles are used as thresholds, indicating
that in most cases moderate and strong events vary accordingly at decadal time scales. However, there are
exceptions to this rule, especially when the strongest events are concerned, as discussed below.

We have explored the similarities and differences between changes in moderate and strong events using
the frequency of episodes exceeding the 99th, 99.5th, and 99.9th percentiles as resulting from our analysis.
As already shown by Dangendorf et al. [2014] the use of different thresholds may lead to different definition
of extreme sea levels. We found that in 67 tide gauge stations (87% of the total number) the three curves
have correlations higher than 0.8, after detrending. However, if the frequencies of occurrence are approxi-
mated by a linear fit, only 50 stations display the same sign for all three curves. An example of this is the
case of Marseille (Figure 6), where the number of events exceeding the 99.9th percentile progressively
increases (from an average value of 0.7–0.8 events per year during its operation period), whereas the events
exceeding 99th and 99.5th percentiles decrease by a larger amount (from 3.2 to 2.7 extremes per year over
the 99.5th percentile). Another interesting case is San Diego (supporting information Figure S4), where
moderate events exceeding the 99th and 99.5th percentiles present decadal variations with an overall neg-
ative trend enhanced after 1975, while the strongest extremes show a gradual increase in the number of
episodes (from 1 to 1.3 events per year on average).

6. Consistency Between Extreme Intensity and Frequency

Decadal to multidecadal variability in extreme sea levels unrelated to MSL has been found to show coherent
changes in both intensity and frequency. In other words, for the majority of the locations within this study,
when the intensity of extremes increases, so do their probability of occurrence, and vice versa. This common
behavior of the intensity and the frequency of extremes is hinted from Figures 4 and 7, which display coinci-
dent temporal patterns. In order to better characterize these similarities, the correlation coefficients between
the RL50 and the number of events exceeding the 99.5th percentile for each tide gauge station have been
computed and are plotted in Figure 8. Equivalent results are obtained when the other two percentiles are
used as thresholds. For representation purposes, the correlations of those stations exhibiting negative values
(4 out of 77) have been set to zero. The statistical significance of the correlations has been computed follow-
ing Ebisuzaki [1997], a nonparametric method in which a large (10,000 in our case) set of synthetic series is
built from the original one using its Fourier transform with the amplitudes of the Fourier components being
preserved but their phases taking random values. Stations showing significant correlations at the 90% confi-
dence level are filled in Figure 8. As a result, in 63 stations (82% of the total), the correlations between RL50
and the occurrence of extremes are significant at the 90% confidence level, with a mean value of 0.86. When
the same computation is done for the number of extremes exceeding the 99.9th threshold, the number of sta-
tions with significant correlations is 53 (69%), in agreement with the differences in occurrence between mod-
erate and strong events reported above. There is no geographical grouping of stations for which intensity and
frequency of extremes are uncorrelated, indicating that these effects are likely local.
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Figure 6. Extreme occurrences (in numbers per year) above the 99th (black), 99.5th (blue), and 99.9th (red) percentiles and their smoothed curves together with the 95% confidence
intervals.
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7. Multidecadal Changes in Extremes and Climate Indices

An interesting feature of the observed changes in extreme sea levels is the regional consistency that they exhibit
in Figures 4 and 7, when stations are grouped geographically. This evidence suggests that the decadal variability
in extremes is controlled by large-scale atmospheric forcing. This is in line with previous studies with a regional
focus [e.g., Zhang et al., 2000; Sweet and Zervas, 2011; Dangendorf et al., 2014; Wahl and Chambers, 2015]. We
have therefore explored this mechanism seeking relationships between extreme variations and large-scale cli-
mate indices. For simplicity and given the strong link between changes in extreme intensity and frequency, we
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Figure 7. Changes in extreme occurrence over the 99.5th percentile at each tide gauge station relative to the corresponding average value.
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Figure 8. Correlation coefficients between RL50 and smoothed number of events over the 99.5th percentile. Filled squares denote statisti-
cally significant correlations at the 90% confidence limits.
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will focus on the former, that is, on RL50 curves. The climate indices used are listed in Table 2 with indications of
their sources. Indices series, commonly provided on a monthly basis, are first yearly averaged and then
smoothed using a Butterworth low-pass filter of order 2 with a cutoff frequency of 20 years in order to be con-
sistent with slow variations in RL50. To focus on the more robust results, we considered RL50 series with at least
80 years of data, which resulted in 41 tide gauge stations. The statistical significance of the correlations was esti-
mated once again following Ebisuzaki [1997], as described above. The resulting correlations that are significant
at the 90% confidence level are plotted in Figure 9. It is noticeable that significant correlations appear between
stations and indices that describe remote patterns. For example, extremes along the Pacific coast of North Amer-
ica (from San Francisco to Point Atkinson) seem to be correlated with the NAO; also, most of the stations display
significant (although low) correlations with the SAM, even when they are located in high latitudes of the North-
ern Hemisphere. Although actual teleconnections have been reported between remote climate indices even at
decadal time scales [e.g., Li et al., 2015], these features do not necessarily respond to realistic forcing mecha-
nisms, as they can be consequence of using smoothed climate indices that are often significantly correlated to
each other. This is also a reason why only a few of the most relevant climate indices have been included in this
analysis. Thus, it is more likely that Pacific North American stations respond to changes in the PDO, which for
the considered period seems to be in phase with the NAO at multidecadal time scales. In this particular region,
it is worth noting that the northernmost stations, from San Francisco to Point Atkinson, are correlated with the
major climate modes of the Pacific Ocean, namely the PDO and the indices characterizing El Ni~no; however, the
lower-latitude stations, Los Angeles, La Jolla and San Diego, do not show significant correlations with any of the
indices that characterize the climate in the Pacific Ocean. This is in agreement with results shown in Figure 5
that evidence the different evolution of extremes in these southern stations of the U.S. west coast.

The European stations reflect the well-known NAO pattern with its characteristic dipole: negative correlations
in Southern Europe (Marseille in this case) and positive in northern stations, following the same spatial pattern
as the correlations with MSL [e.g., Woolf et al., 2003; Tsimplis et al., 2005; Tsimplis and Shaw, 2008]. The impact
of the NAO on sea level extremes in Europe has already been pointed out in earlier works [e.g., Marcos et al.,
2009; Men�endez and Woodworth, 2010; Cid et al., 2015] and explained by the northward (southward) shift in
the storm tracks when the NAO is in its positive (negative) phase. Notably, the stations along the North Ameri-
can Atlantic coast also display significant and high negative correlations with NAO, unlike MSL in this region.
This was already pointed out by Talke et al. [2014] for the New York tide gauge and by Ezer and Atkinson
[2014] along the U.S. East coast. The substantial match between both sides of the Atlantic Ocean and the link
with the NAO is highlighted in Figure 10, in which RL50 changes with respect to their mean values have been
plotted for Marseille and New York tide gauges, together with the low-pass filtered NAO index (scaled for the
sake of clarity). At multidecadal time scales, sea level extremes in New York and in Marseille follow the same
temporal pattern, controlled by climate variations that in the Atlantic are predominantly described by the
NAO. To further explore this pattern, we have computed the correlations between RL50 in these two stations
and mean sea level atmospheric pressure (MSLPr) obtained from the Twentieth Century Reanalysis [Compo
et al., 2011]. As with the climate indices, the MSLPr at each grid point has been low-pass filtered using a But-
terworth filter with a cutoff frequency of 20 years. The resulting maps are included in Figure 10 (right) and
show a clear dipole pattern in the North Atlantic with negative correlations at low and midlatitudes and posi-
tive at higher latitudes that resembles the spatial fingerprint of the NAO.

The relationships between variations in RL50 and climate indices reveal that the long-term evolution of sea
level extremes is indeed controlled by large-scale climate variations. However, these relations do not iden-
tify the physical mechanisms responsible for such changes. Explaining in detail the driving mechanisms of

Table 2. Selected Climate Indices Used in This Study, Starting Year, and Source

North Atlantic Oscillation (NAO) 1899 https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-
nao-index-pc-based

Atlantic Multidecadal Oscillation (AMO) 1861 http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/AMO/
Arctic Oscillation (AO) 1871 http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/ao20thc.long.data
Southern Oscillation Index (SOI) 1882 http://www.cpc.ncep.noaa.gov/data/indices/
El Ni~no 12 1870 http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino12/
El Ni~no 34 1870 http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino34/
Pacific Decadal Oscillation (PDO) 1900 http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/PDO/
Southern Annular Mode (SAM) 1957 http://www.nerc-bas.ac.uk/icd/gjma/sam.html
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Figure 9. Correlations between climate indices and RL50 at stations longer than 80 years. Only correlations that are significant at the 90%
confidence level are plotted.
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the variability in extremes is not within the scope of the present paper, as it would probably require dedi-
cated studies for different regions that are affected by rather distinct atmospheric and oceanographic
regimes (for instance with more regional indices such as defined in Dangendorf et al. [2014]).

8. Concluding Remarks

In this paper, we have used the largest high-frequency tide gauge sea level record data set available so far
to explore long-term (decadal to multidecadal) changes in extreme episodes of the storm surge compo-
nent. Datum shifts and timing errors are very common in historical sea level records; therefore, a careful
and detailed quality control is unavoidable for them to be useful for extreme studies. Otherwise, there is a
serious risk of identifying fake extremes from tidal residuals, for example. Long and good quality time series
are geographically biased toward the European and North American coasts, reflecting the historical limita-
tions of the worldwide tide gauge data set. Thus, our analyses cover the oceans basin to the extent as possi-
ble, but there is a substantial lack of information especially in the Southern Hemisphere and the Indian
Ocean. This inherent limitation could be overcome using the output of high-frequency storm surge model-
ing. In this case, similar analyses could be carried out for the global coastlines.

Our choice was to use state space models to unmask the long-term behavior of time series of sea level
extremes. This methodology is more complex than the most extended Maximum Likelihood Estimator used
to fit an empirical distribution to a theoretical distribution describing the extremes; however, it is also more
robust as it ensures convergence of the solutions and it also allows data gaps in the observations, something
usual in historical time series. Besides its robustness, a major motivation of using this approach is that it avoids
constraining the temporal variability of extremes (for example, assuming proxies, or linear or parabolic adjust-
ments). Another major advantage over other simpler approaches, such as those that use shifting time win-
dows, is that estimates of the state of the system at each time step are based on all observations available
since our method samples from the joint posterior density of the states and the parameters conditioned on
all observations. Also, the resulting time series has the same length of the original data set, as no data are lost
in presence of gaps or at the beginning/end of the record, although uncertainty increases due to the use of

Figure 10. (left) Variations in RL50 (wrt the corresponding mean value) in Marseille and New York tide gauges and the low-pass filtered
NAO index. (right) Correlations between RL50 in (top) Marseille and (bottom) New York with low-pass filtered mean sea level pressure.
White contours denote correlations of 0.5 and the locations of the tide gauges are represented with a green dot.
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less information. Based on these models, we have presented evidences of decadal to multidecadal variations
in sea level extremes that are unrelated to MSL changes. We note here that, at some stations both extratropi-
cal and tropical cyclones affect extreme sea levels, so the selection of yearly extreme events may comprise
samples associated with these two different forcing mechanisms and their statistics would be probably better
represented by distinct distribution functions. We proved that, in almost all cases studied (82%), the intensity
and the frequency of extreme episodes vary accordingly, implying that in epochs of stronger events these are
also more likely to occur. This observed variability cannot, in general, be described by a simple linear trend
and thus the question of whether the extreme sea level events associated with storminess are increasing or
not becomes very difficult to address without knowledge of the causes of this variability.

In any extreme analysis, a decision has to be made regarding the definition of the extreme events, either in the
form of the number of extremes (when a GEV distribution is used) or of a threshold value (if a Generalized Par-
eto Distribution is preferred). In our case, we chose five extremes per year, since our PGAS simulations demon-
strated that uncertainties with a smaller number could be, in some cases, too large to drive any conclusion on
the temporal variability of the extremes. However, it must be mentioned that most extreme events (e.g., yearly
maxima) may be associated to weather patterns that are different from those leading to moderate extremes.
This is a point that should be addressed locally and used to define the level of uncertainty allowed in each case.

Based on our approach, we conclude that there exists regional coherence in the variability of sea level extremes,
which points toward large-scale climate drivers of the long-term changes in storminess. This coherency is
observed in both the intensity and the occurrence of extremes, thus reinforcing the reliability of the state space
models in this context, provided that we applied two models to two differentiated sets of data. The physical
mechanisms responsible for the observed long-term variations in extremes at regional scales should be further
explored on a regional basis, paying attention to the characteristic atmospheric and oceanic regimes in each
area. This would allow exploring long-term gradual changes associated with external forcing factors and ulti-
mately would facilitate the detection of external signals in extreme events, something very relevant in a climate
change context that may impact the intensity and the frequency of extreme episodes [Church et al., 2013].
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