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Abstract. Many marine species exhibit capabilities that would be desirable for manmade systems operating in the maritime 
environment. However, without detracting from the potential, if bioinspiration is to prove beneficial, it is important to have a 

consistent set of metrics that allow fair comparison, without bias, when comparing the performance of engineered and 

biological systems. In this study we focus on deriving an unbiased metric of performance applicable to marine animals and 
engineered subsea vehicles for one of the most fundamental of properties; that of the energy cost of locomotion. We present 

a rational analytical model of the physics behind the total energy cost of locomotion applicable to both biological and 

engineered autonomous underwater marine systems. This model proposes the use of an equivalent spheroid efficiency as a 

fair metric to compare engineered and biological systems. The model is then utilised to identify how changes in mass, speed, 
spheroid efficiency and hotel load impact the performance of the system. 
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Nomenclature 
(1+k) Form factor - 
(1-t) Thrust Deduction - 
a Mass allometric scaling constant for in-water maintenance power (variable) 
A Wetted surface area m2 
As Wetted Surface Area of equivalent ellipsoid m2 
b Mass allometric scaling exponent for in-water maintenance power - 
CD Drag coefficient - 
Cf Skin friction coefficient - 
Cv Viscous drag coefficient - 
COT Cost of Transport J/kg/m 
COTnet Net Cost of Transport J/kg/m 
COTopt Optimum Cost of Transport J/kg/m 
D Diameter m 
Ds Equivalent spheroid Diameter m 
E Gravimetric Specific Energy of Power Source J/kg 
L Length m 
L/Ds Slenderness ratio - 
m Mass kg 
n Number of samples - 
PH In Water Maintenance power requirement W 
PP Propulsion power requirement W 
q Proportion of system mass devoted to energy storage - 
R Range m 
Re Reynolds number - 
Rmax Maximum range m 
t Thrust deduction - 
U Forward speed m/s 
Uopt Optimum speed m/s 
α Re scaling constant for skin friction coefficient - 
β Re scaling exponent for skin friction coefficient - 
ɛ Spheroid eccentricity - 

 Proportion of the system mass devoted to energy storage - 

 Equivalent spheroid efficiency - 

 Kinematic viscosity m2/s 
ρ Water density kg/m3 
τ Scale factor - 
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ηa Actuator efficiency - 
ηp Propulsive efficiency - 

1.  Introduct ion 

Biologically inspired swimmers are flourishing with various prototypes of a new generation of biomimicked 

vehicles being built. These include the “GhostSwimmer” which is being tested by the US Navy (Telepraph, 

2014), the “Mantabot” which mimickes the swimming of a ray (Unmanned, 2012) and the Aqua Jelly (jellyfish) 

developed by Festo (Festo, 2013). Bioinspiration and biomimetics have great potential to lead to new concepts 

in the design and implementation of engineered artefacts swimming within the oceans (Bandyopadhyay, 2005). 

Therefore, it is technically relevant to investigate the possible advantages of the systematic design and build of 

bioinspired vehicles. 

 

The routine activities or missions of both pelagic marine animals and free swimming autonomous underwater 

vehicles (AUVs) require these systems to transit between multiple locations. For both biological and engineered 

systems there is an evolutionary or design driver towards reducing the total energy consumption of the system 

when completing these journeys.  

 

AUVs are almost invariably deployed with a finite energy store; by reducing the energy cost per unit distance 

travelled the range of the vehicle may be enhanced (e.g. Furlong et al., 2007; Phillips et al., 2012). For pelagic 

species swimming is the only alternative for most animals to find food, escape predators and reproduce 

successfully (Videler, 1993). Averaged over a period, the amount of energy acquired by an individual through 

feeding must exceed the amount of energy expended by daily activities, growth and reproduction. Based on 

optimal foraging theory, natural selection should operate to maximise the ratio of energy income to energy 

expenditure (Townsend and Winfield, 1985). Hence, the solutions adopted by marine animals to reduce their 

energetic requirements may provide inspiration to enhance the design of the next generation of free swimming 

AUVs. 

 

 

Without detracting from the potential, if bioinspiration is to prove beneficial, it is important to have a consistent 

set of metrics that allow fair comparison, without bias, when comparing the performance of engineered and 

biological systems. However, such an unbiased comparator can be elusive given the disparity in the forms of 

biological and engineered components, even for those that essentially perform the same functions.  

 

For example propulsive efficiency is often quoted by both engineers and biologists as a measure of the ratio of 

the effective power to the power delivered to the propulsion system 

 

𝜂𝑝 =
𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑃𝑜𝑤𝑒𝑟

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑃𝑜𝑤𝑒𝑟
.           (1) 

 

Numerous authors have quoted high propulsive efficiencies, ηp, for marine animals operating at turbulent 

Reynolds numbers using carangiform and thunniform type propulsion (high speed long-distance swimmers 

where virtually all movement is in the caudal fin). For example, the propulsive efficiencies of pseudo killer 

whales at 0.9 (Fish, 1996), bottlenose dolphins at 0.81 (Fish, 1993) and fin whale at 0.85 (Bose and Lien, 1989) 

are high compared with those of a typical propeller (Wageningen B5-75) open water efficiency of 0.5 to 0.7 

(Carlton, 2007).   

 

However, these results must be treated with caution. The action of any propulsor, be it an oscillating foil, 

propeller or water jet, will locally modify the flow around the individual. In turn modifying the resistance of a 

self-propelled individual compared to a towed (or passive) individual.  There is inconsistency between the 

standard methods for accounting for this change in resistance (typically an increase) between biological and 

engineered systems. 

 

For ships the increase in self-propelled resistance is included as part of the propulsive efficiency rather than as 

an increment on the drag. Thus the propulsive efficiency of an AUV is: 

 

𝜂𝑝(𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔) =
𝑇𝑜𝑤𝑒𝑑 𝑅𝑒𝑠𝑖𝑡𝑎𝑛𝑐𝑒 × 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑃𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑣𝑒 𝑃𝑜𝑤𝑒𝑟 𝑡𝑜 𝑆ℎ𝑎𝑓𝑡
.       (2) 

 

While not universally accepted, in biology the influence of the propulsor on the ‘drag’ is often considered as an 

added resistance factor, λ, which is the ratio of the swimming thrust to passive drag: 
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𝜆 =
𝑆𝑤𝑖𝑚𝑚𝑖𝑛𝑔 𝑇ℎ𝑟𝑢𝑠𝑡

𝑃𝑎𝑠𝑠𝑖𝑣𝑒 𝐷𝑟𝑎𝑔
.         (3) 

 

The added resistance factor is highly dependent on propulsive mode and accounts for drag increases due to 

large-amplitude lateral body movements that modify the water flow in the boundary layer and around the body, 

resulting in increased frictional and form drag (Webb, 1975). Experimental data collected by Webb, 1975 shows 

that the drag coefficient for fish swimming at high Reynolds numbers can be up to four times that of a rigidly 

gliding fish. Importantly this added resistance is typically not included in the propulsive efficiency. Hence the 

propulsive efficiency of a marine animal is often taken to be: 

 

𝜂𝑝(𝑏𝑖𝑜𝑙𝑜𝑔𝑦) =
𝑆𝑤𝑖𝑚𝑚𝑖𝑛𝑔 𝑇ℎ𝑟𝑢𝑠𝑡 𝑥 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑃𝑜𝑤𝑒𝑟  𝑖𝑛 𝑤𝑎𝑘𝑒
.       (4) 

 

There are sound reasons for the differing approaches due to the measurement techniques available for 

engineered and biological systems, Webb, 1975. However, the consequence is that direct comparison of quoted 

propulsive efficiencies between engineered and biological systems is biased towards biological systems since 

biological values do not incorporate the added resistance due to the movement of the body. To enable a fair 

comparison: 

 

 𝜂𝑝(𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔) =
𝜂𝑝(𝑏𝑖𝑜𝑙𝑜𝑔𝑦)

𝜆
.        (5) 

 

In this work a combination of reduced-complexity analytical formulations and dimensional analysis is used to 

generate a comprehensive idealised analytical model of the cost of transport and optimum swimming speed of 

an individual, be it a biological or engineered system based on system metrics including equivalent spheroid 

efficiency. The analytical model provides enhanced understanding of the implications of propulsion and non-

propulsion power requirements on the energetic performance of individuals. In Part II of this paper this 

understanding is used to explain trends in collated published swimming performance data, where a number of 

recent biological studies on individual species (Behrens et al., 2006; Clark and Seymour, 2006; Fitzgibbon et al., 

2007; Korsmeyer et al., 2002; Ohlberger et al., 2006; Otani et al., 2001; Palstra et al., 2008; Rosen and Trites, 

2002; Steinhausen et al., 2005; Tanaka et al., 2001; Tudorache et al., 2011; Williams and Noren, 2009) have 

allowed the creation of a significantly larger data sets than considered by previous comparative studies, e.g. 

Videler, 1993; Videler and Nolet, 1990. 

2.  Analyt ical model  

Due to the limited availability of energetic data for marine animals, empirical models have been previously 

proposed to supplement and enhance our understanding. Previous studies have developed equations for the 

optimum cost of transport and/or optimum swimming speed of marine animals using regression analysis 

(Videler, 1993; Videler and Nolet, 1990; Williams, 1999) or else using combinations of dimensional analysis 

and other modelling techniques (Bejan and Marden, 2006; Hedenstr¨om, 2003; Watanabe et al., 2010; Weihs, 

1973). While Williams, 2010 developed a mission-specific model for the energy expenditure and range of 

AUVs, none of the existing approaches are suitable for comparing biological and engineered systems. The 

model presented here is a significant extension and generalisation of the models of Watanabe et al., 2010; Weihs, 

1973 to make it applicable for laminar and turbulent flow and biological & engineered systems.  

 

The approach is not intended to account for all forms of biological or engineering variation; rather it is intended 

to provide a framework for understanding general tendencies and relationships, and to provide a means to 

explore potentially interesting areas, the incorporation of an equivalent spheroid efficiency is proposed to allow 

fair comparison between both engineered and biological systems. For both biological and engineered systems 

typically only limited data is available, consequently this is reflected in the set of key parameters. 

2.1 Equivalent Spheroid  

Reduced complexity models are used in many areas of science to gain insight into what is important and what is 

not, before moving to more representative modelling. We reduce complexity in our model by assuming that the 

form of the biological or engineered system corresponds to that of an equivalent spheroid, defined as a neutrally 

buoyant prolate spheroid with the same length and mass as the individual, the equivalent diameter can be 

determined from, 
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𝐷𝑆 = √
6𝑚

𝜌𝜋𝐿
          (6) 

 

while the surface area is determined from, 

 

𝐴𝑠 = 2𝜋
𝐷𝑆

2

4
(1 +

𝐿

𝐷𝑆𝜀
𝑠𝑖𝑛−1𝜀),        (7) 

 

where 

 

𝜀 = √1 −
𝐷𝑆

2

𝐿2
          (8) 

  

Such an assumption allows estimates to be made of key parameters including diameter or wetted surface area, 

which, for animals and engineered systems, are often not reported. Figure 2 illustrates the differences between 

the actual and the modelled parameters when displacement and length are constrained to be equal. 

 

 

Delphin2  

Length, L=1.96𝑚 

Displacement, m=72 𝑘𝑔 

Max Diameter, D=0.254𝑚 

Wetted Surface Area, A=1.42𝑚2 

Slenderness Ratio, L/D=7.7 

Equivalent Spheroid 

Length, L=1.96𝑚 

Displacement, m=72 𝑘𝑔 

Diameter, Ds=0.262 𝑚 

Wetted Surface Area, As=1.3𝑚2 

Slenderness Ratio, L/Ds=7.5 

 

Dolphin (Hui, 1987) 

Length, L=1.73𝑚 

Displacement, m=59.2𝑘𝑔 

Max Diameter, D=0.31 𝑚 

Wetted Surface Area, A=1.04𝑚2 

Slenderness Ratio, L/D=5.6 

Equivalent Spheroid 

Length, L=1.73𝑚 

Displacement, m=59.2 𝑘𝑔 

Diameter, Ds=0.25 𝑚 

Wetted Surface Area, As=1.06𝑚2 

Slenderness Ratio, L/Ds=6.92 

Figure 1. Equivalent spheroid examples for an underwater vehicle (Delphin2 Phillips et al., 2013; Steenson et 

al., 2013) and a marine mammal (picture by NOAA) illustrating the differences between the actual and the 

modelled parameters when displacement and length are constrained to be equal. 

 

The assumption that the individual may be represented as a prolate spheroid allows predictions to be made 

regarding the energetic costs of an individual. To make the analytical model generic each equivalent spheroid 

will be defined by its mass and its slenderness ratio,  
𝐿

𝐷𝑠
. Thus the length is given by, 

 

𝐿 = 𝑐𝑚1/3,          (9) 

 

where, 

 

𝑐 = (
6(

𝐿

𝐷𝑠
)
2

𝜌𝜋
)

1/3

.          (10) 

 

Note c is a constant for geometrically similar spheroids operating in the same fluid. The wetted surface area can 

be approximated by, 

 

𝐴𝑠 ≈ 𝑑𝑚
2

3,          (11) 

 

where, 

 

𝑑 = (
1

𝜌
)
2/3

(−0.0122(
𝐿

𝐷𝑆
)
2

+ 0.5196
𝐿

𝐷𝑆
+ 4.2732).      (12) 

 

Again d is a constant for geometrically similar spheroids operating in the same fluid. For 1.1>L/𝐷𝑆<15 this 

approximation gives an error of less than 1% of the exact wetted surface area derived from Equation (7), this 
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range of L/𝐷𝑆  encompasses the majority of pelagic marine animals and survey style AUVs (Murphy and 

Haroutunian, 2011). 

2.2 In-Water Maintenance Power 

The total powering requirements of the idealised system can be derived be modelling the in-water maintenance 

costs and the propulsion power requirements. The in water-maintenance cost will be represented by a power 

function, 

 

𝑃𝐻 = 𝑎𝑚
𝑏,          (13) 

 

where a is a constant of proportionality, m is the system mass and b is the allometric scaling exponent. Such a 

relationship is commonly used to represent the relationship between body mass and energy metabolism in 

animals (Heusner, 1985). It will be shown in Section 4.1 that such an assumption is also reasonable for 

engineered systems.  

2.3 Propulsion Power 

Dimensional analysis and common engineering practice state that the total propulsion power (i.e the power 

drawn by the entire propulsion system including actuators) of a deeply submerged individual can be determined 

from: 

 

𝑃𝑃 =
𝜌

2𝜂𝑎𝜂𝑝
𝐶𝐷𝐴𝑈

3         (14) 

 

where, 𝜌 is the fluid density, 𝐶𝐷 is the drag coefficient of a towed (or passive) system, A is the wetted surface 

area of the system,  𝜂𝑎 is the actuator efficiency and 𝜂𝑝 is the propulsive efficiency. Using a similar argument 

the power requirement of a 100% efficient equivalent spheroid, 𝑃𝑃𝑆, may be calculated from 

 

𝑃𝑃𝑆 =
𝜌

2
𝐶𝐷𝑠𝐴𝑠𝑈

3,            (15) 

 

where 𝐶𝐷𝑆 is the drag coefficient, and As the wetted surface area of the equivalent spheroid.  

2.4 Equivalent Spheroid Efficiency 

Defining the equivalent spheroid efficiency, 𝜁, as the ratio of the power required to propel a 100% efficient 

equivalent spheroid to the power required by a real individual at the same speed, 

 

𝜁 =
𝑃𝑃𝑆

𝑃𝑃
= 𝜂𝑎𝜂𝑝

𝐶𝐷𝑠𝐴𝑠

𝐶𝐷𝐴
         (16) 

 

𝜁 includes both hydrodynamic and actuator efficiency, it also makes allowance for the difference in drag 

coefficient and wetted surface area between the real system and an equivalent spheroid. Thus the propulsion 

power can be represented by, 

 

𝑃𝑃 =
𝜌

2𝜁
𝐶𝐷𝑠𝐴𝑠𝑈

3.          (17) 

 

For this study we will assume that the equivalent spheroid efficiency is invariant to forward speed. We will also 

assume that neither 𝜌 or 𝐴𝑠 have any dependency on the other variables considered in this study.  The use of 

equivalent spheroid efficiency allows fair comparison between engineered and biological systems, where only 

limited data is available. To calculate the only system specific information required are length, mass and 

propulsion power at a set speed. 

2.5 Drag Coefficient Prediction 

Based on the methodologies of Hughes developed for scaling of drag components of ships, the drag of a deeply 

submerged spheroid experiencing only viscous drag, 𝐶𝑣, may be represented by, 

 

𝐶𝐷𝑠 = 𝐶𝑣 = 𝐶𝑓(1 + 𝑘)         (18) 
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where 𝐶𝑓 is the skin friction coefficient based on flat plate results, while the (1+k) is a form factor dependent 

on hull form to account for the viscous pressure resistance (Molland et al., 2011). The standard skin friction 

lines for laminar flow (Blasius line) and turbulent flow (von Karman line) past a flat plate are of the form,  

 

𝐶𝑓 = 𝛼𝑅𝑒
𝛽,          (19) 

 

where the constant, 𝛼, and the exponent, 𝛽, are flow regime dependent and, 𝑅𝑒, is the length based Reynolds 

number. The form factor (1 + 𝑘) of an spheroid can be predicted empirically from Hoerner, 1965, 

 

(1 + 𝑘) = 1 + 1.5 (
𝐿

𝐷𝑆
)
−3/2

+  7 (
𝐿

𝐷𝑆
)
−3

.       (20) 

 

Substituting Equations (19-21) into (18) the propulsion power requirement is given by 

 

𝑃𝑃 =
𝑒

𝜁
𝛼𝑚

𝛽+2

3 𝑈(3+𝛽),         (21) 

 

where 

 

𝑒 =
𝜌

2
(1 + 𝑘)

𝑐𝛽

𝜈𝛽
𝑑.         (22) 

 

𝑒 is constant for geometrically similar individuals operating in the same fluid.  

2.6 Optimum Cost of Transport 

One widely accepted metric used to compare the energetic performance of different animals is Cost of Transport, 

COT (Schmidt-Nielsen, 1972; Tucker, 1970; Videler, 1993). COT is a normalised measure of the energy 

required to transport the mass 𝑚 of an individual, over a unit distance at a speed U. The general formulation of 

cost of transport for an individual is given by: 

 

𝐶𝑂𝑇 =
𝑃𝐻+𝑃𝑃

𝑚𝑈
.          (23) 

 

Where PH, is the power expended to operate or sustain the animal’s non-propulsion systems, and PP is the power 

associated with propulsion. At this level of abstraction there is almost a one-to-one correspondence with 

engineered systems. For engineered systems the power expended on non-propulsion systems is often referred to 

as the hotel load and is associated with powering computers, hard drives and all the sensors required to provide 

functions equivalent to those of an animal, such as knowing orientation and position, and condition monitoring. 

This is equivalent to the in-water maintenance cost of a marine animal while at rest associated with blood flow, 

respiration etc. However, the hotel load in an underwater vehicle can be defined to include the power consumed 

by the instruments carried as payload, such as those to make measurements of the environment. Payload power 

consumption can be similar to, or can exceed, the power required for maintaining the vehicle’s core systems. 

Consequently, in this study, because there is no animal equivalent, payload power consumption is excluded. 

The energetic costs of propulsion, PP, of an individual, animal or underwater vehicle, is as a direct result of 

generating thrust to overcome fluid dynamic drag. The energy required is influenced by a variety of 

environmental factors, such as water temperature and salinity, propulsion methods and associated efficiency as 

well as physiological and morphological characteristics of the system (Allen et al., 2000; Hammer, 1995; 

Lighthill, 1969).  
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Figure 2. Idealised cost of transport curve. The net cost of transport, COTnet, is often defined as the component 

of the cost of transport associated with propulsion. 

 

 

Substituting Equations (13) and (21) into Equation (23) the cost of transport for an equivalent spheroid is: 

 

𝐶𝑂𝑇 =
𝑃𝐻+𝑃𝑃

𝑚𝑈
=
𝑎𝑚𝑏+

𝑒

𝜁
𝛼𝑚

𝛽+2
3 𝑈(3+𝛽)

𝑚𝑈
        (24) 

 

COT versus swimming speed results in a ‘U’ shaped function, see Figure 2, the optimum swimming speed, 𝑈𝑜𝑝𝑡 

associated with the minimum cost of transport 𝐶𝑂𝑇𝑜𝑝𝑡 may be established by differentiating Equation (24) with 

respect to U, then setting the result equal to zero to find the global minimum and then rearranging for 𝑈𝑜𝑝𝑡, 
 

𝑈𝑜𝑝𝑡 = (
𝑎𝜁

(2+𝛽)𝑒𝛼
)

1

3+𝛽
𝑚
3𝑏−𝛽−2

9+3𝛽         (25) 

 

Multiplying out the brackets and gathering like terms, 

 

𝑈𝑜𝑝𝑡 = 𝑎
1

3+𝛽⏟
𝐼

× 𝜁
1

3+𝛽⏟
𝐼𝐼

× 𝑒
−

1

3+𝛽⏟  
𝐼𝐼𝐼

× 𝛼
−

1

3+𝛽 × (2 + 𝛽)
−

1

3+𝛽⏟            
𝐼𝑉

× 𝑚
3𝑏−𝛽−2

9+3𝛽⏟    
𝑉

   (26) 

With the equation in this form it is possible to identify how the key model parameters influence the optimum 

swimming speed. In the preceding equation, term I shows that 𝑈𝑜𝑝𝑡  varies with 𝑎 (the mass coefficient used in 

determining the in-water maintenance cost) raised to the power 
1

3+𝛽
. This exponent will thus vary depending on 

the flow regime. For laminar flow 𝛽 = −0.5, while for turbulent flow 𝛽 = −0.2, thus 𝑈𝑜𝑝𝑡 will be more slightly 

more sensitive to variations in 𝑎 and thus in-water propulsion requirements when operating in a turbulent flow 

regime than in a laminar one. Similar arguments can be made for terms II and III. Term IV is only dependent on 

flow regime. Term V demonstrates how the scaling exponent on m is dependent on the allometric mass scaling 

exponent b as well as the flow regime. 

 

Note that by differentiating Equation (24) with respect to speed it can be shown that the propulsion power at the 

optimum swimming speed can be related to the non-propulsion power requirement by, 

 

𝑃𝐻 = 𝑎𝑚
𝑏 = (2 + 𝛽)

𝑒

𝜁
𝛼𝑚

𝛽+2

3 𝑈𝑜𝑝𝑡
(3+𝛽) = (2 + 𝛽)𝑃𝑃𝑈=𝑈𝑜𝑝𝑡

     (27) 
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This ratio is independent of all other parameters, thus the power consumption at the optimum speed is a function 

of in-water maintenance power requirements, 𝑃𝐻, and the exponent on Reynolds number for the skin friction 

calculation, 𝛽. For vehicles operating in the same flow regime (laminar or turbulent) the propulsion power, 𝑃𝑃 , 
at 𝑈𝑜𝑝𝑡 is only a function of the in-water propulsion power requirement. Thus the optimum cost of transport 

becomes, 

 

𝐶𝑂𝑇𝑜𝑝𝑡 =
𝑃𝐻+𝑃𝑃𝑈=𝑈𝑜𝑝𝑡

𝑚𝑈𝑜𝑝𝑡
=
(1+

1

2+𝛽
)𝑃𝐻

𝑚𝑈𝑜𝑝𝑡
.       (28) 

 

Substituting the result for Uopt Equation (25) into Equation (28), the optimum cost of transport is given by: 

 

𝐶𝑂𝑇𝑜𝑝𝑡 = 𝑎 (1 +
1

2+𝛽
) (

(2+𝛽)𝑒𝛼

𝑎𝜁
)

1

3+𝛽
𝑚
6𝑏+3𝑏𝛽−2𝛽−7

9+3𝛽 .      (29) 

2.7 Maximum Range 

For AUVs with a finite energy store or marine animals which migrate without feeding, the maximum range, 

Rmax, can be determined as, 

 

𝑅𝑚𝑎𝑥 =
𝐸𝜙𝑚

𝑚𝐶𝑂𝑇𝑜𝑝𝑡
,          (30) 

 

where 𝐸 is the specific energy of the power source in (J/kg) and  is the proportion of the system mass devoted 

to energy storage (0 corresponds to 0% of the mass while 1 corresponds to 100%). 

2.8 Operation at non-optimum speeds 

While the optimum swimming speed is energetically optimum, other mission constraints may lead the individual 

to operate at speeds above or below the optimum i.e. sprinting to overcoming currents or to capture prey, or 

slowing to a stop to interact with the environment. The impact of operating at speeds other than Uopt can be 

derived relative to the optimum values, let 𝜏 = 𝑈/𝑈𝑜𝑝𝑡,  
 

𝐶𝑂𝑇 = 𝐶𝑂𝑇𝑜𝑝𝑡
2+𝛽+𝜏(3+𝛽)

(3+𝛽)𝜏
,         (31) 

 

𝑅 = 𝑅𝑚𝑎𝑥
(3+𝛽)𝜏

2+𝛽+𝜏(3+𝛽)
,         (32) 

 

𝑃𝑃 =
𝑃𝐻𝜏

(3+𝛽)

2+𝛽
.          (33) 

 

2.9 Transition from Laminar to Turbulent Flow 

For this study we will consider two skin friction lines: the Blasius skin friction line for laminar flow and the 

Prandtl – Von Kármán skin friction line for turbulent flows (Comstock, 1977), the key results using these 

relationships are tabulated in Table 1. 

 

The transition from laminar flow to turbulent flow is a complex phenomenon which will not be discussed in 

detail here. For the purposes of this study we have assumed that laminar flow is prevalent up to Reynolds 

numbers of 500,000 and that fully turbulent flow is developed after Reynolds numbers of 1,000,000. For 

500,000<𝑅𝑒<1,000,000 we have used a linear function to smooth between the results for the laminar and 

turbulent models.  

3.  Analyt ical Model Findings  

The analytical model allows the relative importance of each parameter on the energy expenditure of an 

autonomous underwater system. By definition 𝑎 is proportional to in-water maintenance cost and 𝜁 is a measure 

of the hydrodynamic and propulsion efficiency of the individual, the impact of changes in these variables on 

𝐶𝑂𝑇𝑜𝑝𝑡, 𝑅𝑚𝑎𝑥  and 𝑈𝑜𝑝𝑡 may be explored. Table 2 highlights the key results of this analysis for laminar and 
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turbulent flow, showing the relative importance of the key parameters and their influence on the measures of 

𝐶𝑂𝑇𝑜𝑝𝑡, 𝑅𝑚𝑎𝑥   and 𝑈𝑜𝑝𝑡.  

 

 

 

 

 

 

Table 1. Key results from analytical model. 

 Laminar Flow Model 

(Blasius skin friction line) 

Turbulent Flow Model 

(Prandtl-Von Kármán skin friction 

line) 

In Water Maintenance Power, PH 𝑎𝑚𝑏   (13) 

Skin Friction Coefficient, Cf 1.327𝑅𝑒−1/2   (34) 0.072𝑅𝑒−1/5   (35) 

Propulsion Power, PP 1.327
𝑒

𝜁
𝑚1/2𝑈5/2   (36) 0.072

𝑒

𝜁
𝑚3/5𝑈2.8   (37) 

Geometric and Fluid Constants 𝑒 =
𝜌

2
(1 + 𝑘)

𝑐−1/2

𝜈−1/2
𝑑   (38) 𝑒 =

𝜌

2
(1 + 𝑘)

𝑐−1/5

𝜈−1/5
𝑑  (39) 

 

𝑐 = (
6 (

𝐿

𝐷
)
2

𝜌𝜋
)

1/3

   (10) 

 
𝑑 = (

1

𝜌
)

2

3
(−0.0122(

𝐿

𝐷𝑆
)
2

+ 0.5196
𝐿

𝐷𝑆
+ 4.2732)   (12) 

 

 
(1 + 𝑘) = 1 + 1.5 (

𝐿

𝐷𝑆
)
−3/2

+  7 (
𝐿

𝐷𝑆
)
−3

  (20) 

Cost of Transport, COT 𝑎𝑚𝑏+1.327
𝑒

𝜁
𝑚1/2𝑈5/2

𝑚𝑈
   (40) 

𝑎𝑚𝑏+0.072
𝑒

𝜁
𝑚3/5𝑈2.8

𝑚𝑈
   (41) 

Optimum speed, Uopt (
𝑎𝜁

1.9905𝑒
)
2/5

𝑚
2𝑏−1

5    (42) (
𝑎𝜁

0.1296𝑒
)
1/2.8

𝑚
𝑏−3/5

2.8    (43) 

Optimum Cost of Transport, 

COTopt 
2.195𝑎

3

5 (
𝑒

𝜁
)

2

5
𝑚
3𝑏−4

5    (44) 0.750𝑎
9

14 (
𝑒

𝜁
)

5

14
𝑚
9𝑏−11

14    (45) 

Propulsion power at optimum 

speed, 𝑃𝑃𝑢=𝑢𝑜𝑝𝑡  

𝑃𝐻

1.5
  (46) 

𝑃𝐻

1.8
   (47) 

Maximum Range, Rmax 
0.455𝐸𝜙𝑎−

3

5 (
𝜁

𝑒
)

2

5
𝑚
4−3𝑏

5 (48) 1.334𝐸𝜙𝑎−
9

14 (
𝜁

𝑒
)

5

14
𝑚
11−9𝑏

14 (49) 

 

Table 2. Proportionality relationships between key model parameters and 𝐶𝑂𝑇𝑜𝑝𝑡, 𝑅𝑚𝑎𝑥 and 𝑈𝑜𝑝𝑡, values in 

brackets are for laminar flow.  

Total Stored 

Energy,  
𝐸𝜙 

Mass and allometric 

scaling exponent, m 
and b 

Equivalent Spheroid 

Efficiency, 𝜁 
In-water 

maintenance power, 

𝑃𝐻 

Parameter 

~ 
𝑚
9𝑏−11

14  𝜁5/14 𝑃𝐻
9/14 Optimum cost of 

Transport, COTopt 
~ 

(𝑚
3𝑏−4

5 ) (𝜁2/5) (𝑃𝐻
3/5)  

𝐸𝜙 𝑚
11−9𝑏

14  𝜁−5/14 𝑃𝐻
−9/14 Maximum Range 

Rmax 
(𝐸𝜙) (𝑚

4−3𝑏

5 ) (𝜁−2/5) (𝑃𝐻
−3/5)  

~ 

 
𝑚
𝑏−0.6

2.8  𝜁−5/14 𝑃𝐻
5/14 Optimum speed Uopt 

~ 
 

(𝑚
𝑏−0.5

2.5 ) (𝜁−2/5) (𝑃𝐻
2/5)  
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The impact of doubling the systems in-water maintenance cost or the equivalent spheroid efficiency over the 

speed range are considered in Figure 3.  

 

For turbulent flow, doubling the in-water maintenance costs results in the cost of transport rising by a factor of 

29/14 (56%), while the maximum range is reduced by 2−9/14 (36%). The optimum swimming speed rises by a 

factor of 25/14  (28%). At the optimum swimming speed the ratio of the in water maintenance load and 

propulsion load is constant (Equation 27), therefore as the in water maintenance load doubles so does the 

propulsion power at the optimum swimming speed.  

  
(a) Impact of doubling in-water maintenance cost on 

an individual’s power requirements.  

(b) Impact of halving equivalent spheroid efficiency 

(doubling propulsion power) over the speed range on 

an individual’s power requirements. 

  
(c) Impact of doubling in-water maintenance cost on 

an individual’s cost of transport. 

(d) Impact of halving equivalent spheroid efficiency 

(doubling propulsion power) on an individual’s cost of 

transport. 

  
(e) Impact of doubling in-water maintenance cost on 

an individual’s range. 

(f)  Impact of halving equivalent spheroid efficiency 

(doubling propulsion power) on an individual’s range. 

Figure 3. Impact of variations in in-water maintenance cost or propulsion power requirement on optimum cost 

of transport optimum speed and maximum range. Figures are to scale for the turbulent flow case. 

 

Doubling the propulsion power requirements over the speed range results in the optimum swimming speed 

reducing by a factor of 2−5/14 (22%), the reduction in optimum speed is such that the propulsion power at the 

optimum speed is constant for both cases. While the power consumption is constant, the reduction in the 

optimum swimming speed increases the optimum cost of transport, rising by a factor of 25/14 (28%), while the 

maximum range is reduced by 2−5/14 (22%). 
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3.1 Influence of system mass on optimum cost of transport 

It is convention to present optimum cost of transport and optimum swimming speed versus mass when 

comparing different individuals. To examine how optimum swimming speed varies with respect to mass, 

partially differentiate Equation (25) with respect to mass,  

 

𝜕𝑈𝑜𝑝𝑡

𝜕𝑚
= (

3𝑏−𝛽−2

9+3𝛽
) (

𝑎𝜁

(2+𝛽)𝑒𝛼
)

1

3+𝛽
𝑚
3𝑏−𝛽−3

9+3𝛽  .      (50) 

 

For geometrically similar systems with the same equivalent spheroid efficiency this may be approximated by an 

equation of the form 
𝜕𝑈𝑜𝑝𝑡

𝜕𝑚
= 𝑓𝑚𝑔  where f is a positive constant. Consequently, the sign of the gradient of the 

Uopt versus mass line is governed by the value of scaling exponent in Equation (50) which is dependent on the 

maintenance power allometric scaling exponent, b and scaling exponent on Reynolds number to determine the 

skin friction coefficient β. For laminar flow 𝛽 = −0.5: 

 

𝜕𝑈𝑜𝑝𝑡

𝜕𝑚
= {

> 0 𝑓𝑜𝑟 𝑏 > 1/2
0 𝑓𝑜𝑟 𝑏 = 1/2
< 0 𝑓𝑜𝑟 𝑏 < 1/2

 .       (51) 

 

While for turbulent flow 𝛽 = −0.2 giving the result is  

 

𝜕𝑈𝑜𝑝𝑡

𝜕𝑚
= {

> 0 𝑓𝑜𝑟 𝑏 > 3/5
0 𝑓𝑜𝑟 𝑏 = 3/5
< 0 𝑓𝑜𝑟 𝑏 < 3/5

 .       (52) 

 

Similarly the impact of b on the gradient of the optimum cost of transport versus mass curve is also highly 

informative, by differentiating Equation (29) with respect to mass for laminar flow 

 

𝜕𝐶𝑂𝑇𝑜𝑝𝑡

𝜕𝑚
= {

> 0 𝑓𝑜𝑟 𝑏 > 12/9
0 𝑓𝑜𝑟 𝑏 = 12/9
< 0 𝑓𝑜𝑟 𝑏 < 12/9

.          (53) 

 

While for turbulent flow the result is  

 

𝜕𝐶𝑂𝑇𝑜𝑝𝑡

𝜕𝑚
= {

> 0 𝑓𝑜𝑟 𝑏 > 11/9
0 𝑓𝑜𝑟 𝑏 = 11/9
< 0 𝑓𝑜𝑟 𝑏 < 11/9

.        (54) 

 

The above results are illustrated in Figure 4, for turbulent flow. Dependent on the value of b, three cases can be 

identified assuming that the system transits at its optimum speed:  

 

 Case 1: b<3/5 for turbulent flow and b<1/2 for laminar flow – Optimum swimming speed reduces with 

increasing mass while optimum cost of transport reduces with increasing mass. More massive systems 

will swim slower but have lower energetic costs per unit mass. 

 Case 2: 3/5 < 𝑏 <
11 

9
 for turbulent flow and 0.5 < 𝑏 < 12/9 for laminar flow – Optimum swimming 

speed increases with increasing mass while optimum cost of transport reduces with increasing mass. 

More massive individuals will swim faster but have lower energetic costs per unit mass. 

 Case 3:  𝑏 > 11/9 for turbulent flow and 𝑏 > 12/9 for laminar flow – Optimum swimming speed 

reduces with increasing mass while optimum cost of transport reduces with increasing mass. More 

massive systems will swim faster and have higher energetic costs per unit mass. 

 

While it has been argued that an allometric scaling exponent b, of 3/4 is valid for all animals (Smil, 2000), other 

authors argue for a value of 2/3 (White and Seymore, 2003). Agutter and Wheatley, 2004 review the proposed 

justifications for the different values. The limitations of the universal scaling law are discussed in detail in 

Glazier, 2005. For pelagic marine species Glazier, 2006 argues that the interspecific and intraspecific scaling 

exponent is variable lying in the range (1/2<b<11/10). 
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For marine animals one might hypothesis that Case 2 provides an evolutionary driver for marine animals to 

grow more massive, since they may achieve higher optimum swimming velocities for a lower energetic cost per 

unit mass. Most of the values for b proposed in the studies and reviews fall into this case.   

 

 
 

Figure 4. Impact of mass scaling exponent for the in water maintenance power requirements (for turbulent flow) 

 

Case 3 would restrict the evolutionary advantage of increasing mass, since the energetic cost per unit mass 

would increase for an animal swimming at its optimum speed. None of the animal studies suggest b values 

sufficiently high to fall into this case. Case 1 provides an energetic advantage, yet assuming pelagic animals 

choose to swim at their optimum speed, more massive animals would swim more slowly eventually reaching 

planktonic speeds (unable to overcome natural currents). The range of b values proposed by Glazier, 2006 

suggest that b can be low enough to fall into this case.  

4.  Conclusion  

For pelagic marine animals and underwater vehicles, minimising their cost of transport by swimming at their 

optimum speed allows them to maximise their range given a finite store of energy. Marine animals with low cost 

of transport have developed a combined morphology and kinematics of swimming that may lead to the design of 

bioinspired long range underwater vehicles with enhanced performance. However, given that there are inherent 

difficulties when seeking to compare engineered and biological systems, there must be a rational basis for 

selecting which characteristics and which animals to use as the basis for inspiration. In this paper we present a 

well rationalised analytical model of the physics behind the total energetic cost of locomotion applicable to both 

biological and engineered autonomous underwater marine systems. The model incorporates the use of an 

equivalent spheroid efficiency as a fair metric to compare engineered and biological systems. This can be 

readily calculated from typically available data. To calculate equivalent spheroid efficiency the only system 

specific information required are length, mass and propulsion power at a set speed. Results from the model are 

used to provide useful insights into the scaling of common performance metrics with respect to system mass, 

such as cost of transport and maximum range. The analysis in this work are based upon swimming speeds and 

energy consumption. Therefore, the scaling considers a combination of drag, thrust and “hull” efficiency as a 

complete system. As a result it would be possible to make a judgement on the performance of a swimming 

system. In addition, the analytical model provides a physics-based selection tool to help with selecting candidate 

marine animal species for bioinspiration, and biologists can use this approach to help understand the observed 

performance of marine animals. 

 

In Part II we demonstrate how engineers can use the model to facilitate an understanding of biological systems 

to improve engineered vehicles by comparing the in-service implications of design choices for vehicles. 
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