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B. Schrefler, E. Oñate and M. Papadrakakis(Eds)

COMPARING KINETIC AND HYDRODYNAMICAL
MODELS FOR ELECTRON TRANSPORT IN MONOLAYER

GRAPHENE

MARCO COCO∗, ARMANDO MAJORANA†, GIOVANNI MASCALI‡,
VITTORIO ROMANO†

∗ Department of Mathematics and Computer Science
University of Catania

Viale A. Doria 6, 95125 Catania, Italy
e-mail: mcoco@dmi.unict.it

† Department of Industrial Engineering
University of Catania

Viale A. Doria 6, 95125 Catania, Italy
e-mail: majorana@dii.unict.it, romano@dii.unict.it

‡ Department of Mathematics and Computer Science
University of Calabria

and INFN-Gruppo c. 87036 Cosenza, Rende, Italy
e-mail: giovanni.mascali@unical.it

Key words: Graphene, Boltzmann Transport Equation, Discontinuous Galerkin Method,
Hydrodynamical Models for Semiconductors.

Abstract. The aim of this work is to compare, in monolayer graphene, solutions of the
electron Boltzmann equation, obtained with a discontinuous Galerkin method, with those
of a hydrodynamical model based on the Maximum Entropy Principle.

1 INTRODUCTION

Graphene is a gapless semiconductor made of a single layer of carbon atoms arranged
into a honeycomb hexagonal lattice [1]. In view of applications in graphene-based electron
devices, it is crucial to understand the basic transport properties of this material.

A physically accurate model is given by a semiclassical transport equation whose scat-
tering terms have been deeply analyzed recently [2, 3, 4]. Due to the computational
difficulties, the most part of the available solutions have been obtained by direct Monte
Carlo simulations. A different approach has been employed in [5].

For computer aided design (CAD) purposes, it could be useful to have macroscopic
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models like drift-diffusion, energy-transport and hydrodynamical ones. Macroscopic mod-
els have been proposed, for example, in [6, 7, 8].

The aim of this work is to assess the validity of the hydrodynamical model based on
the Maximum Entropy Principle (MEP) [7], by comparing the solutions of this model
with those of the transport equation for electrons in suspended monolayer graphene. A
numerical scheme based on the discontinuous Galerkin method is used for finding the
solutions of the electron Boltzmann equation because the same method has been already
successfully applied to a more conventional semiconductor material like silicon [9, 10].

Comparison of the physically average quantities, electron energy and velocity, shows
that the MEP model is reasonable even if the introduction of some improvements regarding
additional moments or nonlinear effects is needed.

2 THE TRANSPORT EQUATIONS FOR ELECTRONS IN GRAPHENE

The electron energy in graphene depends on a two dimensional wave vector k belonging
to a bi-dimensional Brillouin zone which has an hexagonal shape.

The most part of electrons are in the valleys around the vertices of the Brillouin zone,
called Dirac points or K and K ′ points. Usually the K and K ′ valleys are treated as a
single equivalent one.

In a semiclassical kinetic setting, the charge transport in graphene is described by four
Boltzmann equations, one for electrons in the valence band (π) and one for electrons in
the conduction band (π∗), that in turn can belong to the K or K ′ valley,

∂fℓ,s(t,x,k)

∂t
+ vℓ,s · ∇xfℓ,s(t,x,k)−

e

�
E · ∇kfℓ,s(t,x,k) =

dfℓ,s
dt

(t,x,k)

∣∣∣∣
e−ph

, (1)

where fℓ,s(t,x,k) represents the distribution function of charge carriers, band π or π∗

(s = −1 or s = 1), in the valley ℓ (K or K ′), at position x, time t and wave-vector k.
We denote by ∇x and ∇k the gradients with respect to the position and the wave vector,
respectively. The microscopic velocity vℓ,s is related to the band energy εℓ,s by

vℓ,s =
1

�
∇k εℓ,s .

With a very good approximation [1] a linear dispersion relation holds for the band energies
εℓ,s around the equivalent Dirac points; so that εℓ,s = s � vF |k− kℓ|, where vF is the
(constant) Fermi velocity, � the Planck constant divided by 2 π, and kℓ is the position of
the Dirac point ℓ. The elementary (positive) charge is denoted by e, and E is the electric
field obtained by the Poisson equation, which must be coupled with Eq. (1). The right
hand side of Eq. (1) is the collision term representing the interaction of electrons with
acoustic, optical and K phonons. Acoustic phonon scattering is intra-valley and intra-
band. Optical phonon scattering is intra-valley and can be longitudinal optical (LO) and
transversal optical (TO); it can be intra-band, leaving the electron in the same band, or
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inter-band, pushing the electron from an initial band to another one. Scattering with
optical phonon of K type pushes electrons from a valley to a nearby one (inter-valley
scattering). We assume that phonons are a bath at thermal equilibrium. Hence, the
general form of the collision term can be written as

dfℓ,s
dt

(t,x,k)

∣∣∣∣
e−ph

=
∑
ℓ′,s′

[∫
Sℓ′,s′,ℓ,s(k

′,k) fℓ′,s′(t,x,k
′) (1− fℓ,s(t,x,k)) dk

′

−

∫
Sℓ,s,ℓ′,s′(k,k

′) fℓ,s(t,x,k) (1− fℓ′,s′(t,x,k
′)) dk′

]
,

where the total collision term is given by the sum of the contributions of the several types
of scatterings described above

Sℓ′,s′,ℓ,s(k
′,k) =

∑
ν

∣∣∣G(ν)
ℓ′,s′,ℓ,s(k

′,k)
∣∣∣
2 [(

n(ν)
q + 1

)
δ
(
εℓ,s(k)− εℓ′,s′(k

′)− �ω(ν)
q

)

+ n(ν)
q δ

(
εℓ,s(k)− εℓ′,s′(k

′) + �ω(ν)
q

)]
. (2)

The index ν labels the ν-th phonon mode, G
(ν)
ℓ′,s′,ℓ,s(k

′,k) is the scattering rate, which
describes the scattering mechanism, due to the ν-th phonons, between electrons belonging
to valley ℓ′ and band s′, and electrons belonging to valley ℓ and band s. The symbol δ
denotes the Dirac distribution function, ω

(ν)
q is the ν-th phonon frequency, n

(ν)
q is the

Bose-Einstein distribution for the ν-type phonons

n(ν)
q =

1

e�ω
(ν)
q /kBT − 1

,

where kB is the Boltzmann constant and T the constant graphene lattice temperature. If,
for a phonon ν∗-type, �ω(ν∗)

q ≪ kBT , then the corresponding scattering can be assumed

elastic. In this case, we eliminate in Eq. (2) the term �ω(ν∗)
q inside the delta distribution

and we use the Laurent approximation n
(ν∗)
q ≈ kBT/�ω(ν∗)

q .
Electrons which contribute to the charge transport in graphene are those in the con-

duction and valence band, and it is preferable to treat the latter as holes for insuring
the integrability of the corresponding distribution function. Electrons and holes mostly
populate the states near to the K and K ′ valleys. In this paper we consider the case of
a high value of the Fermi energy which is equivalent for conventional semiconductors to
a n-type doping. Under such a condition electrons belonging to the conduction band do
not move to the valence band and vice versa. Therefore the hole dynamics is neglected.

A reference frame centered in the K-point will be used and in order to simplify the
notation the indices s and ℓ will be omitted.

Under the above hypotheses the scattering rates read as follows.
For acoustic phonons, we consider the elastic approximation

2n(ac)
q

∣∣G(ac)(k′,k)
∣∣2 = 1

(2 π)2
πD2

ac kB T

� σm v2p
(1 + cosϑk ,k′) , (3)
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where Dac is the acoustic phonon coupling constant, vp is the sound speed in graphene,
σm is the graphene areal density, and ϑk ,k′ is the convex angle between k and k′.
There are three relevant optical phonon scatterings due to the longitudinal optical (LO),
the transversal optical (TO) and the K (K) phonons. The related scattering rates are

∣∣G(LO)(k′,k)
∣∣2 =

1

(2 π)2
π D2

O

2 σm ωO

(1− cos(ϑk ,k′
−k + ϑk′ ,k′

−k)) (4)

∣∣G(TO)(k′,k)
∣∣2 =

1

(2 π)2
π D2

O

2 σm ωO

(1 + cos(ϑk ,k′
−k + ϑk′ ,k′

−k)) (5)

∣∣G(K)(k′,k)
∣∣2 =

1

(2 π)2
π D2

K

σm ωK

(1− cosϑk ,k′) , (6)

where DO is the optical phonon coupling constant, ωO the optical phonon frequency, DK

is the K-phonon coupling constant and ωK the K-phonon frequency. The angles ϑk ,k′
−k

and ϑk′ ,k′
−k denote the convex angles between k and k′ − k and between k′ and k′ − k,

respectively.

3 THE NUMERICAL METHOD FOR THE TRANSPORT EQUATION

A numerical approach based on the discontinuous Galerkin method for solving the
kinetic model described in Sec. 2 is used.

Since we are interested to the transport properties in a homogeneous suspended mono-
layer, we look for spatially homogeneous solutions to Eq. (1) with a constant electric field.
The Boltzmann equation in the K valley reduces to

∂f(t,k)

∂t
−

e

�
E · ∇kf(t,k) =

∫
S(k′,k) f(t,k′) (1− f(t,k)) dk′

−

∫
S(k,k′) f(t,k) (1− f(t,k′)) dk′ . (7)

A similar equation holds for the K ′ valley. As initial condition we take the Fermi-Dirac
distribution

f(0,k) =
1

1 + exp

(
ε(k)− εF

kB T

) ,

where T = 300K, and εF is the Fermi energy, which is related to the initial charge density
by

ρ(0) =
2

(2 π)2

∫
f(0,k) dk . (8)

Eq. (7) is discretized by adopting a discontinuous Galerkin scheme. We choose a bounded
domain Ω ⊂ R2 such that f(t,k) ≈ 0 for every k /∈ Ω and t > 0, and introduce a finite
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decomposition {Cα}
N

α=1 of Ω, with Cα appropriate open sets, such that

Cα ∩ Cβ = ∅ if α �= β, and
N⋃

α=1

Cα = Ω .

The distribution function is assumed to be constant in each cell Cα. If we denote by χα(k)
the characteristic function over the cell Cα, then the approximation of the distribution
function f is given by

f(t,k) ≈ fα(t) ∀k ∈ Cα ⇐⇒ f(t,k) ≈
N∑

α=1

fα(t)χα(k) ∀k ∈
N⋃

α=1

Cα .

This assumption replaces the unknown f , which depends on the two variables t and k,
with a set of N unknowns fα, which depend only on time t. In order to obtain a set of N
equations for the new unknowns fα, we integrate Eq. (7) with respect to k over every cell
Cα and replace f with its approximation. The derivative of f with respect to the time is
treated easily. We have ∫

Cα

∂f(t,k)

∂t
dk ≈ Mα

d fα(t)

dt

where Mα is the measure of the cell Cα. It is clear that the numerical method yields
a system of ordinary differential equations by discretizing the collision operator and the
drift term as discussed below.

Discretization of the collision operator.

Since for each k ∈ Cα∫
S(k′,k) f(t,k′) (1− f(t,k)) dk′ −

∫
S(k,k′) f(t,k) (1− f(t,k′)) dk′

≈

N∑
β=1

[∫

Cβ

S(k′,k) fβ(t) (1− fα(t)) dk′ −

∫

Cβ

S(k,k′) fα(t)
(
1− fβ(t)

)
dk′

]

=
N∑

β=1

[
fβ(t) (1− fα(t))

∫

Cβ

S(k′,k) dk′ − fα(t)
(
1− fβ(t)

) ∫

Cβ

S(k,k′) dk′

]
,

if we define

Aα,β =

∫

Cα

[∫

Cβ

S(k,k′) dk′

]
dk , (9)

then we obtain∫

Cα

[∫
S(k′,k) f(t,k′) (1− f(t,k)) dk′ −

∫
S(k,k′) f(t,k) (1− f(t,k′)) dk′

]
dk

≈
N∑

β=1

[
Aβ,α (1− fα(t)) fβ(t)−Aα,β fα(t)

(
1− fβ(t)

)]
.
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Cα

Figure 1: Cells employed for the numerical flux in the case of a simple rectangular grid.

So doing, the integral collision operator is replaced by quadratic polynomials. We note
that the numerical coefficients Aα,β depend only on the scattering terms and the domain
decomposition.

Discretizaton of the force term.

We must approximate the term

−
e

�
E ·

∫

Cα

∇kf(t,k) dk = −
e

�
E ·

∫

∂Cα

f(t,k)n dσ

where n is the external unit normal to the boundary ∂Cα of the cell Cα. Since, due to
the Galerkin method, the approximation of f is not defined on the boundary of the cells,
we must introduce a numerical flux, that furnishes reasonable values of f on every ∂Cα,
depending on the values of the approximation of f in the nearest neighborhood of the cell
Cα and on the sign of E · n. In Fig. 1 we show a simple picture of the cells that can be
involved to find the numerical flux. The simplest numerical flux is given by the upwind

rule, that uses only the four nearest adjacent cells.

4 CARRIER MOMENT EQUATIONS AND CLOSURE RELATIONS

Macroscopic quantities can be defined as moments of the distribution functions with
respect to some suitable weight functions ψ(k), assuming a sufficient regularity for the
existence of the involved integrals. In particular for electrons and holes, we propose a set
of moment equations consisting of the balance equations of the following quantities
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average density ρi =
4

(2 π)2

∫

R2

fi(t,x,k) dk,

average velocity ρiVi =
4

(2 π)2

∫

R2

fi(t,x,k)v dk,

average energy ρiWi =
4

(2 π)2

∫

R2

fi(t,x,k) ε dk,

average energy-flux ρiSi =
4

(2 π)2

∫

R2

fi(t,x,k) εv dk,

(i = electron, hole), where the factor 4 arises from taking into account both the spin
states and the two equivalent valleys.

By integrating the Boltzmann equations with respect to k, one has the following balance
equations for the above-defined macroscopic quantities

∂

∂t
ρi +∇r · (ρi Vi) = ρi Ci, (10)

∂

∂t
(ρi Vi) +∇r ·

(
ρi F

(0)
i

)
+ ei ρiG

(0)
i E = ρiCVi

, (11)

∂

∂t
(ρiWi) +∇r · (ρi Si) + eiρiE ·Vi = ρiCWi

, (12)

∂

∂t
(ρi Si) +∇r ·

(
ρiF

(1)
i

)
+ eiρiG

(1)
i E = ρiCSi

, (13)

where the G’s and F ’s are extra-fluxes and the terms at the right hand sides are produc-
tions (the reader is referred to [7] for details) and ei is equal to e for electrons and −e for
holes.

The extra fluxes and the production terms are additional unknown quantities. For
them constitutive relations in terms of the fundamental variables are needed in order
to get a closed system of balance equations. A well theoretically founded way to get
the desired closure relations is to resort to the Maximum Entropy Principle (MEP) [11],
according to which the electron and hole distribution functions can be estimated by the
distributions fe,MEP and fh,MEP solving the following problem

(fe,MEP
, fh,MEP

)= max
fe(t,x,)̇,fh(t,x,)̇∈F(R2)

S[fe, fh],

under the constraints
(

ρi
ρiWi

)
=

4

(2 π)2

∫

R2

(
1
ε

)
fi(t,x,k) dk,

(
ρiVi

ρiSi

)
=

4

(2 π)2

∫

R2

fi(t,x,k)

(
v
εv

)
dk,

7
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where S[fe, fh] is the total entropy of the system (remind that the phonons are assumed to
represent a thermal bath kept at constant temperature and therefore they add a constant
contribution to the entropy) given by

−kB

{
4

(2π)2

∫

R2

[f e ln f e + (1− f e) ln (1− f e)] dk+
4

(2π)2

∫

R2

[
fh ln fh+

(
1− fh

)
ln
(
1− fh

)]
dk

}
,

F(R2) being the space of the distribution functions that admit the moments required as
constraints.

By solving the above maximization problem we get

fi =
1

1 + exp (λi + λWi
ε+ v · (λVi

+ ελSi
))
.

As in [12] we linearize the distributions around their isotropic part, obtaining

fi ≈
1

eλi+λWi
ε + 1

[
1−

eλi+λWi
ε

eλi+λWi
ε − 1

v · (λVi
+ ελSi

)

]
,

where the λ’s are Lagrange multipliers which have to be expressed as functions of the
state variables by taking into account the constraints.

After that, these distributions are inserted into the kinetic definitions of the additional
variables, so closing the system of the balance equations (see [7] for the details).

5 NUMERICAL SOLUTIONS

We want to assess the validity of the MEP hydrodynamical model by a comparison with
the solutions furnished by the direct integration of the transport equation. For solving
the latter let us consider a circle as domain Ω. A TVD third order Runge-Kutta scheme
is used to solve the resulting ODE system similarly to Ref. [13]. We remark that the
numerical scheme guarantees the mass conservation.

The Fermi level is set equal to 0.4 eV, a value high enough for neglecting the inter-band
interactions, and the lattice constant is kept equal to 300 K. In the literature there are
several values for the coupling constants entering into the collision terms. For example
for the acoustic deformation potential one can find values ranging from 2.6 eV to 29 eV.
Similar degree of uncertainty is found for the optical and K phonon coupling constants
as well.

We have performed numerical simulations of a suspended monolayer graphene by con-
sidering the parameters used in [14]. The solutions do not depend on x and therefore we
neglect the terms in divergence form in the balance equations (10)-(13), that become a

8
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system of ODEs. Moreover only the component of the velocity and the energy-flux along
the direction of the electric field, which we assume to be the x axis, is changing with time
if we set the initial velocity equal to zero. Regarding the initial conditions of the other
macroscopic variables, consistently with an initial Fermi-Dirac distribution for Eq. (7),
we assume zero energy-flux while the initial density and the average energy density are
calculated from the initial Fermi-Dirac distribution.

Eq. (7) and the system (10)-(13) have been solved for different values of the applied
electric field and the results for the average velocity and the energy are shown in Fig.s 2,
3.

Regarding the average energy the results of the MEP model are quite satisfactory. In
the steady regime the maximum relative error is about 5 % and is reached when E = 10
kV/cm. In the other case we have a relative error of 1.4 % for E = 2 kV/cm, 2.4 % for
E = 4 kV/cm, 3 % for E = 20 kV/cm. Note that the error is not monotone with respect
to the electric field.

The behavior of the relative error for the velocity is different. This latter, instead, is
decreasing by increasing the applied field. The discrepancy has a maximum for E = 2
kV/cm of about 32 %. For E = 4 kV/cm the relative error is 28 %, for E = 10 kV/cm
19 %, for E = 20 kV/cm 4 %.

In order to understand if the Fermi energy influences the accuracy of the MEP model,
we have performed the same simulations with εF = 0.6 eV. The qualitative behaviour is
similar to the case εF = 0.4 eV. Again one finds a relative error for the energy not greater
than 5 %. Instead the relative error of the velocity is higher: 37 % if E = 2 kV/cm, 32
% if E = 4 kV/cm, 30 % E = 10 kV/cm, 24 % E = 20 kV/cm.

Although the overall discrepancy is reasonable for the applications, it is likely that one
needs to include some nonlinear terms in the velocity and the energy-flux or additional
moments. Apparently the MEP model under consideration is not able to give a correct
equilibrium limit. This is an open problem we are working on.
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