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Abstract. In this paper we investigate the electrostatics and charge transport in a triple-
gate Silicon Nanowire transistor. The quantum confinement in the transversal dimension
of the wire have been tackled using the Schrödinger equation in the Effective Mass Ap-
proximation coupled to the Poisson equation. This system have been solved efficiently
using a Variational Method. The charge transport along the longitudinal dimension of the
wire has been considered using the semiclassical approximation, in the ballistic regime.

1 INTRODUCTION

Silicon nanowires (SiNW) are considered an interesting alternative architecture to the
conventional planar technology for electronic devices, because different electronic struc-
tures and transport properties in one dimension can be utilized to fabricate high per-
formance and highly packed integrated circuits. By shrinking the cross-section of SiNW
electronic devices, effects of quantum confinement are observed and the wave nature of the
electrons must be taken into account. In addition, it is well known that the behavior of
field-effect transistors is dominated by electrostatics, which has therefore to be accurately
simulated in order to reproduce the device electrical behavior. In order to accurately
model transport charge in SiNW one have to take into account its transversal and lon-
gitudinal dimensions. For nanowires with transversal dimensions greater than 5 nm, the
2D Schrödinger equation in the Effective Mass Approximation (EMA) represents a good
approximation to describe the quantum confinement [1], but below, atomistic electronic
structure models must be employed. For longitudinal lengths (called channel) greater
than 20nm, the charge transport can be described with a semiclassical scheme, in which
the charges are treated as newtonian particles. Below this channel dimension, quantum
mechanical simulations based on the nonequilibrium Greens function (NEGF) formalism
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are mandatory. The goal of this paper will be the investigation of the charge transport in
a triple-gate SiNW transistor within the effective mass approximation, in the semiclassi-
cal regime. The EMA equation will be solved with a Variational Method, with the main
advantage to eliminate discretization errors as well as to cut down computational time
with respect to a purely-numerical approach. The charge transport along the channel will
be tackled in a ballistic regime.

2 Transport equations

In the following we shall consider a SiNW with rectangular cross section. For a quantum
wire with longitudinal expansion in z-direction, and confined in the plane x-y, the normed
electron wave function ψ(x, y, z) can be written in the form

ψ(x, y, z) = χα(x, y)
eikzz
√
Lz

(1)

where χα(x, y) is the wave function of the α-th subband and the term eikzz/
√
Lz describes

an independent plane wave in z-direction confined to the normalization length, where
z ∈ [0, Lz] and kz is the wave vector number. In general the electron is subject to external
confining potential U , such as by a discontinuity in the band gap at an interface between
two materials, and also to the effect of the other electrons in the system. The simplest
approximation, called Hartree approximation, is to assume that the electrons as whole
produce an average electrostatic energy potential, and that a given electron feels the
resulting total potential Vtot

Vtot(x, y, z) = U(x, y)− eΦ(x, y, z) . (2)

The normed wave function satisfies the Schrödinger equation in the Effective Mass Ap-
proximation, i.e. [

−
~2

2m∗
∆+ Vtot(x, y, z)

]
ψ = E ψ (3)

where E is the total energy, and m∗ denotes the effective mass of the electron in the
conduction band. By inserting eq.(1) into eq.(3), in each z-th cross section of the device,
one obtains the following equation for the envelope function χαz(x, y)




Hχαz = εαzχαz

H =
[
− ~2

2m∗

(
∂2

∂x2 +
∂2

∂y2

)
+ Vtot(x, y, z)

]

Eαz = εαz +
~2k2z
2m∗

(4)

where εαz is the kinetic energy associated to the confinement in the x-y plane, and we have
assumed the parabolic band approximation. The term Φ satisfies the Poisson equation

∇ · [ǫ∇Φ(x, y, z)] = e(n−ND +NA) (5)
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where ND, NA are the doping profile (due to donors and acceptors) and n(x, y, z, t) is the
electron density, which depends on χαz

n(x, y, z, t) =
∑
α

ρα(z, t)|χαz(x, y, t)|
2 (6)

where ρα is the subband linear density in the z-direction

ρα(z, t) =
2

2π

∫
fα(z, kz, t)dkz (7)

fα being the electron distribution function in the α-subband. For an assigned confining
potential, one has to solve a coupled problem formed by the eqs.(4), (5) and (6) to find
εαz, χαz in each cross-section. The subband electron distribution function can be obtained
by solving the 1-D Multiband Boltzmann Transport Equation (MBTE), which forms an
integro-differential system in two dimensions in the phase-space and one in time, with a
complicate collisional operator. The full solution of the MBTE can be obtained or by
using cpu-demanding methodologies such as the Monte Carlo one [2]-[10] or deterministic
numerical solvers [11],[12],[13], or by introducing hydrodynamic models [14]-[18].

3 Solution of the EMA equation

For a fixed total potential Vtot(x, y, z) in each cross-section (with z= const.) one has
to solve the eigenvalues problem (4). This can be achieved or by using a finite difference
numerical scheme, or by using a Variational Method. With a finite difference scheme, a 2D
spatial mesh with N1 grid points in the x-dimension and N2 in y-dimension is introduced.
If we approximate the differential operator ∂2

∂x2 with a central difference formula, then the
eigenvalues problem (4) reduces to a system of linear equations having a N1×N2 matrix.
The discretization error, in this case, is quadratic in the mesh size [19].

With the Variational Method [20], the eigenvalue problem of the Hamilton operator H
is approximated by the eigenvalue problem of the matrix H

Hv = λv , H{i}{j} =
〈
ψ{i}|H|ψ{j}

〉
, v = (v1, v2, ....) (8)

where the matrix elements H{i}{j} are expectation values of the Hamilton operator H with
respect to a set of orthonormal functions {|ψ{1}

〉
, |ψ{2}

〉
, .....} which span the Hilbert

space of H. Then the α-th approximated eigenvalue of the Hamilton operator H is the α-
th eigenvalue of the matrix H i.e. εα ≃ λα, and the α-th eigenfunction χα of the Hamilton
operator H is approximates as

χα ≃
∑
{i}

v{i}α |ψ{i}

〉
. (9)

We observe that the number of the orthonormal functions that span the Hilbert space of
H is infinite. Since the number of used orthonormal functions is finite, the solutions of
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H span in general a subspace of H. Hence the variational method is only an advantage
if the set of orthonormal functions is chosen appropriately so that the matrix elements
H{i}{j} are easily calculable and the accuracy of the approximation can be ensured for a
small number of orthonormal functions. A good choice for a set of orthonormal functions
are the eigenstates of the two-dimensional anisotropic harmonic oscillator which are given
by

|ψjx,jy

〉
=

(ab)
1
4√

π2jx+jyjx!jy!
exp

(
−
ax2

2
−
by2

2

)
Hjx(

√
ax)Hjy(

√
ay) (10)

a =
m∗ωx

~
, b =

m∗ωy

~
, {j} = (jx, jy) ∈ N× N (11)

where jx, jy are the quantum numbers, Hjx(
√
ax) is the Hermite polynomial of order jx

and ω the angular velocity. Then, the elements of the matrix H{i}{j} are formed by two
contributions:

H{i}{j} = H
(1)
{i}{j}

+H
(2)
{i}{j}

=
〈
ψ{i}

∣∣∣∣−
~2

2m∗

(
∂2

∂x2
+

∂2

∂y2

)∣∣∣∣ ψ{j}

〉
+
〈
ψ{i}|Vtot|ψ{j}

〉
. (12)

The first term can be evaluated as:

H
(1)
{i}{j}

=
~ωx

4
δiy ,jy

[
(2jx + 1)δix,jx −

√
j2x − jxδix,jx−2 −

√
i2x − ixδix−2,jx

]
+

~ωy

4
δix,jx

[
(2jy + 1)δiy ,jy −

√
j2y − jyδiy ,jy−2 −

√
i2y − iyδiy−2,jy

]
. (13)

The second term depends on Vtot(x, y, z). Let us suppose that this term reduces to a
two-dimensional finite rectangular potential well U(x, y), i.e.

U(x, y) =

{
0 ∀(x, y) ∈ [−Lx/2, Lx/2]× [−Ly/2, Ly/2]

U0 otherwise
(14)

where the depth of the potential well is usually taken U0 = -4.05 eV (the work function
of Si) and Lx and Ly are the lengths of the well in x and y direction respectively. In this
case, after some calculations, we have

H
(2)
{i}{j}

=
U0

π

√
1

2ix+iy+jx+jy ix!iy!jx!jy!
exp

[
−
1

4

(
aL2

x + bL2
y

)]
×





min(ix,jx)∑
k=0

2kk!

(
ix
k

)(
jx
k

)[
Hix+jx−2k−1(−

√
aLx/2)−Hix+jx−2k−1(

√
aLx/2)

]


×





min(iy ,jy)∑
k=0

2kk!

(
iy
k

)(
jy
k

)[
Hiy+jy−2k−1(−

√
bLy/2)−Hiy+jy−2k−1(

√
bLy/2)

]


 (15)
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Figure 1: The subband energies εα (4) obtained with a finite difference solver, with Ng grid points in
each axes.

If jx = 0, 1, ..., Nx and jy = 0, 1, ..., Ny then the matrix H has (Nx + 1)(Ny + 1) rows and
columns. The main advantage of the Variational Method is that no discretization error
is introduced, as in the finite difference case, and the convergence of the results depends
only on how many quantum numbers are taken. Just to have a comparison, we have taken
a SiNW with cross-section Lx = Ly = 10 nm, and we have evaluated the eigenvalues with
the two methods. In the figure 1 we plot the first ten eigenvalues εα obtained with the
finite difference scheme, by increasing the grid points Ng = N1 = N2. From this figure we
can clearly see that the convergence is reached for Ng= 141. In such a case, the matrix
dimension is 19881 × 19881 and the CPU time was ≃ 19000 sec (using MATLAB and
an AMD Phenom II X6 1090T processor). If we want to obtain a similar result with
the Variational Method, we have to take into account Nx = Ny = 16 quantum numbers.
In this case the matrix dimension is 289 × 289 and the CPU time was ≃ 163 sec. The
percentage error between the two methods is shown in the figure 2. Similar errors are
obtained for the envelope functions.

4 Ballistic transport

Once the quantum confinement in the transversal cross-section of the wire has been
dealt with by efficiently solving the EMA equation, another issue is the description of
the charge transport in the longitudinal direction of the nanowire. If the channel size
of the device is far larger than the scattering length, carriers undergo a large number of

5



O. Muscato, T. Castiglione and C. Cavallaro

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

# eigenvalue

er
ro

r 
(%

)

Figure 2: The percentage error between the subband energies εα (4) obtained with a finite difference
solver and the Variational Method.

scattering processes which result in the diffusive carrier motion. If the channel device size
is further decreased to less than the scattering length, ballistic carrier motion dominates
the transport. The upper limit of the channel size to have a ballistic regime is an open
question. Experimental results obtained in deeply scaled silicon MOSFETs [21] have
shown that the carrier transport is near ballistic for channel sizes lesser than 50 nm.

In this paper we have considered the optimistic case of fully ballistic transport. The
electrons are in equilibrium with their injecting reservoir (source or drain) which adsorbs
and feed carriers into the channel without reflections. The charges are injected into the
channel with unity probability, if their energy in the longitudinal direction is larger than
the maximum subband energy εαz. Then the carriers are transferred from the source to
the drain without being scattered, and by neglecting tunneling effects. The source-to-
drain current I can be evaluated with use of the method proposed in Landauer’s formula
[22], which is expressed as a sum of many one-dimensional subband components. Each
subband current component flowing in one direction is given by the product of the unit
charge, the number of carriers flowing into the subband per unit time, the transmission
coefficient of the subband, all integrated over the carrier energy. The number of carriers
flowing into the subband is further expressed by the product of the input carrier group
velocity, the density of states, and the probability that the state is occupied by the carrier.
In the not-degenerate case, the probability of carrier occupancy is given by the maxwellian
distribution function with the source Fermi level on the source side, and that with the
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drain Fermi level on the drain side of the subband. Both current directions, the one from
the source to the drain and that in the opposite direction, should be considered. Then
we have

I = q
∑
α

∫ +∞

0

vD(Eα)
{
f (eq)
α (Eα, EFS)− f (eq)

α (Eα, EFD)
}
T (Eα) dEα (16)

where v = ~kz/m∗ is the group velocity, and Dα(Eα) is the one-dimensional density of
state

D(Eα) =

√
2m∗

~π
Θ(Eα − εαz)√
Eα − εαz

. (17)

T (Eα) is the subband transmission coefficient which, in the ballistic transport, implies

T (Eα) =

{
1 if Eα ≥ εMax

α = maxz εαz

0 otherwise
(18)

In the not-degenerate case the equilibrium distribution function is the maxwellian, i.e.

f (eq)
α (Eα, EF ) ∝ exp

(
−
Eα − EF

kBT

)
(19)

where EF is the Fermi energy and T the lattice temperature. EFS, EFD are the source
and the drain Fermi energies respectively. If VD and VS are the applied voltage biases at
the drain and source respectively, VDS = VD − VS then EFD = EFS − qVDS.

The Fermi energy is obtained by imposing charge neutrality along each cross-section
of the device, i.e.

∫ ∫
n(eq)(x, y, z) dx dy =

∫ ∫
(ND −NA) dx dy (20)

and, if we suppose that the doping depends only on the longitudinal dimension z, we
obtain

EF (z) = −kBT log

{ √
2m∗kBT

π~ [ND(z)−NA(z)]LxLy

∑
α

exp

(
−
εαz
kBT

)}
. (21)

The equilibrium linear electron density (7) is evaluated using eqs.17),(19),(21)

ρ(eq)α (z) =

∫
Dα(Eαz)f

(eq)
α dEαz = (ND −NA)LxLy

exp
(
− εαz

kBT

)

∑
α exp

(
− εαz

kBT

) . (22)

Then by easy calculations eq.(16) reduces to

I =
2q

~π
kBT

∑
α

exp

(
−
εMax
α

kBT

){
exp

(
EFS

kBT

)
− exp

(
EFD

kBT

)}
. (23)
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5 Simulation of a triple-gate SiNW transistor

We have considered a SiNW transistor with a parallelepiped shape, having square
cross-section with dimension Lx = Ly = 10 nm and longitudinal dimension (i.e. the free
transport direction) Lz = 120 nm. The device consists in an internal parallelepiped filled
by Si (having dimension 8 x 8 nm2) surrounded by SiO2 of 1 nm thickness, producing
the confining potential (14). The silicon, in the internal parallelepiped, is doped in the
n+ region with N+

D = 1018 cm−3 and in the n region with ND = 1016 cm−3, with a
regularization at the two junctions given by a hyperbolic tangent profile, i.e.

ND(z) = N+
D −

N+
D −N−

D

2

[
tanh

(
z − z1
s

)
− tanh

(
z − z2
s

)]
(24)

where s = 5 nm and z1 = 10 nm, z1 = 80 nm. The bottom of the parallelepiped (for z=0)
is the source contact, and the top (for z = 120 nm) the drain contact. The triple-gate
contact surrounds three faces of the parallelepiped with an extension 20 ≤ z ≤ 100 nm.
The applied biases are VS= 0, VD= 0.5 V and VG is considered variable. The simulation
procedure is the following:

• the EMA equation (4) is solved with Vtot = U in each cross-section (z = const.),
obtaining the subband energies εαz and envelope functions χαz.

• These functions are used to evaluate the charge density (6) in equilibrium condition,
i.e. with ρα given by eq.(22).

• The Poisson equation (5) is solved leading to a new Vtot = U − eΦ.

• If the new Vtot does not coincide sufficiently well with the old one, we start a fur-
ther loop by solving the EMA equation with the new confining potential until the
maximum difference between these two quantities is smaller than a predetermined
tolerance.

• For each α-th subband, we evaluate εMax
α = maxz εαz, and finally the current (23)

is obtained.

We have taken into account only the first four subbands (α = 1, 2, 3, 4) since, numerical
experiments, shown that the other ones are very scarcely populated. The simulation
results are shown in the figure 3. This characteristic curve, obtained in the ballistic
approximation, gives us an upper limit to the the performance of this device, and the
chosen approximations ensure a very good trade off between accuracy and computational
resources required. Further extensions, such as including a more sophisticated transport
model per subband according to the guidelines in [23]-[29], is under current investigations
and will be presented in the next future.
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Figure 3: The current (23) versus the gate voltage VGS .
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