
Data Analysis & Pattern Recognition
Validation Procedures. Leave-one-out cross-validation
(LOOCV) and k-fold cross-validation

Francesc Pozo

Escola d’Enginyeria de Barcelona Est (EEBE)
Universitat Politècnica de Catalunya (UPC)

Master’s Degree in Chemical Engineering
Master’s Degree in Interdisciplinary and Innovative Engineering

1

Cross-validation

Simple linear regression

• Simple linear regression is a very straightforward approach for
predicting a quantitative response Y on the basis of a single
predictor variable X. It assumes that there is approximately a
linear relationship between X and Y . Mathematically, we can
write this linear relationship as

Y ≈ β0 + β1X.

Example
For example, X may represent horsepower and Y may represent
mpg (miles per gallon) (with respect to the Auto data set). Then we
can regress mpg onto horsepower by fitting the model

mpg ≈ β0 + β1 × horsepower.

2

Cross-validation

Example

The Auto data set. For a number of cars, mpg and horsepower are
shown. There is a pronounced relationship between mpg and
horsepower, but it seems clear that this relationship is in fact
non-linear: the data suggest a curved relationship.

3

Cross-validation

Python code
1 >>%matplotlib inline
2 >>import csv
3 >>import pandas as pd
4 >>import numpy as np
5 >>import matplotlib.pyplot as plt
6 >>filename = "Auto.csv"
7 >>df = pd.read_csv(filename)
8 >>moddf = df.dropna()
9 >>v = moddf.values
10 >>plt.xlabel('horsepower')
11 >>plt.ylabel('miles per gallon')
12 >>plt.scatter(v[:,3], v[:,0],s=40,facecolors='none', edgecolors=

'g')
13 >>plt.savefig('scatterAuto.eps', dpi=300, bbox_inches='tight')
14 >>plt.show()

4

Cross-validation

Non-linear relationships

• In some cases, the true relationship between the response and
the predictors may be non-linear. Here we present a very simple
way to directly extend the linear model to accomodate
non-linear relationships, using polynomial regression.

Y ≈ β0 +
N∑
i=1

βiXi.

Example
For example, with respect to the Auto data set, we can regress mpg
onto horsepower by fitting a quadratic model model

mpg ≈ β0 + β1 × horsepower+ β2 × horsepower2.

5

Cross-validation

Measuring the quality of fit

• In order to evaluate the performance of a statistical learning
method on a given data set, we need some way to measure how
well its predictions actually match the observed data. In the
regression setting, the most commonly-used measure is the
mean squared error (MSE), given by

MSE = 1
n

n∑
i=1

(
yi − f̂ (xi)

)2
,

where f̂ (xi) is the prediction that f̂ gives for the ith observation.

6

Cross-validation

Measuring the quality of fit

• When the MSE

MSE = 1
n

n∑
i=1

(
yi − f̂ (xi)

)2
is computed using the training data, we refer to the training MSE.

• However, we are more interested in the accuracy of the
predictions that we obtain when we apply our method to
previously unseen test data. In this case, we refer to the test
MSE (aka test error).

7

Cross-validation

Training error versus test error

• The test error is the average error that results from using a
statistical learning method to predict the response on a new
observation, one that was not used in training the method.

• In contrast, the training error can be easily calculated by
applying the statistical learning method to the observations
used in its training.

• But the training error rate often is quite different from the test
error rate, and in particular the former can dramatically
underestimate the latter.

8

Cross-validation

Validation-set approach

• Here we randomly divide the available set of samples into two
parts: a training set and a validation or hold-out set.

• The model is fit on the training set, and the fitted model is used
to predict the responses for the observations in the validation
set.

• The resulting validation-set error provides an estimate of the
test error. This is typically assessed using MSE in the case of a
quantitative response and misclassification rate in the case of a
qualitative (discrete) response.

9

Cross-validation

The validation process

• A random splitting into two halves: left part is training set, right
part is validation set

1 2 3 n

7 22 13 91

training set validation set

10

Cross-validation

Example

• The validation set approach was used on the Auto data set in
order to estimate the test error that results from predicting mpg
(miles per gallon) using polynomial functions of horsepower in
a linear regression.

• We randomly split the 392 observations into two sets, a training
set containing 196 of the data points, and a validation set
containing the remaining 196 observations.

• Left: single split; Right: multiple splits. 11

Cross-validation

Python code
1 >>import numpy as np
2 >>import pandas as pd
3 >>import csv
4 >>from sklearn.linear_model import LinearRegression
5 >>from sklearn.preprocessing import PolynomialFeatures
6 >># loading data
7 >>filename = "Auto.csv"
8 >>df = pd.read_csv(filename)
9 >>moddf = df.dropna()
10 >>v = moddf.values

12

Cross-validation

Python code
1 >>x = v[:,3].reshape((-1,1)) #input data / regressor
2 >>y = v[:,0]
3 >>mse0 = list()
4 >>for deg in range(1,11):
5 x_ = PolynomialFeatures(degree=deg, include_bias=False).

fit_transform(x)
6 model = LinearRegression().fit(x_, y)
7 y_pred = model.predict(x_)
8 mse0.append(np.sum((y-y_pred)**2)/len(y)) # MSE as a

function of the degree of polynomial

13

Cross-validation

Python code
1 >>np.random.seed(3)
2 >>mse_all = np.zeros((10,10))
3 >>for resamp in range (0,10):
4 nprc = np.random.choice(392,392,replace=False)
5 xtrain = v[nprc[0:196],3].reshape((-1,1))
6 ytrain = v[nprc[0:196],0]
7 xtest = v[nprc[196:392],3].reshape((-1,1))
8 ytest = v[nprc[196:392],0]
9 mse = list()
10 for deg in range(1,11):
11 xtrain_ = PolynomialFeatures(degree=deg, include_bias=

False).fit_transform(xtrain)
12 xtest_ = PolynomialFeatures(degree=deg, include_bias=

False).fit_transform(xtest)
13 model = LinearRegression().fit(xtrain_, ytrain)
14 y_pred = model.predict(xtest_)
15 mse.append(np.sum((ytest-y_pred)**2)/len(ytrain)) #

list of MSE as a function of the degree of poly
16 mse_all[resamp,:] = mse

14

Cross-validation

Python code
1 >>%matplotlib inline
2 >>import matplotlib.pyplot as plt
3 >>f, axes = plt.subplots(1, 2, figsize=(10, 5), sharey=True)
4 >>axes[0].plot(np.arange(1,11,1),mse0,'o-',color='r')
5 >>axes[0].set_ylabel('mean square error')
6 >>axes[0].set_xlabel('degree of polynomial')
7 >>for resamp in range(0,10):
8 axes[1].plot(np.arange(1,11,1),mse_all[resamp,:],'o-')
9 >>axes[1].set_ylabel('mean square error')
10 >>axes[1].set_xlabel('degree of polynomial')
11 >>plt.savefig('mse2fold.eps', dpi=300, bbox_inches='tight')
12 >>plt.show()

15

Cross-validation

Drawbacks of the validation set approach

• The validation estimate of the test error can be highly variable,
depending on precisely which observations are included in the
training set and which observations are included in the
validation set.

• In the validation approach, only a subset of the observations —
those that are included in the training set rather than in the
validation set— are used to fit the model.

• This suggests that the validation set error may tend to
overestimate the test error for the model fit on the entire data
set.

16

Cross-validation

k-fold cross-validation

• Widely used approach for estimating test error.
• Estimates can be used to select best model, and to give an idea
of the test error of the final chosen model.

• Idea is to randomly divide the data into k equal-sized parts. We
leave out part k, fit the model to the other k− 1parts
(combined), and then obtain predictions for the left-out kth part.

• This is done in turn for each part j = 1, 2, . . . , k, and then the
results are combined.

17

Cross-validation

k-fold cross-validation in detail

• A set of n observations is randomly split into k non-overlapping
groups.

1 2 3 n

47

training set

validation set

11

11 47

11 47

11 47

11 47

18

Cross-validation

k-fold cross-validation in detail

• Let the k parts be C1, C2, . . . , Ck, where Cj denotes the indices of
the observations in part j. There are nj observations in part k. If
n is a multiple of k, then nj = n/k.

• Compute

CV(k) =
k∑
j=1

nj
n
MSEj,

where

MSEj =
∑
i∈Cj

(yi − ŷi)2

nj
,

and ŷi is the fit for observation i, obtained from the data with
part j removed.

19

Cross-validation

Leave-one-out cross-validation (LOOCV)

• Setting k = n yields n-fold or leave-one-out cross-validation
(LOOCV).

• LOOCV sometimes useful, but typically does not shake up the
data enough. The estimates from each fold are highly correlated
and hence their average can have high variance.

• A better choice is k = 5 or k = 10 (or a similar divisor of n).

20

Cross-validation

Example

• Cross-validation was used on the Auto data set in order to
estimate the test error that results from predicting mpg (miles
per gallon) using polynomial functions of horsepower.

• Left: The LOOCV error curve. Right: 7-fold CV was run nine
separate times, each with a different random split of the data
into seven parts. The figure shows the nine slightly different CV
error curves.

21

Cross-validation

Python code
1 >>mse_LOOCV = np.zeros((1,10))
2 >>mse_fold = np.zeros((392,10))
3 >>for fold in range(0,392):
4 xtest = v[fold:fold+1,3].reshape((-1,1))
5 ytest = v[fold:fold+1,0]
6 aux_list = np.setdiff1d(np.arange(0,392,1),[fold])
7 xtrain = v[aux_list,3].reshape((-1,1))
8 ytrain = v[aux_list,0]
9 mse = list()
10 for deg in range(1,11):
11 xtrain_ = PolynomialFeatures(degree=deg, include_bias=

False).fit_transform(xtrain)
12 xtest_ = PolynomialFeatures(degree=deg, include_bias=

False).fit_transform(xtest)
13 model = LinearRegression().fit(xtrain_, ytrain)
14 y_pred = model.predict(xtest_)
15 mse.append(np.sum((ytest-y_pred)**2)/len(ytest)) #

list of MSE as a function of the degree of poly
16 mse_fold[fold,:] = mse
17 >>mse_LOOCV = np.mean(mse_fold, axis=0) 22

Cross-validation

Python code
1 >># k−fo ld CV
2 >>k = 7
3 >>block = i n t (392/ k)
4 >>np . random . seed (3)
5 >>mse_all2 = np . zeros ((9 , 1 0)) # k−fo ld CV was run 9 separate times
6 >> fo r resamp in range (0 , 9) :
7 nprc = np . random . choice (392 , 3 92 , replace = False)
8 mse_fold = np . zeros ((k , 1 0))
9 fo r fo ld in range (0 , k) :
10 x t e s t = v [nprc [fo ld *block : (fo ld + 1) *block] , 3] . reshape ((−1 , 1))
11 y t e s t = v [nprc [fo ld *block : (fo ld + 1) *block] , 0]
12 au x_ l i s t = np . s e t d i f f 1 d (nprc , nprc [fo ld *block : (fo ld + 1) *block])
13 x t r a i n = v [aux_ l i s t , 3] . reshape ((−1 , 1))
14 y t r a i n = v [aux_ l i s t , 0]
15 mse = l i s t ()
16 fo r deg in range (1 , 1 1) :
17 x t r a in_ = PolynomialFeatures (degree=deg , inc lude_bias = False) . f i t _ t r ans fo rm (x t r a i n)
18 x tes t_ = PolynomialFeatures (degree=deg , inc lude_bias = False) . f i t _ t r ans fo rm (x t e s t)
19 model = L inearRegress ion () . f i t (x t ra in_ , y t r a i n)
20 y_pred = model . p red i c t (x tes t_)
21 mse . append (np . sum ((y tes t−y_pred) **2) / len (y t e s t)) # l i s t of MSE as a funct ion of the

degree of poly
22 mse_fold [fold , :] = mse
23 mse_all2 [resamp , :] = np .mean(mse_fold , a x i s = 0)

23

Cross-validation

Python code
1 >>%matplotlib inline
2 >>import numpy as np
3 >>import matplotlib.pyplot as plt
4 >>f, axes = plt.subplots(1, 2, figsize=(10, 5), sharey=True)
5 >>axes[0].plot(np.arange(1,11,1),mse_LOOCV,'o-',color='red')
6 >>axes[0].set_ylabel('mean square error')
7 >>axes[0].set_xlabel('degree of polynomial')
8 >>for resamp in range(0,9):
9 axes[1].plot(np.arange(1,11,1),mse_all2[resamp,:],'o-')
10 >>axes[1].set_ylabel('mean square error')
11 >>axes[1].set_xlabel('degree of polynomial')
12 >>plt.savefig('msekfold.eps', dpi=300, bbox_inches='tight')
13 >>plt.show()

24

Cross-validation

Cross-validation on classifications problems

• We divide the data into k roughly equal-sized parts C1, C2, . . . , Ck,
where Cj denotes the indices of the observations in part j. There
are nj observations in part k. If n is a multiple of k, then nj = n/k.

• Compute

CV(k) =
1
n

k∑
j=1

Errj,

where

Errj =
∑
i∈Cj

I(yi 6= ŷi)

is the number of misclassified observations.

25

