
698

IV International Conference on Computational Methods for Coupled Problems in Science and Engineering 
COUPLED PROBLEMS 2011 

M. Papadrakakis, E. Oñate and B. Schrefler (Eds) 
 
 
 

DYNAMIC BEHAVIOUR OF SATURATED POROELASTIC LAYERS 
WITH EMBEDDED WALL SUBMITED TO SEISMIC ACTIONS 

GRAZINA, J. C.*AND PINTO, P. L.†

Dep. Engenharia Civil – Fac. Ciências e Tecnologia da Universidade de Coimbra (FCTUC) 
Universidade de Coimbra 

Polo II, 3030-788 Coimbra, Portugal 
*e-mail: graza@dec.uc.pt 
†e-mail: ppinto@dec.uc.pt 

Key words: Soil-structure interaction, Finite elements model, Poroelastic saturated materials, 
Time domain analysis, Viscous damping. 

Summary. Behaviour of poroelastic saturated materials submitted to dynamic actions is 
strongly dependent of the solid skeleton permeability and the frequency of the movement. 
Depending on these quantities, undrained behaviour or fully drained behaviour occurs for 
total coupled interaction or for null interaction, respectively. Between these limit cases, some 
relative movement occurs among solid skeleton and fluid, generating viscous damping, 
which, in turn, modifies the elastic response of the system. This paper presents results of 
coupled behaviour in poroelastic saturated layers with an embedded impermeable wall, 
submitted to seismic actions. A Finite Element code developed at the University of Coimbra 
(FEMEPDYN), with coupled formulation us−uw−p, was used for this purpose. Dynamic 
responses of poroelastic layers with an embedded wall are compared with non-porous 
materials for similar conditions. Damping of non-porous materials was previously calculated 
by calibration of the Rayleigh coefficients in order to match the free field responses for both 
materials types. Unlike for the free field analysis, results reveal some differences between 
both materials responses with the presence of the wall, due to the volumetric deformations 
imposed by the embedded wall. Also, those volumetric deformations have a more uniform 
distribution in poroelastic layers with permeabilities that represent near total and near fully 
drained behaviour. 

1 INTRODUCTION 
Behaviour of poroelastic saturated materials is actually described using two theories: the 

Biot theory [1, 2], based on the Lagrange classical mechanics, and the Porous Mixtures 
theory, firstly presented by Fillunger (1913), which involves the concept of volume fractions 
[3]. Considering some simplifications and the incompressibility of the constituents, both 
theories result in similar coupled equilibrium equations, where the interaction force between 
porous solid skeleton and the interstitial fluid is expressed by: 
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where k is the permeability, n is the porosity, γw is the bulk unit weight of fluid, vs is the 
velocity of solid and vw is the velocity of fluid. 

Interaction forces between the solid skeleton and the fluid in a poroelastic saturated 
material are greatly dependent on the permeability and frequency of the movement. 
Zienkiewicz et al. [4] presented parametric analyses for wide ranges of permeabilities and 
frequencies of harmonic vertical excitations in a poroelastic column. These authors found 
bound parameters related to the limit levels of coupled interaction, from near drained 
behaviour (quasi-null coupled interaction) to near undrained behaviour (quasi-total coupled 
interaction), for a range of loading velocities from the quasi-static (consolidation problem in 
despite to inertial forces) to the rapid loading. For near undrained behaviour, relative 
movements between solid and fluid are very small and viscous interaction forces developed 
are insignificant. In the opposite situation, for near full drained behaviour, permeabilities are 
very high and, consequently, viscous interaction forces are very small, in spite the existence 
of large relative movements between both phases. In between these limiting situations, 
relevant viscous interaction forces may be developed for common dynamic loadings, as those 
originated by foundations of industry equipment or earthquakes. 

Viscous damping values due to coupled interaction forces were previously calculated on 
poroelastic saturated layers subjected to shear free field movements [5]. In these analyses, 
only shear deformations are induced and, consequently, excess pore pressures are inexistent. 
Permeabilities for near limit cases of coupled interaction with quasi-null damping were found, 
as well the damping ratios for middle range permeabilities. The absence of excess pore 
pressure generation allows the use of non-porous linear elastic materials for the calculations 
of the dynamic responses: with dry properties for quasi-null coupled interaction and with 
saturated undrained properties for quasi-total coupled interaction. In between these limit 
cases, appropriate Rayleigh damping can be used in non-porous materials for the same 
purpose [6]. Main advantages of the use of non-porous materials in finite elements models are 
the much lower effort and time computing. 

Shear movements induced on saturated porous layers with embedded impermeable walls 
produce non-homogeneous fields of volumetric deformations and excess pore pressures 
generation. This factor influences the whole response of the layer and tends to disregard the 
previously related in free field conditions. Analyses are presented for an artificial seismic 
action applied at the base of the layers. 

2 NUMERICAL MODELLING 

2.1 Finite element code 
The numerical analyses were carried using the finite element code FEMEPDYN [6], 

developed at the University of Coimbra. FEMEPDYN code uses the Generalized-α time 
integration algorithms to perform dynamic calculations in time domain, for both non-porous 
and porous materials. The porous materials are modelled by the us-uw-p coupled formulation 
[7, 8]. At each time step this formulation enables the computation of nodal displacements, 
velocities and accelerations (d.v.a.) of both solid and fluid phases, as well pore pressures 
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(p.w.p.) at the corner nodes of the mesh elements. For this purpose, finite element meshes are 
composed by quadrangular hybrid elements with 8 nodes of Q8/C4 type, which ensures fluid 
pressure continuity between elements (Figure 1a). Meshes for non-porous materials are 
composed with isoparametric quadrangular elements of 8 nodes. 

2.2 Materials properties 
Properties of the poroelastic and non-porous materials are presented in Table 1 and Table 

2, respectively. Shear modulus values of 20 MPa (G20) and 80 MPa (G80) were considered 
for both materials types. The pore fluid in the poroelastic analyses is almost incompressible, 
with a bulk modulus of Kw=1×108 MPa. The permeability coefficients adopted varies in a 
wide range with the purpose to achieve the two near limit cases of viscous interaction – for 
the quasi-null coupled behaviour unrealistic high permeability coefficients were used. 

The reproductions of poroelastic behaviours were carried with two types of non-porous 
materials: for the drained behaviours and allowable volumetric deformations with the Poisson 
coefficient of the solid skeleton (ν=0.3); for the undrained behaviours with a Poisson 
coefficient of ν=0.49. Differences in results between these non-porous materials should not be 
detectable in movements without volumetric deformations, as occurs in pure shear column 
analyses. The bulk unit weights of non-porous materials were calculated using the solid 
skeleton and pore fluid densities of the poroelastic materials, respectively ρs and ρw. For 
movements caused by shear wave propagation, bulk unit weights should be calculated 
considering saturated and dry materials, respectively for undrained and drained conditions [9]. 
Densities of saturated and dry materials, ρsat and ρd, are calculated using Equations 2 and 
shear wave velocities, vS, are calculated using Equation 3 for respective ρ value. 

Saturated: ( )1sat s wn nρ = ρ = − ρ +  ρ  (2)

Dry: ( )1d snρ = ρ = − ρ  

S

G
v =

ρ
 (3)

Table 1: Properties of poroelastic materials 

G
(MPa) 

Es
(MPa) ν ρs

(kg/m3) 
ρw

(kg/m3) 
Kw

(MPa) n k
(m/s) 

20 52 0.3 2.6×103 1.0×103 1×105 0.365 1×102 to 1×10-5 80 208 

Table 2: Properties of non-porous materials 

G
(MPa) 

Es
(MPa) ν Coupled interaction / Material γ

(kN/m3) 
vS

(m/s) 

20 52.0 0.3 Null / Dry 16.20 110.1 
59.6 0.49 Total / Saturated 19.78 99.6 

80 208.0 0.3 Null / Dry 16.20 220.1 
238.4 0.49 Total / Saturated 19.78 199.2 
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The embedded wall has a linear elastic behaviour and was considered as a non-porous 
material in all the analyses. The elastic properties are respective to a common concrete 
material, with an elasticity modulus of E=20 GPa and a Poisson coefficient of ν=0.2. 

2.3 Models meshes 
The modelled media consists in homogeneous layers with 20 m thickness, settled over a 

rigid and impervious bedrock material. The width of the FE domain depends of the analyses 
type: for the free field response of the layer, the existence of only pure shear horizontal 
movements allows the use of a single column; for the analyses with the embedded wall, a 
larger mesh of 50.4 m width is used in order to mitigate the influence of the lateral boundaries 
on wall movements. In both cases, the lateral boundaries have restrictions for vertical 
displacements and the bottom boundary is impervious and has vertical displacement 
restrictions. In free vibration analyses, the bottom boundary has also horizontal displacements 
restrictions. In other analyses, horizontal accelerations (harmonic or seismic) are imposed at 
the bottom boundary. The stiffness of layer is related with velocity of wave propagation (Eq. 
3) and modal frequencies (Eq. 4). Higher values require more refined meshes in wave 
propagation direction to obtain accurate results. Therefore, for layers G20 and G80, 20 and 40 
elements uniformly distributed in vertical direction were adopted in respective meshes. 

In the FE models with embedded wall, interface joint elements with no thickness were 
inserted between wall and surrounding layer. Parameters of constitutive model of these joint 
elements were chosen with extremely low tangential stiffness and high normal stiffness. In 
these conditions, an almost free shear displacement is allowed and avoided the opening of 
gaps in the mesh. Formulation of these joint elements may consider both impervious or 
permeable interfaces. In the analyses here presented, permeable case is considered. The wall 
is 12 m deep and 0.4 m thick. 

Figure 1 presents a scheme of the hybrid elements used in poroelastic analyses, the FE 
mesh column used in the free field analyses and the right half of the mesh used in the analyses 
with the embedded wall. 

 

 
Figure 1: Finite element meshes: a) Hybrid elements; b) Free field; c) Layer with embedded wall. 
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2.4 Seismic action 
The seismic action is an artificial accelerogram generated by the SeismoSignal software 

[10], so as to match an elastic response spectrum defined by the Eurocode 8 [11]. Parameters 
of this spectrum were chosen for the seismic zone of Coimbra (Portugal), a seismic action of 
Type 2 (lower magnitude and epicentre in continental territory) and for Ground Type A 
(bedrock layer, considering the seismic action applied at the rigid base boundary of the finite 
element mesh). Figure 2 presents the accelerogram adopted in the analyses with a time 
duration of 22 seconds, that includes a stationary part of 10 seconds, and a maximum ground 
acceleration of ag=1.3 m/s2. The time steps used are of 0.01 seconds for G20 layers and 0.005 
seconds for G80 layers (regarding the higher frequencies existent in this layers movement). 

 

 
Figure 2: Artificial accelerogram used in the analyses 

3 EVALUATION OF VISCOUS DAMPING IN FREE FIELD SHEAR MOVEMENT 

3.1 Methodology 
Here is presented a description of the method to evaluate the modal frequencies and 

respective damping ratio of poroelastic saturated layers in free field conditions. Analyses were 
made for the range of permeabilities presented in Table 1. 

Firstly, a free vibration horizontal movement was induced at the layer by releasing a pre-
imposed displacement on the top of the column. From the free vibration responses, modal 
frequencies were calculated using a Discrete Fourier Transformer (DFT) algorithm [12]. 
Secondly, harmonic shear accelerations, with the previously calculated modal frequencies, 
were imposed at the base of the layer exciting only one mode at once. The one-mode response 
tends to be infinitely amplified in the absence of viscous damping, as approximately occurs 
for permeability values near the limit cases of total and null coupled interaction. For middle 
range permeabilities, viscous damping restricts amplification of the movements and a steady 
state response is achieved. As an example, the amplified response for the 1st mode of the layer 
G20 with k=1×10-1 m/s is presented in Figure 3. The amplification value obtained, D, allows 
the calculation of the damping coefficient, ξ, for each vibration mode, using the simplified 
equation for homogeneous layers [13]: 

( )
1

sinh 2 1
2

D n
−π

= − ξ⎛ ⎞
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Figure 3: Amplified response and frequency spectra for harmonic action with 1st mode frequency. 

3.2 Free vibration responses 
The elastic deformations due to a pre-imposed displacement, d0, on the top of the column, 

released at t=0s, induce a pure shear movement in free vibration mode. Depending on the 
coupled interaction between the fluid and solid skeleton, ruled by permeability, different 
levels of viscous damping are developed. In Figure 3 are presented the envelopes of the 
normalized displacements during the first 40 seconds of free vibration movement.  
 

       
Figure 4: Time variation of displacement amplitudes in free vibration mode for several permeabilities. 
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lower permeabilities, viscous damping tends to decrease as can be noticed by the less damped 
movements. Lower damping occurs for k=1×10-5m/s and k=100m/s, denoting their similitude 
of behaviour with the undamped coupled limit cases. Anyway, time decreasing amplitudes are 
noticeable for these higher and lower values of k, particularly for k=100m/s, which means that 
limit cases are not completely achieved and some residual damping is present. 
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3.3 Modal frequencies 
Analytical value of the n modal frequency for homogeneous layers can be calculated with 

the well known expression: 
( )2 1 4n Sf n v H= −  (5)

where vS is the shear wave velocity (Eq. 3), and H is the thickness of the layer. 
The results of the 1st and 2nd modal frequencies detected from spectral distributions for the 

aforementioned free vibration responses, as well analytical values obtained from Equation 5, 
are compiled in Table 3. Cases where dispersive frequency distribution hinders the 
achievement of accurate frequency higher modes are also presented in brackets. 

Analytical and calculated values for non-porous materials are in good agreement, which is 
a trustful indication that appropriate meshes and time steps had been used. This table shows 
that modal frequencies of poroelastic materials can be separated in two sets, each one with 
values similar to those of coupled limit cases calculated with non-porous materials. In each 
set, the pure shear behaviour of the poroelastic material can be reproduced using the 
respective non-porous material with an appropriate viscous damping. It is visible that the 
transition from dry to saturated behaviours occurs suddenly for permeabilities between 
k=1m/s to k=1×10-1m/s, for both G20 and G80, when viscous damping effect is more 
notorious (as shown in Figure 4). 

Table 3: Modal frequencies for different coupled interaction levels 

Coupled interaction 

  G20  G80 
Permeability  Modal frequencies  Modal frequencies 

k  f1 f2  f1 f2 
(m/s)  (Hz) (Hz)  (Hz) (Hz) 

Null / Analytical (ρ=ρd) ∞  1.376 4.127  2.752 8.255 
Null / Non-porous (ρ=ρd) ∞  1.375 4.120  2.750 8.240 

Poroelastic 

100  1.375 4.120  2.750 8.240 
10  1.375 4.120  2.750 8.245 
1  1.350 4.125  2.740 8.240 

10-1  1.250 (3.908)  2.540 (8.375) 
10-2  1.245 (3.735)  2.490 (7.490) 
10-3  1.245 3.730  2.490 (7.460) 
10-4  1.245 3.730  2.490 7.460 
10-5  1.245 3.730  2.490 7.460 

Total / Analytical (ρ=ρsat) 0  1.245 3.735  2.490 7.470 
Total / Non-porous (ρ=ρsat) 0  1.245 3.730  2.490 7.460 

( ) Inaccurate values. 

3.4 Viscous damping 
The steady-state responses for harmonic actions with modal frequencies allow the 

calculation of damping ratios, ξ, of the first two modes for the middle range permeabilities. 
For the lowest and highest permeability values, the residual damping present is not enough to 
hinder an increasing amplification of the responses, therefore, to establish a ξ value. Also, 
determination of the ξ values for higher modes is defected of the indelible presence of the 
lower modes. Despite these limitations, values of ξ presented in Table 4 are in accordance 
with damped responses presented in Figure 3. 
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Table 4: Modal damping ratios for different coupled interaction levels 

k
(m/s) 

G20 layer  G80 layer 
ξ1 ξ2  ξ1 ξ2 

(%) (%)  (%) (%) 
100 <0.05 --  <0.05 -- 
10 0.45 0.18  0.23 (0.12) 
1 3.74 1.51  2.16 0.76 

10-1 1.87 4.68  3.53 6.95 
10-2 0.21 --  0.40 1.18 
10-3 <0.05 --  <0.05 (0.14) 

-- Not detectable values; ( ) Inaccurate values. 

4 ANALYSES WITH THE SEISMIC ACTION 

4.1 General description 
The behaviours of poroelastic and non-porous layers are compared for equivalent viscous 

damping conditions. For that purpose, damping ratios previously obtained for poroelastic 
layers (Table 4) are considered for the calculation of Rayleigh damping parameters, a0 and a1 
used in non-porous materials, These Rayleigh parameters are calculated for the modal 
frequencies f1 and f2 presented in limit coupled cases (Table 3). Limit case frequencies, and 
therefore dry or saturated non-porous properties, are chosen according to proximity of 
frequency values observed in poroelastic layer which is intended to be replicated. Table 5 
presents the designations and main characteristics of the carried analyses with poroelastic and 
non-porous materials. 

Table 4: Characteristics of the comparative analyses with seismic action. 

 Poroelastic  Non-porous 
G

(MPa) Analysis k
(m/s) 

 Analysis Coupled inter. / 
Material 

Rayleigh coefficients 
 a0 a1 

20 
G20_k-5 10-5  G20_sat Total / Sat. 0 0 
G20_k-1 10-1  G20_sat_R Total / Sat. 0.05421 3.90×10-3 
G20_k1 10  G20_dry_R Null / Dry 0.07582 2.59×10-5 

80 
G80_k-5 10-5  G80_sat Total / Sat. 0 0 
G80_k-1 10-1  G80_sat_R Total / Sat. 0.42616 2.77×10-3 
G80_k1 10  G80_dry_R Null / Dry 0.07387 1.88×10-5 

4.1 Responses of layers in free field conditions 
The time variation of relative displacements on the top of the layers (u’=utop-ubase) is 

presented in Figure 5, for the several analyses. In this figure a good match between 
displacements in poroelastic and non-porous layers is visible, meaning that poroelastic 
behaviour can be fairly reproduced with non-porous damped materials (or undamped 
materials for quasi-limit coupled cases), in pure shear conditions. Also frequency spectra (not 
shown here) are very similar for both materials in these studied cases. A large amplification of 
displacements is found for k=1×10-5m/s analyses, particularly visible for the G80 layer, due to 
the almost absence of viscous damping in these cases. 
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Figure 5: Time variation of displacement amplitudes in free vibration mode for several permeabilities. 

4.2 Responses of layers with embedded wall 
Some results of the above-mentioned analyses are presented in Figure 6. In this figure, 

comparisons of relative displacements between poroelastic and non-porous layers are 
displayed for the top of the layers, above the wall and on the boundary (displacement control 
points marked in Figure 1c). These results are in agreement with that observed in free field 
analyses, denoting a good, but not so perfect, match of displacements between both materials. 
In these figures a higher amplification of responses is observed on the top of the wall, 
enhanced particularly for the less damped materials as G80_k-5 and G20_k1. 

Responses are less amplified at the boundaries, denoting a decreasing influence with the 
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distance of the wall. Anyway, the boundary displacements have some differences from those 
of the free field analyses, mainly for the less damped materials, which mean that these 
boundaries are not sufficiently far from the wall to reproduce the free field. 

 
     

  
     

  
     

  
Figure 6: Time variation of displacement amplitudes for the layers with embedded wall. 
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Also, the time variation of εv is less uniform from point to point in the layer with higher 
permeability, due to the fact that for k=1×10-5m/s the behaviour is more similar to the 
undrained case in the whole of the inner zone of the layer. 

 
 

 
 

 

 
Figure 6: Volumetric deformations in layers G20_k-5 and G80_k-1 with embedded wall. 
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5 CONCLUSIONS 
The results presented in this paper show that non-porous materials with appropriate 

properties and Rayleigh damping may reproduce almost perfectly pure shear behaviour of 
poroelastic layers. The good results obtained in the comparative analyses between both 
materials validate the method used for the determination of Rayleigh coefficients. 

Subsequent similar analyses were made for layers with an embedded wall. In these cases, 
the volumetric deformations induce slight differences between responses of both materials, 
more noticeable for the less damped cases. Nevertheless, calculations of the responses of 
layers with the embedded wall reveal fairly rigorous results with non-porous materials, 
despite the pore fluid pressures presented in poroelastic cases. The use of non-porous 
materials has the aforementioned benefits in effort and time computation. 

For the analyses with the embedded wall in poroelastic materials, a more uniform field of 
volumetric deformations is observed for permeabilities near limit coupled cases, meaning that 
over whole inner media has a similar behaviour. 
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