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Abstract. The 2D unsteady Navier-Stokes equations in its velocity-vorticity formulation,
after time discretization, leads to a nonlinear elliptic system which may be solved by
iterative methods; however, decoupling the nonlinear vorticity equation from the vorticity
in the velocity equations by linear interpolation, a direct method is applied, allowing the
vorticity equation to be linear. Steady state convergent flows from the un–regularized
unit driven cavity problem, which causes recirculation because of the nonzero boundary
condition on the top wall, are reported for Reynolds numbers Re, 400 ≤ Re ≤ 4000.
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1 INTRODUCTION

The main goal of this paper is to present numerical results at moderate Reynolds num-
bers in the range of 400 ≤ Re ≤ 4000. The results are obtained using a simple numerical
scheme for the unsteady Navier-Stokes equations in velocity and vorticity variables. The
numerical scheme consists in a direct method to solve the nonlinear steady subproblem
that results after a convenient time discretization is applied. This is a novelty contribu-
tion since usually that kind of problems are solved by iterative techniques: for instance,
[1] for isothermal problems and [2] for thermal ones.

The flows are obtained from the well known un-regularized driven (or lid-driven) cavity
problem which originates recirculation phenomena due to the nonzero velocity boundary
condition on the top wall: the recirculation is originated by the fluid flow coming from
the upstream top corner, and then hitting the downstream top corner.

At moderate Reynolds numbers, say for instance Re ≤ 7500, the flow approaches to
an asymptotic steady state as t tends to ∞. The meshes in this work follow the size
dictated by the thickness of the boundary layer (of order of Re−

1
2 ) and no refining on

the mesh is required near the boundary. The results clearly show that as the Reynolds
number increases the mesh has to be refined and this in turn leads to decrease the time
step: numerically, by stability matters and physically, to capture the fast dynamics of the
flow. At this stage the results that are shown are obtained with the contour values given
by [3] which are easier to obtain than those given by [4].

2 THE CONTINUOUS PROBLEM AND THE NUMERICAL METHOD

Let Ω ⊂ RN (N=2,3) be the region of the flow of a viscous incompressible fluid, and
Γ its boundary. It is well known that this kind of unsteady flow is governed by the
non-dimensional Navier-Stokes equations; in Ω, t > 0; given by

ut −
1

Re
∆u + ∇p + (u · ∇)u = f (1)

∇ · u = 0 (2)

where u, and p are the velocity and pressure of the flow, respectively. The parameter
Re = UL/ν, ν=kinematic viscosity, is the Reynolds number. The momentum equation
(1) must be supplemented with appropriate initial and boundary conditions, for instance
u(x, 0) = u0(x) in Ω (∇ · u0 = 0) and u = f1 on Γ, t ≥ 0 (

∫

f1 · ndΓ = 0) respectively.
Taking twice the curl in the momentum equation in the primitive variables formulation

of the Navier-Stokes equations given by (1), and restricting to the two-dimensional case,
we obtain the velocity-vorticity formulation:

ωt −
1

Re
∇2ω + u · ∇ω = f, (3)
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for the vorticity ω and two Poisson equations for the velocity components

∇2u = −∂ω

∂y
and ∇2v =

∂ω

∂x
, (4)

which are related, with (1), by

ω =
∂v

∂x
− ∂u

∂y
; (5)

where u = (u, v) is the velocity with components u and v, see [1] for details for the general
3D case.

From equation (2) a function, called the streamfunction, is obtained, which using the
relations

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (6)

and, from (5), an elliptic equation for ψ is obtained:

∇2ψ = −ω . (7)

A description of the numerical method follows. The time derivative that appears in the
vorticity equation (3) is approximated with the following scheme, which is unconditionally
stable when it is implicitly combined with the Laplacian operator, and it is well behaved
when t → +∞, [5],

ft(x, (n + 1)∆t) =
3fn+1 − 4fn + fn−1

2∆t
+ O(∆t2), n ≥ 1, (8)

where fn = f(x, n∆t); then, replacing that derivative in (3) by (8) we have the following
totally implicit approximate problem

−∇2un+1 =
∂ωn+1

∂y
(9)

−∇2vn+1 = − ∂ωn+1

∂x
, un+1|Γ = un+1

bc (10)

αωn+1 − ν∇2ωn+1 + un+1 · ∇ωn+1 = fω, ωn+1|Γ = ωn+1
bc (11)

where α = 3
2∆t

, fω = 4ωn−ωn−1

2∆t
and 1

Re
has been replaced by the kinematic viscosity

coefficient ν, considering U = L = 1. On the other hand, ubc and ωbc denote boundary
condition for u and ω.

We recall that the novelty here is to apply a direct method decoupling equations (9-10)
from (11) with a linear interpolation from the values of ω known from the two previous
time levels; then, in these conditions (9-10) are solved first, then with the values of u and
v, (11) is solved as a linear equation.
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Renaming {un+1, vn+1, ωn+1} as {u, v, ω}, and holding the linear interpolation of the
right hand sides of u and v mentioned above, one has the following linear, uncoupled
elliptic equations

−∇2u = 2
∂ω

∂y

n

− ∂ω

∂y

n−1

(12)

−∇2v = −2
∂ω

∂x

n

+
∂ω

∂x

n−1

(13)

αω − ν∇2ω + u · ∇ω = fω, (14)

with the boundary condition mentioned in (9-11). To obtain (u1, v1, ω1) in (9-11) or (12-
14), a first order approximation is applied for the time derivatives in (3), among other
options, through a subsequence with smaller time step; a elliptic problem of the form
(12-14) is also obtained.

For the spatial discretization to solve elliptic problems of the form (12-14) it may be ap-
plied either Finite Differences (FD) or Finite Element (FE) if the region Ω is rectangular.
For the (FD) case the following classic second order discretizations are used:

With h > 0,

f ′′(x) =
f(x − hx) − 2f(x) + f(x + hx)

h2
x

+ O(h2
x),

f ′′(y) =
f(y − hy) − 2f(y) + f(y + hy)

h2
y

+ O(h2
y);

f ′(x) =
f(x + hx) − f(x − hx)

2hx

+ O(h2
x), (15)

f ′(y) =
f(y + hy) − f(y − hy)

2hy

+ O(h2
y).

Remark 2. We can also approximate f ′(x) and f ′(y) with (7) replacing ∆t by hx and
hy.

Considering the rectangular flow region Ω = (0, a) × (0, b), a > 0, b > 0, which for
the unitary cavity, a = b = 1. With M, N > 0 integers, we denote hx = a

M+1
, hy = b

N+1
,

xi = i ∗ hx, i = 0, 1, · · · , M,M + 1, and xj = j ∗ hy, j = 0, 1, · · · , N,N + 1; and by, say
ωij = ω(xi, yj). If M = N , hx = hy = h.

Then, with M = N ,

∂ω

∂y
=

ωij+1 − ωij−1

2h
(16)

and
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∂ω

∂x
=

ωi+1j − ωi−1j

2h
; (17)

for αω − ν∇2ω we have

αωn+1
ij − ν

ωn+1
i−1j + ωn+1

i+1j − 4ωn+1
ij + ωn+1

ij−1 + ωn+1
ij+1

h2
. (18)

Similarly for −∇2u and −∇2v.
Obtaining, from (18), a constant matrix m for ω. If we keep u · ∇ω in the left hand

side, discretizating it like

u · (∇ω) = un+1
ij

[
ωn+1

i+1j−ωn+1
i−1j

2h

]
− vn+1

ij

[
ωn+1

ij+1−ωn+1
ij−1

2h

]
(19)

and adding it to αω− ν∇2ω a matrix depending on time is obtained, i.e., m = m(t). The
case M = N = 3 is shown next; it is split in two part for space reasons, the second part
shows the last three columns.




4ν + h2

∆t
−ν + hv1,1

2
0 −ν + hu1,1

2
0 0

−ν − hv1,2

2
4ν + h2

∆t
−ν + hv1,2

2
0 −ν + hu1,2

2
0

0 −ν − hv1,3

2
4ν + h2

∆t
0 0 −ν + hu1,3

2

−ν − hu2,1

2
0 0 4ν + h2

∆t
−ν + hv2,1

2
0

0 −ν − hu2,2

2
0 −ν − hv2,2

2
4ν + h2

∆t
−ν + hv2,2

2

0 0 −ν − hu2,3

2
0 −ν − hv2,3

2
4ν + h2

∆t

0 0 0 −ν − hu3,1

2
0 0

0 0 0 0 −ν − hu3,2

2
0

0 0 0 0 0 −ν − hu3,3

2







0 0 0
0 0 0
0 0 0

−ν + hu2,1

2
0 0

0 −ν + hu2,2

2
0

0 0 −ν + hu2,3

2

4ν + h2

∆t
−ν + hv3,1

2
0

−ν − hv3,2

2
4ν + h2

∆t
−ν + hv3,2

2

0 −ν − hv3,3

2
4ν + h2

∆t




(20)
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All calculations are made with m = m(t), and so far it seems better than considering
the constant matrix m, mentioned before, as it is usually done. As is already known the
matrix is symmetric and pentadiagonal of size N2 × N2. For N (or M) large enough it
gives rise a sparse matrix.

With α = 0 and ν = 1, it is clear that the above matrix is similar to −∇2u and −∇2v,
but constants; these latter matrices are diagonally dominant whereas the previous one is
strictly diagonally dominant if ∆t, in α, is sufficiently small, [8].

It should be noted that the above constant matrix m is the consequence of taking
u · ∇ω, in (14), to the right hand side with the linear interpolation of the two previous
time levels, i.e.,

2(u · ∇ω)n − (u · ∇ω)n−1,

Therefore, in each time step, three algebraic linear equations systems, associated with
the semi-discrete system for u, v, and ω in (12 − 14), will be solved, that is, algebraic
systems of the form A x = b, with A = m(t) (or m). Up to now these algebraic linear
systems have been solved with LinearSolve, storing previously the matrix as a SparseAr-
ray, both Mathematica 8 Commands. The results are reported through the contour of
ω and ψ; concerning ψ, this is obtained, in the final time in which ω has been already
computed solving the equation for ψ given by (7).

3 NUMERICAL EXPERIMENTS AND DISCUSSION

The spatial discretization must be supplemented with boundary conditions, for each
equation, on Γ for all t ≥ 0, in this case for the driven cavity problem, we have (u, v) =
(1, 0) on the moving top wall y = 1 and (u, v) = (0, 0) elsewhere; this problem, as
mentioned above causes recirculation. Then in terms of this boundary condition for u,
the one given by u, v and ω reads

u = 0, v = 0; ω = ∂v
∂x

on Γx=0

u = 0, v = 0; ω = ∂v
∂x

on Γx=1

u = 0, v = 0; ω = −∂u
∂y

on Γy=0

u = 1, v = 0; ω = −∂u
∂y

on Γy=1

(21)

Besides, ω(x, 0) = ω0(x) denotes the vorticity initial condition which, by (5), has to
satisfy ω0 = ∂v0

∂x
− ∂u0

∂y
if u0 = (u0, v0) is the initial velocity.

For moderate Reynolds numbers Re, the following values are reported: Re=400, 1000
and 4000; actually, Re = 400 is not shown but the calculation agrees perfectly with the one
we are comparing with.. The results, for each case of Re that is considered, correspond to
steady state flows, the iso-contours for the vorticity ω are shown first and the streamlines
for the streamfunction ψ right below. The cases Re=400 and 1000 agree perfectly with the
ones reported by [3] who solve the stationary problem using the streamfunction and vor-
ticity formulation; they use the contour values vo = {−5.,−3,−1, 1, 3, 5.} for vorticity and
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vz = {−0.11,−0.10,−0.08,−0.06,−0.04,−0.02,−0.01} for the streamfunction, which
give rise the streamlines. Other kind of contour values are v1 = {−3.,−2.,−1.,−.5, 0., .5, 1.
, 2., 3., 4., 5.} for vorticity given by [4] which are harder to obtain than those of [3], as has
already already pointed out in earlier works of the third author. The case Re = 4000 does
not agree at all with the one [3] but it does with the one in [1], where some explanation
is given for this small disagreement.

The mesh size is denoted by h and the time step by ∆t and they are specified in each
case under study. Figures 1 and 2 pictures de iso-vorticity contours and streamlines for
Re = 1000 respectively, obtained with h = 1/256 and ∆t = 0.005. Figures 3 and 4 those
for Re = 4000, obtained with h = 1/600 and ∆t = 0.0025.

4 CONCLUSIONS

We have presented results for moderate Reynolds numbers that are obtained from a
direct numerical method applied to the Navier-Stokes equations in its velocity-vorticity
formulation, which is not a common formulation to use. Besides the novelty of the direct
method the results become from a variable matrix depending on time and just using
Mathematica 8. We are working to improve the scheme to be able to handle high Reynolds
numbers as well as to extend it to thermal problems like those in [2] and in [7].
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Figure 1: ω: Re=1000 (Keller); h=1/256, dt=.005
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Figure 2: ψ: Re=1000 (Keller); h=1/256, dt=.005
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Figure 3: ω: Re=4000 (Keller); h=1/600, dt=.0025
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Figure 4: ψ: Re=4000 (Keller); h=1/600, dt=.0025
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