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Smoothed particle hydrodynamics (SPH) is a mesh-free numerical method which leads to an N-body problem-like. This                

method was specifically created for astrophysical simulations and has been proved to be useful for certain hydrodynamical                 
problems. In this article SPH is introduced, and implemented for solving the free-fall collapse of a planet, which is an ideal                     
problem for validation because its analytical solution is known. In order to compare with a mesh method, the finite difference                    
method (FDM) is also implemented. Although FDM allows to implement restrictions that affect the symmetry of the                 
problem, resulting in better solutions, discretization with SPH is less restrictive and it is straightforward to formulate more                  
complex problems. 
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I. INTRODUCTION 
Computational simulations allow to check whether a       

physical model evolves as desired or could even lead to the           
prediction of unknown phenomena under conditions that       
are not easily reachable with experiments. Although we can         
see the model as the set of laws or mathematical          
expressions that affect the different magnitudes, as well as         
the fixed or initial conditions, whether we treat the different          
parts as a mesh or in some other way can have different            
effects on the results of our simulation. 

For instance, the finite element method (FEM) subdivides        
the large system into smaller parts using a mesh. In the           
finite difference method (FDM) derivatives are      
approximated by the discrete ones. An alternative approach,        
which will be discussed and implemented in this article,         
will be the smoothed particle hydrodynamics (SPH).  

SPH leads to a N-body problem-like. Instead of a dense          
body, the whole object is divided into smaller particles,         
which are independent with each other but subject to         
interactions with the other particles. This approach allows        
the different parts of the body to freely move, which cannot           
be done in a mesh-like formulation. This is the reason why           
SPH is useful for certain hydrodynamical problems, thus        
resulting interesting for astrophysical simulations such as       
star formation or the evolution of a planet. SPH is also           
often used in movies in order to simulate the movement of           
fluids or even solid parts of the body such as hair.  

II. SMOOTHED PARTICLE 
HYDRODYNAMICS 

In order to properly introduce more complex SPH        
formulations, let’s consider first a simple problem. A bunch         
of particles form a fluid with no internal viscosity.         

Therefore, the equations describing the movement of the        
particles in the absence of external forces would be [​1​]:  

(2.1) 

              (2.2) 
 
where is the vector of the position of the particle           
number i, is its velocity, the density, the pressure            
and the gravitational potential. Equation (2.1) is the         
definition of velocity and equation (2.2) obtains the        
acceleration through Newton’s second law. The position       
and velocity are the variables that are going to be obtained           
through an integration method such as Euler or        
Runge-Kutta. Instead of only considering point-like      
particles, it is better to consider a weight function         
(normalised with respect the position), called a kernel        

, which will be useful for obtaining average values         
in space. The density at position  of the particle   will be 

                (2.3) 
where is the mass of the particle, its position and             
the smoothing length, which is a measure of how broad is           
the distribution of mass and the range of effect of forces           
like pressure. The kernel is a Dirac delta at the limit: 

                (2.4) 
Although the value of may be set constant, it makes           

more sense to relate it with the average density of the entire            
body. If density increases, particles tend to be closer, so it is            
better to restrict more the domain at which the particle          
directly affects ​the others. Defining a constant , it is          
common to use the law in (2.5) or a similar one.  
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                                                              (2.5) 
The average density is straightforwardly calculated by       
averaging the density of the particles. Although the        
exponential kernel is the most extended one, the used in this           
article is a different one, because it produced better results          
and was reported to be successfully used in similar         
simulations [​1​].  

 

 (2.6) 
The kernel allows to calculate physical magnitudes       

associated with the fluid. Using density-weighted      
interpolations, a good approximation of a magnitude        
can be obtained: 

                (2.7) 
For this example, this property shows how to obtain the          

gradient of pressure: 

        (2.8) 

 

FIG. 1. Evolution of a system with only two particles.          
Although intuition tells that the two particles should get         
together and bound, a gravitational force inversely       
proportional to the position makes them reach very high         
velocities, thus separating them.  

Although it strictly is not part of the SPH formulation,          
the only thing left is to use a method for calculating the            
acceleration due to the gravitational force ( ). The        
typical Newtonian gravitational force formula may      
introduce some distortion to the system since each couple         

of particles coming together ends with both of them         
escaping with infinite velocity on the opposite side (see         
Figure 1) due to the fact that the gravitational force is           
proportional to the inverse of the squared distance. 

This problem has been overcome in the following        
simulations adopting a spline-softened form of the       
potential. This exact form was first introduced by Gingold         
and Monaghan [​2​]: 

(2.9) 
with , the gravitational constant (6.67259·      

), and the gravitational smoothing10−8       
length. The key of this approximation is that it limits the           
cubic dependence of the inverse of the position to a region           
outside the sphere of radius ​[3]​. Gravitational force         
appears to be softened in the interior of that sphere,          
controlled by , eluding the pole of this force.  

III. FREE-FALL COLLAPSE OF A 
PLANET 

The free-fall collapse of a planet has been tested using           
both methods (FDM and SPH). The planet’s initial        
conditions were set to imitate the planet Jupiter, but         
assuming homogeneous density and spherical symmetry. 
  The two equations of the problem are the following: 

                               (3.1) 

                              (3.2) 
where is the density, the mass, the position and             
the velocity. The first equation stands for conservation of         
mass and the second one for the second Newton law. It can            
be proved that the evolution of the radius with respect to            
the time , starting with an initial radius at and            
initial density  has the following analytical solution [​4​]: 

  (3.3) 
In the following simulations the conditions were set to         

resemble a planet like Jupiter. This means that the initial          
density is adjusted to 1.33 and the initial radius is    /cmg 3      
about to 6.9911· .109 mc   

In order to apply the FDM, the planet was subdivided          
into a hundred spherical shells of same mass, and equations          
(3.1) and (3.2) were discretized in time and space. The          
method used , a parameter that was a        
compromise between a fully implicit and fully explicit        
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Euler integration method, which would slightly vary the        
speed of the collapse. Using the fact that the sphere is           
symmetrical, this problem ends up being a 1D problem with          
parameters the radius, the velocity and the          
density of each shell. One astonishing result of this         
simulation was to find out that the density remained         
constant along the sphere at each instant of time [​4​]. 

The same problem was tackled from the SPH perspective.          
Since in this section the problem studied is a free-fall, SPH           
resumes to a N body simulation of gravity using the kernel           
proposed in the previous section. For this simulation 2500         
particles where used (as recommended in [​1​]), distributed at         
random through the volume of the sphere obtaining a         
pseudo-uniform distribution. The use of a higher number of         
particles would improve, strictly speaking, the simulation,       
but also it would slow down the calculations enormously.         
Figure 2 depicts an example of the progressive collapse of          
the sphere. 

FIG. 2.  The free-fall of a Jupiter-type planet, 2500 
particules, projection of the sphere at different instants on 
the XY plane.  From left to right and up to down: planet at 

0s, 744s, 1464s and 1824s.  
The most relevant parameter in this simulation is ,          

defined in the equation (2.9), the gravitational smoothing        
length. As it has been seen in the previous section, this           
smoothing length is used to avoid the infinite type potential          
and numerical errors when particles are very close. It is          
clear that induces a change in the behaviour of the           
free-fall: a large would smooth the gravitational force in          
a large volume around each particle, inducing a slower         
collapse; a low would induce particles very close to each           

other to experiment forces with no physical meaning and         
their possible escape from the body. 

To find a proper , simulations with different values          
where executed searching for a tradeoff between       
compactness of the object and small impact on the free-fall. 
In Figure 3 those simulations are plotted. As expected,         
initially the differences are not visible and as the sphere          
compresses, the higher the , the slower the collapse, but          
also the more compact the object is (although it cannot be           
seen in this particular Figure). Finally the kept was          

. For calculating the radius, the particles       
that have left the body were not taken into account (as we            
can see in Figure 2, the fourth subfigure, some particles are           
detached from the main sphere due to the effects of gravity           
between two close particles). 
 

 
FIG. 3. (Color online) Radius of the simulations of          

free-fall with 2500 particles and different (orange, green         
and red) compared to the analytical solution (blue):        

,  , .  
Once parameters are set, the comparison is made. The          

first point to take into account is that the calculation time           
for FDM is around 5 minutes whereas for SPH is slightly           
more that 24h. Figure 4 shows the results of both methods           
for identical initial conditions. It can be observed that (i)          
results for the two methods satisfactorily reproduce the        
analytical solution (ii) the 80th percentile for the radius         
imitates better the solution for longer time when compared         
to the evolution of the longest radius and (iii) FDM looks to            
work better for longer time. 

Let’s discuss the second point. Since the planet is divided           
into 2500 particles, these are distributed among what is         
considered a sphere. But, as what can be seen from Figure           
2, the projections of the particles in a plane do not distribute            
among a perfect circle. This small distortion makes it hard          
to tell what is the radius of the entire body. Sometimes, a            
few particles move to the center slower than the rest, or can            
leave the body altering the total radius. This problem can be           
tackled by considering percentiles, although it is a bit         
arbitrary which one should be chosen. Smaller percentiles        
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ignore the outer shells while greater percentiles do not         
ignore spoiled particles. This problem does not exist for the          
FDM since all the shells are formulated, and the radius          
corresponds with the radius of the most external one.         

  
FIG. 4. (Color online) Evolution of the radius with          

respect to the time, for the analytical solution (blue), for          
the FDM (orange), SPH with the radius given by the most           
external particle (green) and SPH with the radius given by          
the 80th percentile (red)  

On the other hand, FDM appears to be more consistent          
with the analytical solution, or at least it lasts more without           
diverging from it. But one must be cautious with this          
impression because the FDM implemented here assumes       
the condition of radial symmetry, whereas SPH has not a          
perfect radial symmetry. In fact, as we can see in Figure 2,            
the little asymmetries that are inevitable when using a         
random distribution cause some disturbances in the final        
solution, affecting in a relevant way the result. But it is also            
clear that the fact that SPH does not assume spherical          
symmetry for the calculations allows to study more        
complex and real systems (such as stars or planets, which          
are known to be non spherical). So SPH looks like a much            
more polyvalent method and appropriated to real physical        
problems.  

IV. OTHER SYSTEMS 
Since the free-fall collapse results are close to the         

analytical solution, the next logical step is to use the          
concepts shown to simulate a more realistic planet        
including all the SPH parameters, by adding pressure and         
viscosity. Trying to simulate a stable (self-sustained) planet        
would be the ideal result. Once it is simulated, there are           
other situations that can be easy to produce, such as the           
collision between two planets, which could be harder to         
formulate with other methods.  

 
The formulation of the problem does not differ much         

from equations (2.1) and (2.2); actually, they are the limit          
cases for null viscosity. The second equation gets        
transformed by adding a viscous term: 

              (4.1) 

where is the viscosity term for the particle          
proportional to the gradient of the kernel and that is          
different from 0 if the relative position and relative velocity          
of two particles are in opposite directions. An expression         
that gives good results -and is the one implemented in this           
article- is the one given by Monaghan [​5​].  

  
FIG. 5. (Color online) SPH simulations with the        

introduction of pressure and viscosity (blue and        
orange) and in free-fall (orange), 2500 particles. 

Figure 5 depicts the obtained results including the        
pressure and viscosity in front of the previous experiment.         
As expected, the collapse has been slowed down by the          
pressure and the viscosity. It can be seen that larger          
(smoothing length introduced in equation (2.3)) slow the        
collapse since it increases the radius of effect of pressure          
and viscosity. Here the number of particles is determinant         
and can induce large changes in the final result mostly due           
to the range of effect of pressure and viscosity. Increasing          
the number of particles (although computationally very       
expensive since more that 24 hours of calculation are         
needed for 2500 particles) can be seen as another method to           
slow down the collapse, an intuitive result.  

V. CONCLUSIONS 
SPH has been implemented for the free-fall collapse of a           

planet. Results suggest that, although FDM is closer to the          
analytical solution, SPH reaches decent results without       
imposing symmetry conditions. 

Certain parameters have been adjusted. The ambiguity in         
the definition of the radius indicates that sometimes this         
method could lead to interpretation problems, since instead        
of an entire body the system is replaced by a set of            
independent particles. The fact that SPH allows       
low-symmetry problems such as mass transfer or collisions        
makes it most suitable for certain Astrophysics problems.  
 

https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7Bdv_%7Bi%7D%7D%7Bdt%7D%20%3D%20-%5Cfrac%7B1%7D%7B%5Crho_%7Bi%7D%7D%5Cnabla%20P_%7Bi%7D%20%20%2B%20a_%7Bi%7D%5E%7Bvisc%7D%20-%20%20%5Cnabla%20%5Cphi_%7Bi%7D%0
https://www.codecogs.com/eqnedit.php?latex=a_i%5E%7Bvisc%7D%0
https://www.codecogs.com/eqnedit.php?latex=i%0
https://www.codecogs.com/eqnedit.php?latex=h_1%20%3E%20h_2%0
https://www.codecogs.com/eqnedit.php?latex=h%0


SMOOTHED PARTICLE HYDRODYNAMICS FOR ASTROPHYSICS PROBLEMS PROJECTES D’ENGINYERIA FÍSICA 2  

ACKNOWLEDGEMENTS 
We would like to be extremely grateful to our tutor Jordi           

José, who proposed this project and provided us with         
references, ideas and revisions. He also provided us the         
computational power required for this project.  

 

 
 
 
 
 
 

 

 
[​1​] P. Bodenheimer, G. P. Laughlin, M. Rozyczka and H. 

W. Yorke, ​Numerical Methods in Astrophysics​, CRC 
Press (2006). 

[​2​] R. A. Gingold and J. J. Monaghan, ​Smoothed particle 
hydrodynamics - Theory and application to 
non-spherical stars​, Monthly Notices of the Royal 
Astronomical Society, vol. 181, pp. 375-389 (May 
1977). 

[​3​] L. Hernquist and  N. Katz, ​A unification of SPH with 
the hierarchical tree method​, Astrophysical Journal 
Supplement Series, vol. 70, pp. 419-446 (June 1989). 

[​4​] J. José, ​Stellar Explosions, Hydrodynamics and 
Nucleosynthesis​, CRC Press (2015).  

[​5​] J. J. Monaghan, ​Smoothed Particles Hydrodynamics​, 
Annual Review on Astronomy and Astrophysics, 199 

 


