Alliance

Good Practices for Agrobiodiversity Management

Editors: Bal Krishna Joshi, Devendra Gauchan, Bharat Bhandari and Devra Jarvis

1. On-farm Agrobiodiversity Measurement and Conservation Approaches

Bal Krishna Joshi, Krishna Hari Ghimire, Rita Gurung, Niranjan Pudasaini, Saroj Pant, Pragati Paneru, Devendra Gauchan, Krishna Kumar Mishra and Devra Jarvis

A. Introduction

Total agrobiodiversity of any area is necessary to plan the implementation of agricultural

and environmental projects and activities. Diversity is most for advancing agriculture development, however, modern agriculture has accelerated the replacement of old age crop diversity. Agrobiodiversity index and measures are commonly used and estimated for crop and animal species, landraces and sites. These are useful for locating sites, crops and custodians of agrobiodiversity. Agrobiodiversity includes crop and plant; livestock and fish, insect and microbial genetic resources that are cultivated, semi

domesticated or wild. Diversity are necessary for a long-term basis to secure the food and nutrition in the world. Among the three conservation strategies (ex-situ, on-farm and insitu), on-farm conservation strategy is farmer led and least cost strategy to manage total agricultural genetic resources. Within on-farm conservation, there are many approaches and methods being applied in Nepal. Agrobiodiversity in any area should be estimated properly that leads to choose the conservation approaches effectively.

B. Objectives

- To assess and measure diversity of agrobiodiversity on farm
- To examine the genetic variation and trend on genetic erosion
- To conserve and utilize native genetic diversity following different approaches on farm

C. Methods and Process

On-farm Agrobiodiversity Measurement

Different types of data are generated or collected for the measurement of agrobiodiversity on-farm (**Figure** 1). Primary and secondary data are used. Both quantitative and qualitative data are collected through different methods (**Table** 1). The information for measuring agrobiodiversity comes from different levels. The levels of information are the genes, traits, genetic markers, variety, the crop, the parcel or plot, the household (farmer), the village, the community, the ethnicity, the municipality, the landscape or region, district, province, country, region.

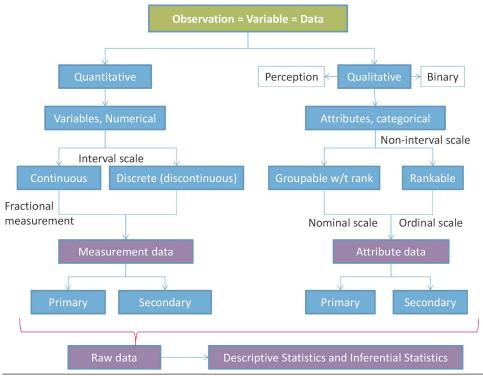


Figure 1. Data types for measuring on-farm agrobiodiversity at ecosystem, species and cultivar levels.

SN	Data Collection Method	Description	Remarks
1.	Community biodiversity register review and community seed bank visit	Community Biodiversity Register (CBR) is maintained with detail of local agricultural genetic resources by community. Community seed bank (CSB) manage local crop diversity through germplasm flow among the farmers	Species, varieties, unique landraces and traits along with use value are collected
2.	Diversity block	Growing and evaluating locally available crop landraces in easily accessible sites in small plots in farmers fields	Observation are recorded (inter and intra landrace level diversity, including population structure)
3.	Diversity collection	Exploration and collection mission are launched for assessing diversity within landraces, sites. Seeds and information are collected.	Seed morphology and passport data are collected. Collection and diversity map are generated using GIS and analog sites using Climate

Table 1. Methods of collecting data from on-farm for measuring agrobiodiversity

SN	Data Collection Method	Description	Remarks
4.	Diversity fair	Exhibition of local seeds by all farmers in single spot	Useful for survey and diversity assessment and measurement including traditional knowledge
5.	Field/ transect walk	Walk along the farming areas with custodian farmers and field staff	Team observe diversity and record data
6.	Focus group discussion	Collecting of specific required information from the group of relevant farmers and stakeholders for discussion on agrobiodiversity	Check lists-based discussion help to collect and verify data. Pattern of landrace occurrence (growing areas and household), resource mapping, etc are done
7.	Food fair	Exhibition and sale of local food made from local genetic resources	Assessment and survey of food diversity and traditiona knowledge during food fair
8.	Household survey	Questionnaire based structured collection of information from different sampling strategies	Assess different level of diversity by collecting both qualitative and quantitative data
9.	Key informant survey	Knowledgeable person on agrobiodiversity are surveyed as per the checklists	Experiences are documented and data are validated along with resource mapping
10.	Lab experiments	Includes molecular lab, seed lab, nutrition lab	Molecular level diversity, nutrition diversity are assessed along with image analysis
11.	Literature review	Relevant literatures eg baseline survey report, annual report, project reports etc are reviewed	Secondary data are collected, verified and updated
12.	Local market visit	Market near the site is visited and information are collected. Interview to seller is carried out	Diversity of target sites along with food items are assessed
13.	On-farm trial	Diversity are further characterized and evaluated in farmers' fields following local practices	Data are recorded and verified based on descriptors and farmers' unit of descriptors

SN	Data Collection Method	Description	Remarks
14.	On-station trial	Controlled experiment is conducted for diversity characterization, evaluation and screening	Data are recorded and verified based on descriptors

The scientific community has developed a wide range of methods of measuring various dimensions of agrobiodiversity, which is often referred as agrobiodiversity index (Boversity International, 2017; Sthapit et al, 2017). Diversity is measured and explained at different levels eg ecosystem, species, landrace and gene levels. Within genotypic diversity, there are functional, molecular, use value and nutritional diversity (Figure 2). Based on the data types, objectives and objects, different measures are used to estimate and compare the diversity (Table 2). These are diversity indices and measures used to quantify the diversity in a particular site. Diversity indices can be used to allow comparisons within and between different populations at species, landraces and genetic levels. Some of these are further used to classify the landraces and species in different categories. For examples, areas and number of household are used in four cell analysis to group available landraces under four cells (patterns of landrace occurrence).

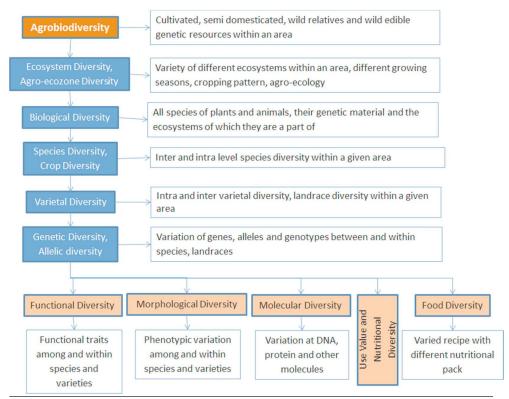


Figure 2. Levels and types of diversity within agricultural genetic resources.

crops, summer crops, off-season

Measuring patterns of landrace occurrence is the simplest basis for measuring the population structure of a particular species. Classification of landraces is common and easy based on growing areas and number of growing household. These two measures classify each landrace according to whether or not it is widespread (occurs in more than a few fields) versus localized (restricted to a few fields), and secondly whether it is common (here defined as grown at least on some farms, in large numbers, in above-average field sizes) versus rare (in small fields only).

Diversity changes over time and space are also estimated using different diversity measures. Both spatial and temporal changes are important for monitoring and applying appropriate methods of conservation.

SN	Diversity Measure	Description	Remarks
1.	Chi square (? ²)	Tests for comparing two sets of data, for example comparing two varieties or two populations for disease resistance classes, or comparing observed phenotypic classes in one population with the expected series	Comparison of a local population to a known established variety for a qualitative trait distributed according to classes such as flower color
2.	Cluster analysis	Group entities with similar characteristics into categories. Methods may be hierarchical, resulting in a dendrogram, or non-hierarchical, resulting simply in groups of similar samples	There are numerous different clustering algorithms, which often lead to quite different results with the same data set
3.	Crop groups	Number of crop groups based on different criteria eg use value base, economic importance base national list base, habitat base, red list base, growing season base, national priority base, etc. higher the number of such groups, indicate higher diversity,	Examples are cereals, vegetables fruits, released variety, registered variety, major, minor, primary, secondary, staple, commodity, high value, commercial, industrial, food crops, feed crops, manuring crops, pesticidal plants, cash crops, cover crops, trap crops, catch crop, , cultivated, semi domesticated, wild edible, field crops, garden crops, aquatic plants, common, rare, endangered, extinct, localized, vulnerable, winter

Table 2. Different measures for on-farm agrobiodiversity measurement

Good Practices for Agrobiodiversity Management

SN	Diversity Measure	Description	Remarks
4.	Cropping patterns	Number of different cropping pattern	Indicates number of species, variation in growing seasons
2.	Cluster analysis	Group entities with similar characteristics into categories. Methods may be hierarchical, resulting in a dendrogram, or non-hierarchical, resulting simply in groups of similar samples	There are numerous different clustering algorithms, which often lead to quite different results with the same data set
5.	Coefficient of Variation (CV)	Quantifying diversity using quantitative agromorphological data. Expresses sample variability relative to the mean of the sample –it is also called a measure of relative variability or relative dispersion	For comparing diversity across groups
6.	Dissimilarity coefficients	Measure the degree to which two populations or individuals are different in composition	Examples are Euclidean distances, Mahalanobis' generalized distance
7.	Distinctness	Not identical	The range of variation found
8.	Evenness (species, cultivar)	The frequency of occurrence, observations distributed evenly among categories result in high diversity	Distribution of the different classes (eg % area covered by each variety of a crop in a giver village)
9.	F-test and ANOVA	Quantifying diversity using quantitative data	Used to estimate genetic variance between entities (varieties, populations, regions sites
10.	Growing season	Number of crop growing time and seasonal variation	Higher number of growing seasons indicates higher varieta and species diversity
11.	Household Diversity Index (HDI)	Estimate following Shannon-Weaver Index method	Total diversity maintained by each farmers, considering eithe species of different categories o varietal traits categories
12.	Land type and habitat	Different types of land and habitat in an area	As number of different numbe of land type increase, diversity at varietal and species level increased
13.	Mean	Average of all values of the a variable	Compare mean of different samples

SN	Diversity Measure	Description	Remarks
14.	Minimum, maximum value	Largest and smallest value	Compare among species and landraces
15.	Morpho type	Groping of species or landraces based on their outlook	Consider all traits at a time to define morpho type
16.	Percentage and frequency	A display of data that specifies the percentage of observations that exist for each data point or grouping of data points	Useful method of expressing the relative frequency of survey responses and other data
17.	Principal component analysis	Similarity or dissimilarity coefficients based ordination method, scatter plotting of observations based on their diversity values	Explain the variance-covariance structure of a set of variables through linear combinations. It is often used as a dimensionality reduction technique
18.	Range	The difference between the lowest and highest values	Shows how much the numbers in a set vary
19.	Red list	Name list of genetic resources (at genotype, landrace, variety, strain and breed levels) under different groups based on the analysis of distribution and population size (also called five cell analysis), and trait distribution	Conservation status group eg common, vulnerable, rare, endangered, localized, unique
20.	Richness (species, cultivar)	Take into account the number of species, landraces, any functional unit or objects	Number of types (eg crops, varieties, traits, genes), species richness, varietal richness
21.	Shannon Diversity Index (H')	Take into account the number of species (the richness) and their relative contribution (the evenness)	Diversity index for qualitative data
22.	Similarity coefficients	Measure the degree to which the populations of samples are alike	Simple matching coefficients, Jaccard's coefficient
23.	Simpson's index (D)	Take into account the number of species (the richness) and their relative contribution (the evenness)	Quantifying diversity using qualitative data, diversity index
24.	Species density	Take into account the number of species in an area, landrace density may also be estimated	Number of species in a sample area
25.	Trend analysis	Temporal and spatial analysis on status and changes in agrobiodiversity	Regular estimate of different diversity measures over time and space, useful for monitoring diversity status

Good Practices for Agrobiodiversity Management

SN	Diversity Measure	Description	Remarks
26.	Center of diversity	Presence of crop wild relatives near to site	Indicates areas with wild relatives a higher diversity for this species
27.	Use value (food items	Types of different local food items and other cultural and social values made from locally available agricultural genetic resources	Higher agrobiodiversity means more number of different types of foods and use values
28.	Variation and standard deviation	The average of the squared differences from the mean. the average difference between the arithmetic mean and the value of each observation in a data set	Measures of spread

On-farm Conservation Approaches

Three strategies ie breeding, in-situ and on-farm are considered at local level for overall conservation and utilization of agrobiodiversity. Different methods and approaches for on-farm conservation are given in Figure 2. All or any of these are applied and among them community seed bank is very common for management of crop diversity. In all these approaches, local and native genetic resources are considered. Farmers, communities, farmer groups and local stakeholders need to actively participate.

D. Advantages and Disadvantages


Advantages

- Many options (simple to complex) to measure and monitor agrobiodiversity
- Any level (crop, plot, farmer, village, etc) can be considered for estimate
- Useful to compare diversity among crops, village and districts
- Farmers and agriculturist involve equally to estimate and assess the diversity
- Different farmers, group of farmers can choose any conservation approaches and these are simple and cost effective
- Easy access to diversity and accelerate the germplasm flow
- Conservation through use continue the evolutionary process

Disadvantages

- Need to consider multiple approaches and dimension to estimate and collect data
- Take more time and human resources
- Information collected on native genetic resources might further be needed to verify

- Difficult to demark the areas for analysis of diversity. Area coverage is based on administrative rather than adaptation of genetic resources
- In some cases, technical expertise are needed
- Strong collaborations are needed.

Figure 3. Agrobiodiversity conservation approaches and methods at local level adopted in Nepal.

Source: Joshi and Upadhyay 2019

E. Success Cases

Many diversity measures and indices are estimated for different sites and crop species and landraces. Most commonly used measures are analysis of variance, mean, SD, multivariate analysis, and Shannon-Weaver index. Information is available from species to landraces to genes levels of rice, bean, proso millet, finger millet, amaranth, buckwheat, naked barley, foxtail millet, etc. Native and local crop genetic resources are being conserved through community seed bank in Humla, Jumla, Lamjung and Dolakha. Linkage among stakeholders is established for in-situ conservation. Local landraces have been genetically enhanced through participatory approaches. Some such landraces are got registered. Custodian farmers are identified and household genebank are established along with community field genebank.

F. References

- Bajracharya J, R Rana, BK Joshi, A Subedi and B Sthapit. 2012. Measuring on-farm crop diversity. In: On-farm management of agrobiodiversity in Nepal: Good practices (BR Sthapit, P Shrestha and MP Upadhyay, eds). NARC, LIBIRD and Bioversity International, Nepal; pp.9-12.
- Bioversity International, 2017. Agrobiodiversity Index. Programme Oversight (Prepared by R. Remans, S. Attwood, F. Werneck, A. Smith). A paper presented in 49th Board Meeting of Bioversity International, Rome, Italy, 10 – 12 May 2017. Gurung R, SR Sthapit, D Gauchan, BK Joshi and BR Sthapit. 2016. Baseline Survey Report: II. Ghanpokhara, Lamjung. Integrating Traditional Crop Genetic Diversity into Technology: Using a Biodiversity Portfolio Approach to Buffer against Unpredictable Environmental Change in the Nepal Himalayas. LI-BIRD, NARC and Bioversity International, Pokhara, Nepal. https://cgspace.cgiar.org/handle/10568/81039
- Jarvis DI, L Myer, H Klemick, L Guarino, M Smale, AHD Brown, M Sadiki, B Sthapit and T Hodgkin. 2000. A Training Guide for In Situ Conservation On-farm. Version 1.International Plant Genetic Resources Institute, Rome, Italy.
- Joshi BK and D Upadhaya. 2019. On-farm Conservation Approaches for Agricultural Biodiversity in Nepal. National Genebank, Khumalar, Nepal.
- Joshi BK, AK Acharya, D Gauchan and MR Bhatta. 2017. Agrobiodiversity status and conservation options and methods. In: Conservation and Utilization of Agricultural Plant Genetic Resources in Nepal (BK Joshi, HB KC and AK Acharya, eds). Proceedings of 2nd National Workshop, 22-23 May 2017, Dhulikhel; NAGRC, FDD, DoA and MoAD; Kathmandu, Nepal; pp. 21-38. http://moad.gov.np/public/uploads/855517450 Plant%20Genetic%20Resources_CUAPGR_Nepal-min.pdf
- Joshi BK, MP Upadhyay, HP Bimb, D Gauchan and BK Baniya. 2005. Data analysis methods adopted under in-situ global project in Nepal. Nepal Agric. Res. J. 6:99-109. http://www.narc.org.np/publicaton/pdf/journal/Vol6/data_analysis_methods_ adopted_under_situ_global_project.pdf
- Sthapit BR, D Gauchan, BK Joshi and P Chaudhary. 2017. Agrobiodiversity index to measure agricultural biodiversity for effectively managing It. In: Conservation and Utilization of Agriculture Plant Genetic Resources in Nepal (BK Joshi, HB KC and AK Acharya, eds). Proceed. of 2nd National Workshop, May 22-23, 2017, Dhulikhel, NAGRC/FDD/MoAD, Kathmandu, Nepal.

Citation

Joshi BK, D Gauchan, B Bhandari and D Jarvis, eds. 2020. Good Practices for Agrobiodiversity Management. NAGRC, LI-BIRD and Bioversity International; Kathmandu, Nepal.

||-----|||-----||