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I. INTRODUCTION

The main objective of our project is to be capable to
perform stress measures in humans using electrocardio-
gram signal (ECG). To do that, we treated the heart
as a Chronotaxic System oscillator. This model sustains
that the heart can be treated as an oscillators which have
time-varying frequencies that can be perturbed by noise
but remain stable [1]. Our heart has been proved to adapt
its Heart Rate (HR) depending on the necessity of the
body (it will increase for example when you start doing
exercise). The parameter that quantifies those changes
on the HR is the Heart Rate Variability (HRV) which is
the parameter we have used on our work to detect phys-
ical and mental stress situations.

II. FUNDAMENTALS

The HRV has been widely studied and used for count-
less different proposes. For example there is a study that
tries to monitor emotional state from physiological sig-
nals acquired remotely using a simple camera detecting
the HRV [2]. Or other works in the medical field such as
monitoring mental health conditions such as bipolar dis-
order and borderline personality disorder [3], detecting
the severity of obstructive sleep apnea (OSA) condition
[4].
The part of our body in charge of the regulation of the
HR is the autonomic nervous system, divided anatomi-
cally into the sympathetic and parasympathetic (or va-
gal) systems. The vagal system regulates responses re-
lated with the maintenance and conservation of the body
function with actions such as the slowing of the heart
rate. The sympathetic system is more related with stress
situations response. Therefore, the HR is modulated by
this two systems that act in the opposite way. It has
been proved that it is possible to detect the activity of
both systems studying the HRV in the frequency domain,
providing a non invasive tool for stress measurements.

IIT. TESTS

The tests were carried out in the laboratories of
the Instrumentation, sensors and interfaces research
group (isi.upc.edu) in Castelldefels campus. We
were provided a machine, developed by the ISI Group,

capable of performing 4 diferent types of acquisition
and processing of noninvasive cardiovascular signals that
were limb-to-limb impedance plethysmogram (IPG),
ballistocardiogram (BCG), electrocardiogram (ECG)
and tonometry in carotid artery. We opted for using
only the ECG signal because it was the best one in order
to measure the HR, which was the magnitude we wanted
to study. The device used to measure ECG was an
horizontal bar with two electrodes that were supposed
to be gripped with the hands.

We performed different tests in order to alter the stress
level of the subject, therefore affecting the HR and ob-
taining different data. Subjects of these experiments
are tagged AS-subjectl, MM-subject2 and VS-subject3.
These tests involved rest, physical or mental stimulation:

e Relax Test: The subject lies on a table quietly for
3 minutes at rest.

e Physical Effort Test: In this test the subject
warms up on a stationary bicycle and when he is
already excited his ECG signal is measured dur-
ing 2 minutes, in which intense physical activity is
performed on the bike.

e Calmdown Test: Data is recorded for two min-
utes after the subject stops doing physical activity
on the bike. The purpose of these test is to measure
how the body comes back from stress to normality

e Stroop Test: The participant sits on a chair and
reads a list of words for colours on the screen of
a computer, but the words are printed in a colour
different to the word itself. Then, the participant
should name the colours that the words are printed
in. So, when the word orange” is printed in green,
the participant should say green and move on to the
next word. The test begins with 2 minutes of rest,
then 6 of the colour challenge and 2 last minutes of
rest, for a total recording time of 10 minutes.

e Math Test: The participant has to make a series
of arithmetic calculations in front of the computer
including sums and subtractions of 3 digit num-
bers. 150 seconds of rest, then 120 seconds of arith-
metic operations, 120 seconds of rest, 120 seconds
of arithmetic and finally 90 seconds of rest. Total
recording time is 10 minutes, as with the Stroop
Test.



In the Stroop and Math tests a computer was used.
The codes in python of these tests were obtained from
Ricard Cuervo’s TFG [5] and modified to meet our re-
quirements.

IV. DATA TREATMENT

As we have explained in the previous sections, we aim
to deduce whether a person is in a stressful situation or
not solely by measuring and analyzing his Electrocar-
diogram signals (ECG). However, we cannot do so by
looking directly into the signal itself for there are lots
of non-controllable artifacts that might arise much more
dependent on the person being measured and not nec-
essarily on whether he is stressed or not. On the other
hand, the changes of oscillating period in the heart are
considered to be a more objective indicator of being in
stress than the raw ECG signal. These variations on the
signal period are registered in the tachogram of the ECG
signal. Therefore, given a raw ECG signal, the first step
is to obtain the latter by applying the Pan Tompkins
Algorithm. Then, we perform Time-Frequency Analysis
on the Tachogram signal obtained in order to check for
stress indicators in the ECG signal.

A. The Pan Tompkins Algorithm

The Pan Tompkins Algorithm is the procedure we fol-
low in order to extract the tachogram from the raw ECG
signal by checking the variation of time between consec-
utive periodic impulses. The results obtained from such
algorithm will serve as basis in order to detect whether
the person whose signal was recorded was suffering from
stress or not. The Pan Tompkins Algorithm is composed
by the following parts:

e Filtering of the signal: First of all, we apply a
third order Butterworth bandpass filter to the raw
ECG signal. Usually the bandwith goes from 0.5 Hz
to 12 Hz. However, we may adapt the lower bound
up to 5 Hz in order to deal with noisier acquired
data.

e Derivation: A derivative operator is applied to
the resulting signal in order to increase the high fre-
quency components of the QRS complex and lower
the low frequency components of the PT waves.
The operator applied is: y(n) = $(2z(n) 4+ z(n —
1) —z(n—3) —2z(n—4)) 9]

e Squaring: Squaring the signal makes it all positive
and increases relative difference between big and
small values.

e Smoothing: The signal is smoothed by perform-
ing its mean along a sliding window. The purpose
of this step is to deal and lower the multiplicity of

peaks during a single QRS complex. The size of the
sliding window so as to avoid confusion between the
QRS complex and the T wave. However, when the
T wave is too high to avoid confusion between both
peaks, we might merge both signals so as to at least
get just one of the two, even though this results in
a decrease of accuracy in time.

e Thresholding: In order to start the search for
local maxima, a threshold is set and those points
from the signal not surpassing it are filtered out.
In addition, those data points presenting a negative
slope are filtered out as well as they usually present
a greater delay with respect to the QRS complex.

e Find local maxima: We find the local maxima
corresponding to QRS peaks in both the filtered
and raw signals. This allows us to double check
our local maxima candidates and filter out those
that are susceptible to be false positives.

e Inter-beat (RR) interval: We compute the RR
interval by checking the time distance from one
QRS peak to the next.

e Check for false positives or negatives: Finally,
we check for false positives or negatives throughout
the QRS peaks candidates. It is assumed that ev-
ery QRS peak represents a single heart beat and,
therefore, our resulting sequence of QRS peaks is
subject to biological limitations. For example, de-
tected beats at a distance lower than 0.2 seconds
are biologically impossible (HR of 300 beats per
minute) and just one of these two should be se-
lected as a correction measure as one of them is cer-
tainly a false positive [6]. Another example would
be changes of more than 30-40 in the RR, intervals
which are biologically impossible too. This is likely
to be the consequence of not detecting a QRS peak
(false negative), in which case we interpolate the
position in time of the missing one in order to cor-
rect the misdetection.

It is by applying the previous steps that we are able to
obtain the tachogram signal. Ahead, we show an exam-
ple of the ECG signal where the QRS peaks have been
identified and its respective tachogram. In 1 the QRS
complex peaks of a small interval are shown, on 2 a 120
second ECG signal is depicted with all its peaks and on
3 the corresponding tachogram of that previous signal.
This signal was obtained conducting the Calmdown Test
on AS-subjectl.

B. Time-Frequency Analysis

Before going on with this section, we must remark
that all transformations into the frequency domain of the
aforementioned signals have been performed using the
continuous wavelet transform (CWT), not the Fourier
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FIG. 1. A few peaks R peaks of QRS complex detected on a
ECG signal.
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FIG. 2. Complete ECG signal with QRS complex peaks.
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FIG. 3. Corresponding tachogram of the signal.

transform. The problem with the Fourier transform
arises from the fact that it uses a single analysis window.
This results in a loss of resolution at lower than nominal
frequencies for the window size and makes impossible to
obtain information about the Heart Rate Variation spec-
trum (the signal measured in the tachogram) over time

at higher frequencies than the ones the window has been
designed for. In order to tackle this problem, we use the
CWT as it allows to obtain a similar transform but using
a size adapting window.

As we have hinted previously, the interesting informa-
tion provided by the tachogram signal is enclosed in the
frequency domain. In order to extract such information,
we extract the power spectral density (PSD) of three
main frequency ranges:

e Very low frequency range (VLF): All frequencies
below 0.04 Hz.

e Low frequency range (LF):
from 0.04 Hz to 0.15 Hz.

Frequencies ranging

e High frequency range (HF): Frequencies ranging
from 0.15 Hz to 0.4 Hz.

Apart from that, the total power (TP) is defined as
the power in the frequency band going from 0 Hz up to
1 Hz. This latter measurement is mostly considered in
order to normalize the signal by the PSD contained in
the bandwidth: 0.04 Hz - 1 Hz.

When interpreting the obtained normalized PSD sig-
nals for LF and HF, we usually try to relate the ob-
tained results to vagal and sympathetic activity of the
Autonomous Nervous System (ANS). While the HF PSD
is mostly related to vagal activity that does not mean LF
is the same to the sympathetic. Actually, LF is related
to the activity of both systems. This is why, in order
to extract the most information out of the computed re-
sults, we will extract both the ratio LF/HF, providing
symptovagal balance information, and HF, related to va-
gal activity information. Depending on the behaviour of
the frequency bands, when a shift toward relative vagal
enhancement is expected, we should encounter one of the
following possible scenarios [7]:

e LF decreases and HF is unchanged: reflects a
change in sympathetic activity with no decrease in
vagal activity.

e LF is unchanged and HF increases: indicates a de-
crease in sympathetic activity and an increase in
vagal activity.

e Both LF and HF increase but their ratio does not:
reflects an increase in vagal activity but no increase
in sympathetic activity.

e Both LF and HF and their ratio decrease: reduced
vagal and sympathetic activities with a shift in bal-
ance towards relative vagal enhancement.

In exchange, a shift toward relative sympathetic en-
hancement should manifest in one of the following ways:

e HF decreases, LF does not: vagal activity decreases
and sympathetic activity increases.

e LF increases and HF remains unchanged: reflects
an increase in sympathetic activity and no changes
in vagal activity.
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FIG. 4. Tachogram of MM-subject2.
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FIG. 5. Power of frequency bands of MM-subject2.

V. RESULTS

We performed the tests aforementioned. Ahead, the
tachogram, PSD distribution and both HF and LF nor-
malized that result from the Math Test on patient MM-
subject2 are shown on 4, 5 and 6.

A low pass filter on 6 has been applied because the
changes on the trend of power of each frequency band
(Low and High) are very slow but when plotted they
appear to oscillate very fast because of the numerical
calculation used to calculate them. On 6 it is clear how
the weights of the LF and HF change evolve between
a relaxing and a stressing phase and how they take
time to adapt when the situation switches from stress
to relaxation and vice-versa. On 7 the power on the
previously mentioned AS-subjectl Calmdown Test is
depicted. Whereas the average of HR reaches a uniform
value around second 70 (see 3), power distribution has
not change from what it was before, thus the sympa-
thetic remains active and the person is still stressed.

Power normalized, smooth 1000: MM-math
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FIG. 6. Normalized power of High and Low bands on MM-
subject2.
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FIG. 7. Normalized power of High and Low bands on AS-
calmdown.

VI. CONCLUSIONS

This work shows how the heart acts as an oscillator

with a frequency HR whose variability can be used to
extract information about the activity of the ANS and
prediction of stress, outperforming other criteria such as
HR average alone.
Results of AS-subjectl and VS-subject3 on the Math
Test are not included on this paper due to lack of space.
They were similar to MM-subject2 but differed on the
amplitude of the curves and their evolution on time,
suggesting that each individual reacts differently for the
same stressor.
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