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Abstract 

National terrestrial nitrogen budgets for many developed countries have been calculated as 

part of the management of impacts of N on the environment, but these rarely represent the 

subsurface explicitly.  Using estimates of vadose zone travel time and agricultural nitrate 

loading, we quantify, for the first time, the total mass of nitrate contained in the vadose zone 

of aquifers in England and Wales.  This mass peaked in 2008 at 1400 kt N (800 to >1700 kt 

N from sensitivity analyses) which is approximately 2.5 to 6 times greater than saturated zone 

estimates for this period and indicates that the subsurface is an important store of reactive 

nitrogen.  About 70% of the nitrate mass is estimated to be in the Chalk, with the remainder 

split between the Permo-Triassic sandstones, the Jurassic Oolitic limestones and minor 

aquifers.  Current controls on fertiliser application mean that the vadose zone is now a nitrate 

source and in 2015 we estimate the net flux from the unsaturated zone to groundwater to be 

72 kt N/annum.  The mass of nitrate in the vadose zone should be included in future 

terrestrial nitrogen budgets at national and global scales to improve ecosystem management. 

 

Keywords:  Nitrate; Nitrate budget; Groundwater; Unsaturated zone; Vadose zone 
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1 Introduction 

 

Modern intensive agriculture has significantly affected the earth’s nitrogen (N) cycle 

(Vitousek et al. 1997).  It is estimated that the input rates of reactive nitrogen to the terrestrial 

biosphere are now over double pre-industrial levels (Galloway et al. 2004) through changes 

in agricultural land use practices, including the development and application of N fertilizers.  

This reactive nitrogen cascades through the environment with a number of deleterious and 

costly effects (Galloway et al. 2003). Groundwater and surface water quality for public 

supply has deteriorated, resulting in expensive “end-of-pipe” solutions such as nitrate 

removal or blending of waters (Kapoor and Viraraghavan (1997), Pretty et al. (2000), 

UKWIR (2004)) and this has been recognised in the UK and elsewhere for several decades 

(ENDS 2004).  As a result, measures such as the Nitrates Directive (European Union 1991) 

and Water Framework Directive (WFD) (European Union 2000) have been introduced to 

control farming practices in order to reduce pollution of ground and surface water.  In 

addition to drinking water impacts, groundwater discharges to rivers, wetlands and marine 

systems have also contributed to long term ecological degradation (Vitousek et al. 1997).  

However, whilst a drinking water standard for nitrate has been developed in Europe (50 

mg/L, European Union (1991)), no standard currently exists for surface water. 

 

In order to manage public water supplies and protect aquatic ecosystems, estimates of N 

budgets and fluxes at both national and continental scales have been developed.  These N 

budget approaches often assume the N cycle is in a steady state with no net change in 

terrestrial N storage (Galloway et al. 2004).  Bouwman et al. (2013), for example, developed 

steady-state soil N budgets to explore changes in global nitrogen cycles.  Budget inputs are 

from biological N fixation (Nfix), atmospheric deposition (Ndep), fertilizer applications (Nfert) 
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and animal manure (Nman) and outputs are from withdrawals (Nwithdr) from harvesting, cutting 

and animal grass consumption.  The soil budget (Nbudget) was derived from: 

                                      

In such a steady state approach, positive Nbudget values represent a loss of N to the 

environment and negative values indicate depletion of soil N.  Whilst this may be appropriate 

at the global scale, these assumptions do not consider changes at national and regional scales.  

Worrall et al. (2009) showed that Great Britain is a net sink of reactive nitrogen.   They 

postulated that the sink is associated with reactive nitrogen storage in groundwater and made 

the first attempt at quantifying the amount of transient N storage.  By considering that 

approximately 10 – 50% of the land surface of Great Britain is underlain by aquifers with an 

effective depth of water of between 1 to 10 m, they equate a 1 mg/L N increase in average 

groundwater concentration to be equivalent to a store of 300 kt of N.  Subsequently, Worrall 

et al. (2015) estimated the storage of total N in the unsaturated and saturated zones of the 

Thames Basin, a lowland agricultural catchment in England.  Whilst the individual storage of 

N in each zone was not presented, they presented a range of maximum accumulation rates for 

the unsaturated zone of 1.4 to 5.5 kt N/yr and state the time series for the flux into 

unsaturated zone storage will reflect that of the saturated zone.  Given this range of maximum 

accumulation rates and the range and time series of accumulation rates to the saturated zone 

presented by Worrall et al. (2015), we estimate the peak in total accumulation in the 

unsaturated zone derived by the approach of Worrall et al. (2015) in 2000 to 2004 to be 

between 16.4 to 195 kt N. 

 

At the catchment scale, Chen et al. (2014) developed a dynamic watershed model which 

demonstrated the importance of transient N storage when evaluating catchment management 
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measures.  Recently, Hale et al. (2015) developed a model to evaluate the roles of nutrient 

inputs, infrastructure and runoff on N and P fluxes.  They acknowledge that a significant data 

limitation in their study was the lack of information on subsurface nutrient transport via 

groundwater.  Further national scale work has shown that there are substantial delays in the 

leaching of N from the base of the soil zone reaching groundwater in some areas (Howden et 

al. (2011); Wang et al. (2012)).  This delay can be of the order of decades.  This is the result 

of the thick vadose zones and slow travel times present above aquifers of the United 

Kingdom (Foster et al. 1982).   

 

Representation of this delay and the associated vadose zone storage in national and 

continental scale N budgets has not been attempted to date.  Figure 1 shows the global 

distribution of thick vadose zones (> 20 m) and cropland areas as estimated by Fan et al. 

(2013) and Ramankutty et al. (2010) respectively.  Thick vadose zones in England and Wales 

as derived using the river base level model discussed in this study are also shown. There are 

large areas of Europe, Asia and the Americas where vadose zones are likely to be thick and 

agricultural N losses to the environment may be important.  In these areas transient N storage 

in the vadose zone may seriously constrain the usage of conventional nitrate budget 

approaches.   Consequently it is crucial that a generic, simple-to-apply approach to estimating 

this storage is available. 

 

Sutton et al. (2011) detail methods for national nitrate budgeting using a range of approaches 

across Europe.  Most of these adopt a simple leaching and runoff factor approach to 

agricultural nitrate losses.  They conclude that the largest uncertainties in budgets are 

associated with N leaching to groundwater and that future research should focus on this area.  
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If global water resources and ecological security are to be managed and protected effectively 

in the future, improved approaches to quantifying the role of groundwater and the vadose 

zone in nitrate budgets are urgently required.  This study presents a first quantification of the 

vadose zone nitrate budget at the national scale.  We hypothesise that the lag between nitrate 

loss at the base of the soil zone and its impact on groundwater results in the vadose zone 

being an important store of nitrate in the terrestrial environment which needs to be properly 

considered for effective ecosystem management.  We use a conceptually straightforward and 

generic approach which can be readily adopted in other locations to improve national and 

continental scale N budgets.  By linking estimates of nitrate leaching at the base of the soil 

zone with depth-to-groundwater maps and vadose zone velocities, we use a simple 

summation approach to derive the total unsaturated zone nitrate mass at the national scale. 

2 Materials and Methods 

2.1 Study Area 

The countries of England and Wales were used as the study area; this together with the 

overall methodology is outlined in Figure 2.  England and Wales have extensive areas of 

agricultural land (70% of the total area of the United Kingdom (DEFRA 2012)) and are 

underlain by numerous important groundwater bodies (British Geological Survey 2010). The 

three primary aquifers in England and Wales are the Chalk in Southern and Eastern England, 

the Permo-Triassic Sandstone in the Midlands and Northern England and the Jurassic Oolitic 

Limestones in Western England and the East Midlands.  These aquifers provide the majority 

of the 35% of public water supply derived from groundwater in England and Wales (DETR 

1997) and support numerous groundwater-dependent ecosystems and the baseflow to many 

major rivers.  Stuart et al. (2007) assessed long term trends in groundwater nitrate data across 

the aquifers of the UK and found an average annual rise in concentration of 0.34 mg NO3 l
-1
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a
-1

, with 34% of sites analysed exceeding the 50 mg l
-1

 EU drinking water standard.  

Consequently, understanding the storage of nitrate in the vadose zone above these aquifers is 

of critical importance if future nutrient loadings to public water supply abstractions, 

groundwater dependent ecosystems and marine environments are to be suitably managed. 

Wang et al. (2012) derived predictions of peak nitrate concentrations for the study area which 

were validated against historic nitrate trend data (Stuart et al. 2007).  In this study we further 

develop the verified approach of Wang et al. (2012) with additional datasets to derive the 

mass of nitrate in the vadose zone across England and Wales. 

 

2.1.1 Identification of Aquifers 

High and moderate productivity aquifers (as defined by borehole yields > l L/s) were selected 

for this study using 1:625,000 scale digital hydrogeological mapping by the British 

Geological Survey (2010).  Where bedrock aquifers are overlain by low permeability 

superficial deposits, recharge rates will be restricted and denitrification may occur (Jørgensen 

et al. (2004); Fragalà and Parkin (2010)).  Consequently, these areas were excluded from the 

analysis using a national scale model of the recharge potential of superficial deposits 

(SNIFFER (2006); Griffiths et al. (2011); Wang et al. (2012)).  Recharge potential mapping 

undertaken by Griffiths et al. (2011) used a domain-based methodology considering both 

primary and secondary lithological characteristics for each formation.  Areas north of the 

limit of glaciation, where primary and secondary recharge potentials are low, were assumed 

to have no nitrate transport to underlying aquifers.  Figure 2 shows the aquifer areas used in 

this study derived from the hydrogeological bedrock and superficial mapping.  The total 

outcrop area of these aquifers excluding areas overlain by low permeability superficial 

deposits is 43805 km
2
 or approximately 29% of the land surface of England and Wales. 
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2.2 Nitrate Input to the Vadose Zone 

 

It was assumed that the dominant form of reactive nitrogen in the subsurface is nitrate.  This 

is supported by national surveys of groundwater quality across England and Wales (Shand 

2007) showing that median nitrate-N concentrations are at least an order of magnitude higher 

than median ammonium-N and nitrite-N concentrations.  Dissolved organic nitrogen (DON) 

concentrations in the subsurface are generally considered to be low in comparison to nitrate 

as evidenced by low levels of dissolved organic carbon (Durand et al. 2011).  Data for Chalk 

baseflow dominated streams in lowland agricultural catchments show significantly lower 

DON than inorganic N concentrations even where affected by sewage treatment work 

effluents (10 – 20%, Yates and Johnes (2013)).  DON may be locally significant in more 

pristine or peat-rich environments (e.g upland moors; Lapworth et al. (2008)) and should be 

taken into consideration when reviewing results at small scales. 

 

It was assumed that diffuse nitrate inputs to the vadose zone are primarily from agriculture.  

It has been shown that over 70% of nitrate in groundwater and surface water in England is 

derived from agricultural land (Foster (2000); Hunt et al. (2004); DEFRA (2006)).  Point 

source discharges have been considered as insignificant at the national scale given the high 

potential for dilution in groundwater (Gooddy et al. 2001) and have been estimated as 

contributing < 1% of the total nitrate flux to groundwater in the United Kingdom (Sutton et 

al. 2011).  Consequently these discharges have not been considered further in this study.  At 

the local scale, non-agricultural diffuse nitrate sources may be significant (Wakida and 

Lerner 2005) but have not be considered given the national scale of the work presented in this 

study.  The modelling approach of Lord and Anthony (2000) was adopted which derives 
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nitrate losses from agriculture at the base of the soil zone.  Within the model (NEAP-N), 

cropping and livestock data from agricultural censuses are integrated with land cover, soils, 

climate data and interpolated to a 1 km grid for England and Wales for 5 specific years (1980, 

1995, 2000, 2004 and 2010).  Annual, spatially distributed, diffuse nitrate inputs for 

intermediate years were derived by interpolation.  Inputs back to 1925 and forward to 2050 

were derived by scaling those of Lord and Anthony (2000) using a time variant nitrate input 

function (NIF) (Wang et al. 2012).  This produced spatially distributed annual estimates of 

nitrate inputs for 1925 to 2050.  A time series of the total annual nitrate input for England and 

Wales and the NEAP-N years is shown in Figure 3 (a).  The NIF was based on estimates of 

historic nitrate loading trends based on land use data detailed by numerous workers (Foster et 

al. (1982); Lord et al. (1999); ADAS (2003); Addiscott (2005) and summarised by Wang et 

al. (2012)).  

2.3 Vadose Zone Nitrate Transport and Total Mass 

Figure 2 outlines the methodology for the derivation of nitrate flux, travel time and total mass 

in the vadose zone. Transport of nitrate through the unsaturated zone on a 1 km scale was 

derived using the approach of Wang et al. (2012).  We assume that nitrate is conservative in 

the vadose zone above aquifers.  This assumption is supported by studies which suggest that 

denitrification in the unsaturated zone is likely to be very limited (Kinniburgh et al. (1994), 

Rivett et al. (2007)).  Field data indicate that vadose zone denitrification results in decreases 

in concentrations which represent just 1 – 2 % of nitrate input (Rivett et al. 2007).  We also 

assume that nitrate moves through the vadose zone with a constant vertical velocity, no 

hydrodynamic dispersion and undergoes vertical transport through the matrix when in dual 

porosity media.  
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Depth to water table was derived from observation borehole data, where available, and from a 

model deriving groundwater levels from river base levels and a digital terrain model 

(NEXTMap; Intermap Technologies (2007)).  The river base level model derives an 

interpolated groundwater level surface on the assumption that groundwater is in direct 

hydraulic connection with rivers.  This is shown conceptually in Figure 2.  The spatial 

distribution of depth to water across moderate and highly productive aquifers is shown in 

Figure 3.  

Vadose zone velocities for each groundwater body were derived from historic work assessing 

water flows through the unsaturated zone (Chilton and Foster 1991).  Historic literature data 

for vadose zone travel times were available for the Chalk, Permo-Triassic Sandstones, Oolitic 

Limestones and Oxford Clay.  For all other formations, a heuristic approach was adopted and 

vadose zone velocities were attributed based on expert judgement considering aquifer 

layering, permeability and grain size  (Wang et al. 2012).  The velocities used for moderate 

and highly productive aquifers are shown in Table 1.   

The total mass of nitrate in the vadose zone was derived for each year (1925 to 2050) for each 

1 km grid cell using a conceptually simple summation approach and aggregated to the 

national scale by aquifers.  For any year, t (years), the total nitrate in vadose zone, NVZ (kt N) 

for a given grid cell with an vadose travel time, TTVZ (year) and a time-variant nitrate input 

function, NIF (kg N), can be calculated as:  

         

 

        

     

We derive changes in nitrate storage in the vadose zone through time using a simple mass 

balance approach; 
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Where Noutt is the nitrate flux from the vadose zone to the saturated zone and ΔNVZ is the 

change in vadose zone nitrate storage for any year t. 

 

2.4 Sensitivity Analysis 

 

A number of assumptions have been made regarding nitrate inputs and transport in the vadose 

zone.  In order to address the uncertainty in nitrate losses from agriculture at the base of the 

soil zone and transport in the vadose zone, a sensitivity analysis has been undertaken. 

Sensitivity of the nitrate storage to vadose zone travel time was assessed by considering 

ranges of travel times.  A conservative sensitivity analysis was undertaken using a heuristic 

approach by deriving the total mass using travel times 15% greater and less than the baseline 

travel time distribution.  Additionally, a wide range travel time sensitivity analysis was 

undertaken using the maximum and minimum vadose zone velocities reported in the 

published literature.  For the Chalk, unsaturated zone velocities of 40% and 180% of the 

mean velocity have been reported (Chilton and Foster (1991); Wang et al. (2012)) and this 

range of values has been used to estimate the sensitivity of the nitrate storage to vadose zone.  

It should be noted that it is highly unlikely that these maximum and minimum velocities are 

extensive nationally and consequently represent worst/best case scenarios for nitrate storage 

in the vadose zone.  Uncertainty in the nitrate input from the base of the soil zone is likely to 

be temporally variable.  Between 1980 and 2010 the nitrate input is reasonably well 

constrained by the NEAP-N data.  Uncertainty in the nitrate input is likely to increase going 

forward from 2010 and back from 1980.  Consequently a time variant error distribution was 

used.  This is shown in Figure 3 (b).  A stationary error of +/- 15% is used between 1980 and 

2010.  This is increased to +-30% to 2050 and back to 1940. 
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2.5 Model Validation 

 

Validation of national scale models should be ideally undertaken at the same scale.  However, 

there is very limited empirical data for vadose zone nitrate storage at the national scale.  

Howarth (2008) and Chen et al. (2014) highlight that it is nearly impossible to measure 

transient N storage at the watershed scale due to landscape heterogeneity.  It should be noted 

that the primary input datasets to the modelling approach (depth to water estimates, 

unsaturated zone velocities and nitrate input (NEAP-N) data) have been validated against 

empirical observations in previous studies (Lord and Anthony (2000); Wang et al. (2012)).  

In this study, two approaches were taken to model validation.  Model estimates of vadose 

zone storage were compared with estimates of storage in this zone in the Thames basin as 

undertaken by Worrall et al. (2015) and discussed in section 0.  Additional validation of 

model outputs was undertaken at the site scale where a body of vadose zone observation data 

exists.  Model results for nitrate storage in the vadose zone at a 1 km grid scale were 

compared with estimates of nitrate storage derived from observed porewater concentration 

profiles from cored boreholes in England and Wales (Stuart 2005).  Over 400 boreholes are 

present in the database and an extensive screening process was undertaken to ensure the 

boreholes used in validation would be representative.  The following criteria were used to 

select boreholes for validation; (1) Boreholes within the model area (where moderate and 

highly productive aquifers outcrop), (2) Boreholes where the full thickness of the vadose 

zone was sampled (98 boreholes in the model area), (3) Exclusion of boreholes where point 

source pollution issues were known.  This resulted in 43 borehole nitrate profiles remaining 

for validation.  It should be noted that validation at this scale is itself challenging as site-scale 

heterogeneity will not be captured on a 1 km grid scale.  Consequently, this approach to 

validation can be considered as a “sense-check” for model results using empirical data. 
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By assuming a fully saturated matrix and that the borehole porewater data reflect the 

concentration within the corresponding 1 km grid cell which is underlain by agricultural land, 

the vadose zone nitrate storage was calculated by numerical integration.  For a given vadose 

zone borehole porewater profile with n sampling intervals each of thickness b (m) with 

observed concentration [NO3] (mg/L N) and porosity data ∅ (-),  the total observed nitrate 

stored in the vadose zone NVZOBS (tonnes/km
2
) for the corresponding 1 km cell can be 

calculated as: 

          ∅            

 

   

   

Where fa is the proportion of agricultural land in each 1 km grid cell as derived from the 

NEAP-N model (Lord and Anthony 2000).  This approach assumes that the fraction of each 

grid cell not underlain by agriculture does not contribute nitrate to the vadose zone.  In a large 

number of cases, multiple borehole profiles were present at the same site and within the same 

1 km grid cell.  In these cases an average of these boreholes was taken.  This resulted in 15 

sites being used for model validation, as shown in Figure 2.  The sites cover the Chalk which 

is the principal aquifer of England. 
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3 Results and Discussion 

3.1 Vadose zone nitrate storage in England and Wales 

 

Figure 3 (c and d) shows the total nitrate mass in the vadose zone above aquifers in England 

and Wales.  The total mass of nitrate in the vadose zone has increased substantially through 

time, peaking at approximately 1400 kt N in 2008.  From 2008 onwards, the mass of nitrate 

in the vadose zone has been decreasing (i.e. the unsaturated zone is now a net source of 

nitrate to groundwater).  The temporal change in nitrate storage in the vadose zone in 2015 is 

estimated to be approximately -5 kt N/a.  In 2015, the flux from the vadose zone to 

groundwater (Noutt, equation 2) was approximately 72 kt N/a. 

Figure 3 (c) shows the variability in total nitrate mass associated with using greater or smaller 

nitrate inputs as shown in Figure 3 (b).  Nitrate mass peaks of 1700 and 1200 kt N are 

estimated for the greater and smaller nitrate inputs respectively.  Using conservative 

estimates of longer and short vadose zone travel times (Figure 3 (d), +/- 15%) results in 

nitrate mass peaks of 1500 and 1300 kt N respectively.  This also results in the peak nitrate 

mass occurring earlier (2007) for the shorter travel time distribution and later (2011) for 

longer travel times.  Using a wider range of vadose zone travel times based on reported 

maximum and minimum unsaturated zone velocities (Figure 3 (d), + 80%/-60%) results in a 

wider range of unsaturated zone nitrate masses.  Using the -60% travel time, the peak mass is 

reduced to 800 kt N and occurs in 1991.  The +80% travel time results in a nitrate mass of 

1750 kt N in 2050 however this is still increasing. 

Figure 4 shows the temporal change in total nitrate stored in the vadose zone expressed by 

aquifers.  The increase in vadose zone nitrate storage is dominated by the Chalk, containing 

an estimated 70% of the total mass in 2015.  Increases are also observed in other aquifers 
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such as the Permo-Triassic Sandstones (4% total mass in 2015), Oolitic Limestones (3% total 

mass) and numerous other locally important formations (23%).  The Chalk, Permo-Trias and 

Oolites have peak mass years of 2015, 1991 and 1992 respectively.  The year in which the 

total peak mass of vadose zone nitrate for England and Wales occurs is significantly affected 

by the majority of mass being in the Chalk.   

The Chalk dominates the increase in vadose zone storage because of its large outcrop area 

(Figure 2), extensive agricultural land use (87%) and extensive thick unsaturated zone (Wang 

et al. 2012).  Thick vadose zones result in long travel times and consequently a large increase 

in nitrate storage.  Figure 5 shows the spatial distribution of nitrate estimated to be stored in 

the vadose zone in 1960 and 2015.  Increases in nitrate storage in the chalk of southern and 

north east England can be observed. Increases are particularly large in interfluve areas where 

travel times are very long due to thick vadose zones. 

 

3.2 Validation 

 

The total nitrate storage in the Thames catchment as derived in this study is estimated to be 

198 kt N.  Considering the range of peak nitrate storage values for England and Wales 

estimated using the maximum and minimum unsaturated zone velocities (800 to >1750 kt N) 

compared to the best estimate mass (1400 kt N), we estimate the equivalent range for the 

Thames catchment to be 113 to 240 kt N.  This generally corroborates work undertaken by 

Worrall et al. (2015) from which a range of N storage values of 16 to 195 kt N has been 

estimated.  Figure 6 shows nitrate storage for the 15 boreholes as derived from the model and 

from porewater data as discussed in section 2.5.  It can be observed that in general there is a 

poor correlation between nitrate storage derived from the model and from pore-water data.  

This is not surprising as the model has been developed at the national scale and does not 
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capture the site-specific heterogeneity which is present at the borehole scale.  Local scale 

hydrogeological complexities such as stratigraphic variability in aquifer properties which 

may enhance or inhibit nitrate transport and storage have not been considered in the national 

scale model.  Moreover, boreholes have been drilled for porewater profiles for specific 

investigations related to nitrate, and consequently are likely to show bias towards both 

particularly high and low concentrations.  Boreholes have been drilled in areas where 

overlying land use is known to have had either extensive fertilizer applications or areas which 

are permanently unfertilised.  Consequently, estimates of nitrate storage derived from point 

porewater profiles may be expected to both over and underpredict the amount of nitrate 

stored relative to model outputs at the 1 km scale. 

Given the uncertainties in relating borehole-scale estimates of nitrate storage with national 

scale model outputs discussed above, it is encouraging that model results for a number of 

sites in the Chalk appear to be reasonably close to porewater results (10 sites with difference 

of less than 30 tonnes NO3-N).  This sense-check suggests that the model results may be 

reasonable at the national scale.  However, model results at the local scale should be treated 

with caution and require further site-specific assessment and validation prior to use to inform 

decision making. 

 

3.3 Implications 

3.3.1 Methodologies for derivation of national scale nitrogen budgets 

 

This study corroborates previous work (Worrall et al. (2009); Chen et al. (2014)) suggesting 

that the subsurface is an important store of reactive nitrogen and that the steady state 

assumption at a national scale over one year is unlikely to be valid.  The estimated peak 

nitrate mass in the vadose zone of 1400 kt N (range of 800 to  >1700 kt N from sensitivity 



This article is protected by copyright. All rights reserved. 

analysis) is 2.5 to 6 times greater than the first approximations for the saturated zone of 300 

kt N (Worrall et al. 2009).  Whilst the total nitrate storage in the vadose zone is now likely to 

be decreasing, travel times in the saturated zone can also be considerable.  Consequently, 

peak nitrate concentrations at aquifer discharge points such as public water supply wells, 

rivers and groundwater dependent terrestrial ecosystems may not have occurred yet in some 

areas.   

 

As discussed in section 2.1, the approach adopted in this study builds on a verified 

methodology used to derive peak nitrate concentrations at the water table (Wang et al. 2012).  

We have adopted a deterministic approach to the derivation of vadose zone nitrate storage 

and undertaken sensitivity analyses to assess the uncertainty in these estimates.  However, we 

consider that further work to refine model inputs such as nitrate loadings and travel times will 

reduce the uncertainty in derived vadose zone budgets.  Nevertheless, the methodology 

presented here for estimation of nitrate storage in the vadose zone is an important first step in 

improving nutrient budget estimations.  Further research is required to assess how this storage 

compares with other postulated terrestrial stores such as in-stream N retention, terrestrial N 

uptake in land not in agricultural production and N accumulation in subsoils (Worrall et al. 

(2009); Worrall et al. (2015)).  Future terrestrial N budgets at the national scale and at 

timescales of < 10 years should consider incorporation of these nutrient stores for effective 

management of N in the environment. 

 

 

 



This article is protected by copyright. All rights reserved. 

3.3.2 Targeting catchment management: From national to catchment scale 

 

The approach adopted in this study is also likely to be beneficial for high-level targeting of 

catchment management activities at a wide range of scales. For example, Figure 4 illustrates 

that legacy nitrate in the vadose zone at a national scale in England and Wales is dominated 

by the Chalk.  Figure 5 shows at a regional scale there a substantial historical mass of nitrate 

in the unsaturated zone of the Chalk of southern England.  At the catchment scale, nitrate 

mass is concentrated in interfluve areas where travel times are long due to thick vadose 

zones.   

 

Environmental managers should take into account this mass when considering the 

implementation of catchment mitigation measures in attempts to improve groundwater, 

surface water and ecological quality.  These measures typically consist of changes to 

agricultural practices through on-farm approaches (Zhang et al. 2012) and larger scale 

interventions such nitrate vulnerable zones (Johnson et al. 2007).  At the national scale, 

assessing where there is significant vadose zone N storage would be useful in setting 

timescales and objectives for improvements in waterbody environmental status.  The 

approach used in this study can help managers understand whether such improvements due to 

catchment measures are likely to be delayed by the flux of legacy N stored in the vadose zone 

to groundwater and surface water.   

 

The approach can also be used at the basin and catchment scale, although estimates of vadose 

zone N storage should be reviewed in the context of site and catchment scale groundwater 

conceptual models (Allen et al. 2014).  As detailed in section 3.2, site-scale outputs of the 
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modelling approach presented here should be treated with caution, particularly in complex 

hydrogeological settings such as the Permo-Triassic Sandstones.  Other forms and sources of 

reactive nitrogen should also be taken into consideration depending on the overlying land use.  

In order to maximise the benefits to stakeholders it is suggested that the approach presented 

here should be integrated with outputs from existing flow and transport models for the 

saturated zone.  This could include public water supply borehole capture zones (e.g. 

Wellhead Protection Areas (United States Environmental Protection Agency 2014) and 

Source Protection Zones (Environment Agency 2014)) and flow paths to groundwater 

dependent terrestrial ecosystems (e.g. Batelaan et al. (2003)).  Having identified 

environmental receptors and potential polluting land uses, the vadose zone N mass can be 

helpful in assessing whether catchment measures are likely to result in improvements in 

water quality and the likely timescales for these changes.  Without proper consideration of 

legacy nitrate in the vadose zone and an understanding of saturated zone flow pathways, 

expectations of these measures to improve water quality may be unrealistic.    

Such measures have been implemented to meet recent environmental legislation such as the 

Water Framework Directive (WFD) (European Union 2000).  However, it has been widely 

acknowledged that WFD targets may not be met due to both socio-economic and 

hydrogeological delays (Cherry et al. 2008).  The approach used in this study can show where 

vadose zone nitrate storage due to hydrogeological delays is likely to be most important, and 

consequently where it may be challenging to meet environmental objectives and policy 

targets.  The methodology has the potential to be implemented across other countries in 

Europe implementing the Water Framework Directive and also internationally in areas where 

new environmental pollution targets have been set such as China (He et al. (2013); (Yang 

(2014)).   
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3.3.3 Vadose zone nitrate storage: A global outlook 

 

At the global scale, transient vadose zone storage in nitrogen budgets is likely to be 

important.  To illustrate this and the importance of the approach detailed here internationally, 

we briefly upscale our methodology to the USA.  Based on mapping in Figure 1, we estimate 

the area of land in the USA where vadose zones are thicker than 20 m and cropland is greater 

than 40% total land use to be approximately 860,000 km
2
.  These areas have an average 

vadose zone thickness of approximately 35 m (based on Fan et al. (2013)). Using these 

estimates with a vadose zone velocity of 1 m/year and the nitrate input function shown in 

Figure 3 (a) converted to kg N/ km
2
  and scaled to 40% of the European input (based on (van 

Grinsven et al. 2015)),  we estimate a peak vadose zone nitrate mass for the USA of 29,000 kt 

N in 2001.   

 

This first approximation of vadose zone nitrate storage for the USA is likely to be highly 

uncertain but highlights the importance of this storage globally.  The method we present here 

is generic and conceptually simple, with the most complex aspects of the approach associated 

with the input data.  Recent global scale work on depth to groundwater (Fan et al. 2013), 

groundwater recharge (Döll et al. 2014) and soil N budgets (Bouwman et al. 2013) should 

allow for the first global estimates of transient vadose zone nitrate storage to be derived.  It is 

suggested that the approach could be particularly useful in areas where thick vadose zones are 

present above major aquifers.  By doing this future N budgets are likely to be more accurate, 

enabling more informed management decisions to be made regarding groundwater quality 

and terrestrial and marine aquatic ecosystems. 
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4 Conclusions 

 

This study has presented a generic approach to derive the storage of nitrate in the vadose zone 

above aquifers at the national scale, validated against observed porewater data and previous 

basis scale modelling approaches.  The peak total mass in England and Wales in 2008 is 

estimated as 1400 kt N (range 800 to >1700 from sensitivity analysis) which is approximately 

2.5 to 6 times greater than previous approximations for the saturated zone (300 kt N).  The 

majority of this mass (>70%) is within the Chalk.  This supports the hypothesis that the 

subsurface is an important terrestrial N store.  The methodology is a first step in reducing the 

uncertainty in national scale N budgets. In conjunction with saturated zone flow model 

outputs, the methodology can assist environmental managers and policymakers in decision 

making with regards to national and regional scale catchment mitigation measures to improve 

water quality. Vadose zone N storage is likely to be an international issue and it is suggested 

that recently published work on depth to groundwater, recharge and soil budgets could be 

used to derive a first global estimate of this storage. 
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Table 1: Mean unsaturated zone velocities for moderate and highly productive aquifers used 

in the model. Observed velocity ranges for the Chalk, Limestone and Sandstone are derived 

from Chilton and Foster (1991). 

Class Formation 

Unsaturated zone 
velocity (m/year) 

Range Mean 

Fractured aquifers 

White Chalk 0.3 - 1.4 0.76 

Grey Chalk   0.9 

Oolitic Limestone 0.6 - 2.5 1.1 

Other Karstic formations   10 

Layered Mesozoic formations   1 

Palaeozoic formations, igneous and 
metamorphic rocks   1 

Aquifers with 
intergranular flow 

Sherwood Sandstone 0.6 - 1.3 1.06 

Sands   3 

Silts   0.3 
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Figure 1: (a) Areas where depth to groundwater is estimated to be > 20 m. From Fan et al. 

(2013). Reprinted with permission from AAAS.  (b) Areas where proportion of cropland is > 

40% (reproduced after Ramankutty et al. (2010)).   
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Figure 2: Methodology used to derive the mass of nitrate in the vadose zone in England and 

Wales. Based upon 1:625,000 scale digital hydrogeological mapping, British Geological 

Survey © NERC.  Depth to water model reproduced after (Wang et al. (2012)).   
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Figure 3:  Estimates of depth to water derived from the River Base Level model for moderate 

and high productive aquifers.  Based upon 1:625,000 scale digital hydrogeological mapping, 

British Geological Survey © NERC. 
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Figure 4: (a) Time variant nitrate input function, (b) nitrate input function error, (c) vadose 

zone nitrate mass considering input function uncertainty and (d) vadose zone nitrate mass 

considering travel time uncertainty. 
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Figure 5: Change in vadose zone nitrate storage for 1925 – 2050 for moderate and highly 

productive aquifers. 
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Figure 6: Spatial distribution of total vadose zone nitrate mass (as tonnes N per 1 km grid 

cell) in England and Wales in (a) 1960 and (b) 2015. 
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Figure 7: Nitrate storage in the vadose zone (tonnes NO3-N) for 1 km grid cells as derived 

from the model and observed porewater profiles for 15 borehole sites. 

 


