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Abstract 

Smallholder agriculture in the Global South is characterised by high degree of risk, which 

disincentivises investment in productivity gains and limits rural development. Index Insurance 

aims to overcome the limitations of traditional insurance to insurance farmers against exposure 

to climatic extremes. Based on two study sites in India, Haryana and Odisha, this study 

contributes to the technical aspect of improving the indices, more specifically on how field level 

yield can be estimated through Sentinel-2 derived VI variables and which design options are 

more suitable to create these variables. The study shows that the best variables alone can 

explain 20% of the inter-field grain yield variation and that the best combination of variables 

can explain 53%. Furthermore, the main findings of the study suggest that it is beneficial to test 

different triggering measures and that including variables from phenologically tailored phases 

and isolating the rice varieties significantly improves the results. Additional research is needed 

before the approach is suitable for individualised index insurance but compared to alternative 

data sources the method will likely pose an effective and scalable way to identify yield gaps and 

to specifically target policy interventions. 
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Reading guide 

The thesis will begin with a glossary, giving the reader an introduction to the concepts that will 

be used in the study. The motivation behind the topic of index insurance will then be described, 

followed by an exploration of the existing research field. How this study is placed in the 

research field will then explained, followed by the composition of the research, culminating in 

the specific research question and the aim of the study. 

Theoretical knowledge of rice phenology will then be presented and the two the study sites and 

the used data will be introduced. This will be followed by some considerations of the scientific 

methodology applied in the study. The method of the analyses will then be presented, followed 

by a presentation of the results. These will then be evaluated in the discussion, along with a 

comparison of the results to similar studies and a discussion about the implications of the study 

for the research field. The discussion will result in a list of recommendations for further 

research of the topic and lastly the main findings of the study will be concluded.   
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Glossary 

This list of concepts will be useful to be familiarised with, when reading this study. 

Inclusive insurance: Inclusive insurance is a school of insurance that focuses on affordable 

and fair insurance products, providing insurance to lower-income population segments, 

typically in the Global South (Cheston, 2018). 

Adverse selection: Adverse selection describes a situation where the information between a 

buyer and seller is unequal. In insurance, adverse selection entails a higher demand for 

insurance from farmers that know they are more at risk. The insurance companies then need 

to adjust for this when assessing their exposure and determining the premiums (Investopedia, 

2020). 

Morale hazard: Morale hazard describes how being insured can change the behaviour of the 

insured towards more risk-taking behaviour. In agriculture, insurance can lead farmers 

towards practices that are more likely to suffer losses (BD, 2020; IRMI, 2020; Greatrix et al., 

2015). 

Index insurance: Index insurance is a relatively new approach for insurance where the 

insurance pay-outs are determined by an objective index, and thus detached from the 

experienced losses. The index could for example be based on precipitation, vegetation indices, 

wind, or temperature. For the insurance to be reliable, the indices should be closely related to 

the agricultural production losses (GIFF, 2020; Greatrix et al., 2015). 

Basis risk: Basis risk is a term in index insurance, that describes the risk of a mismatch between 

the experienced loss and the insurance pay-out. It is an inherent challenge in index insurance 

as the index is decoupled from the experienced losses (GIFF, 2020; Greatrix et al., 2015).  

Design options: In this context, design options cover the different possibilities when designing 

an index for index insurance. When creating an index, it must be decided which variable to base 

the index on, how that variable is aggregated to one value, which period is covered and how the 

start of the period is determined. The design will often depend on the objectives of the index 

(IFAD, 2017). 
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Input-based variables: In the context of index insurance, input-based variables are variables 

that directly influence the crop production, such as precipitation and temperature. Index 

insurances based on input-based variables builds on the assumption that the variables are 

drivers of crop changes and therefore a good indicator for the yield (IFAD, 2017). 

Output-based variables: Output-based variables are in this context, variables that can be used 

as proxies for the yield. The variables do not influence the crop growth but are merely 

estimations of the changes in vegetation productivity. Vegetation indices are an example of an 

output-based variable (IFAD, 2017). 

Smoothing type: Smoothing the data is an important tool working with satellite dataset. The 

reflection from the vegetation is frequently altered or blocked, typically due to aerosols, clouds 

or changing illumination patterns. This produces noise in the dataset. In order to address this, 

the raw dataset is processed through a smoothing technique that produces a more 

representative data set (USGS, 2020). 

Vegetation indices: Vegetation indices (VIs) are an indicator of the ‘greenness’ of the 

vegetation, derived from its reflective properties. Vegetation indices are created from the 

values of specific spectral bands, combined in different mathematical formulas. In this study 

two vegetation indices are used: Normalized Difference Vegetation Index (NDVI) and Enhanced 

Vegetation Index (EVI) (Lillesand et al., 2015; Pasimeni et. al., 2019).  

VI variables: In the study there will occasionally be referred to VI variables. This will refer to 

the variables created on the bases of vegetation indices from satellite data. 

 

 

 

 



 

  

 

11 of 136 

 

1 Introduction 

1.1 Motivation 

Smallholder agriculture is an important foundation for employment and food security in many 

countries in the Global South. It is however characterised by a high degree of risk, especially 

from exposure to climate variability and adverse weather events. Events, such as droughts and 

floods can force farmers to utilise short-term strategies to cope with the immediate crisis. These 

responses can however reduce the development of the farmers´ livelihood in the long term, as 

they often involve deterioration of productive assets. Large investments in smallholder 

agriculture are necessary to accelerate rural development and to meet the increasing food 

demand from growing populations. However, the vulnerability context of the agricultural 

sector disincentivise investments in production gains, keeping people in many rural areas in 

the Global South trapped in a state of food insecurity and persistent poverty (Carter et al., 2017; 

Hansen et al., 2017; IFAD, 2017; Miranda & Farrin, 2012). Climate change which in many places 

is expected to increase the frequency and severity of extreme events, will further strengthen 

this poverty trap (IPCC, 2018; GIZ, 2016).   

Increasing agricultural productivity and empowering smallholder farmers is widely considered 

an effective way to increase resilience and reduce poverty and hunger (Ivanic & Martin, 2018; 

Lobell et al., 2018; UN, 2019). Inclusive insurance can contribute to this by providing a safety 

net, preventing farmers from falling into poverty after a shock, and by making it more attractive 

for investments. Agricultural insurance is however not well developed in the Global South, and 

traditional indemnity insurance suffers from several challenges, such as lack of trust between 

insurance provider and policyholder and proportionally high verification cost. Index insurance 

has been proposed as a solution to these challenges. By basing the claim and verification 

process on an objective, automated index, the verification costs and the mistrust can be reduced  

(GIZ, 2017; Miranda & Farrin, 2012; Greatrex et al. 2015; Carter et al. 2017; Platteau et al. 2017; 

Liu & Myers, 2016; The World Bank Group, 2018; GIIF, 2019). 

1.2 Research field 

1.2.1 Challenges for index insurance 

There are several challenges that needs to be overcome to increase the scalability and 

socioeconomic impact of index insurance in the Global South. These challenges can be grouped 
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in two; delivery challenges and technical challenges. The delivery challenges are related to how 

index insurance policies can be designed to add the most value for the policyholders, how the 

products can be scaled, keeping the cost low and how demand can be increased by raising 

awareness and building trust. The technical challenges are related to how the specific indices 

can be created to increase the agreement between the experienced loss by the farmer and the 

detected loss by the index i.e. how the basis risk can be reduced (IFAD, 2017; GIZ, 2016; Carter 

et al., 2017; Greatrex et al. 2015). The focus of this study will be on the latter, more specifically 

on how satellite data can contribute to overcome the technical challenges and increase the 

index accuracy.   

The research field of technical challenges is quite diverse, and research varies in terms of the 

overall objective for the index, the variables used, the scale, the specific design options and the 

resolution of the used satellite products (IFAD, 2017). To place this study in the research field 

it can be useful to categorise the diverse field in two schools of research. The boundaries are 

however unrestrictive, and a range will likely be more beneficial understanding of the field than 

categories, as many studies fall somewhere between the two.  

1.2.2 First school of the technical challenges 

The first school is characterised by a goal to insure against the most severe events, caused 

generally by a single peril. The essential aspect is whether the index is able to accurately 

capture which years that has been the worst, as experienced by the farmers. It is less important 

to be able to estimate the precise yield each year. The index is typically based on input-based 

measures, such as rainfall or soil moisture and will often only insure against a single weather-

related peril. If a farmer is hit by a pest attack, it will not be captured by the index nor 

compensated from the insurance. The Unit Area of Insurance (UAI) in which all policyholders 

are assumed to be similar, are typically large (sub-county to district), also as a consequence of 

low-resolution data sources. The large UAI are a source of basis risk, as specific local conditions 

are averaged out. A farmer who has been victim of a flood might not be compensated if the 

majority of the other farmers in the region are unaffected by the shock (IFAD, 2017; Rosema et 

al., 2014; Enenkel et al., 2018; Osgood, et al., 2018).  Studies which focus on output-based 

measures, such as NDVI, can also be considered part of this school when the size of the UAI´s 

are large (sub-district to region). Due to the large UAI´s the insurance will not typically cover 
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multiple perils, as individual losses from e.g. pest attack will be lost when focusing on the 

average of a large area, even though the loss could have been detected in the VI at the farmer´s 

field. (Klisch & Atzberger, 2016; Flatnes et al., 2019; Chantarat et al., 2013; Makaudze & 

Miranda, 2010; Son et al., 2013).  

1.2.3 Second school of the technical challenges 

Recognising the heterogeneity of crop losses, the aim of the research in the second school is to 

create indices that are able to insure a village or even individual farmers against multiple perils 

on a seasonal basis i.e. to be able to estimate the yield of the farmers after each season and 

compensate if the yield is less than average. For this, high-resolution data is necessary in order 

to differentiate between villages or single fields. Output-based data, such as vegetation indices 

are often used in this school of research. As these indices directly reflects the crop growth, they 

will typically insure against multiple perils, ranging from pest and diseases to the different 

climatic conditions. If the accuracy of the indices is adequate, basis risk will be less severe when 

the index is individualised. But this specified insurance approach increases the risk of morale 

hazard and adverse selection, two inherent challenge of insurance. These challenges impose 

high demands on the overall design of the insurance policies. Several innovative solutions are 

being developed, but that is a topic belonging in the delivery challenges category and will not 

be further elaborated in this study (Burke & Lobell, 2017; Hufkens et al., 2019; Lobell et al., 

2019; Lambert et al., 2017; Jain et al., 2016; Azzari et al., 2017; Guan et al., 2018).  

Index insurance products are not the only application for field level yield estimations obtained 

through satellite images and therefore not the only objective of the research in this school. 

Accurate estimates of farm level yield can also be used to identify productivity gaps, enabling 

specific targeting of policy interventions, such as fertilizer and seed supply or access to 

microcredit. As such intervention are often otherwise implemented as one-size-fits-all, the farm 

level yield estimates will likely increase the effectiveness of such interventions. Furthermore, 

the estimates can be used to assess the results of implemented initiatives. These initiatives can 

all contribute to increased agricultural production and thus rural development and food 

security. The estimates can also be used as verification data for when developing insurance 

products on a larger scale, as an alternative to other sources of yield data that are often 
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expensive and unreliable (Lambert et al. 2017; Hufkens et al., 2019; Guan et al., 2018; Burke & 

Lobell, 2017; Lobell et al., 2018; Lambert et al., 2018). 

1.3 Focus of the study 

This study is placed in the second school of the research field and aims to contribute to how 

high-resolution satellite data can be utilised to accurately estimate farm level yield and to 

ultimately, develop effective insurance mechanisms for farmers in the Global South.  

To create an index insurance, a prerequisite is that farm level yield can be approximated by 

objective data. If a reliable relationship between farm level yield and a satellite derived VI 

variable can be established, this can be used as a foundation for the index insurance. The VI 

variable would then be referred to as the index. Insurance pay-outs for a specific farmer would 

then be dependent on the VI value observed by the satellite. Pay-outs would be made if the 

index estimates a poor harvest for the specific farmer, irrespective to the farmers experienced 

loss. The exact threshold and price for the insurance policy would typically be determined by 

historical data. In this study it is however only the relation between yield and the index that 

will be in focus (Miranda & Farrin, 2012; GIIF, 2019; Greatrex et al. 2015).  

The study will not make yield estimations as such but only create and assess VI variables´ ability 

to explain yield variation. How well the VI variables can explain the inter-field yield variation is 

a direct measure of well they can estimate farm level yield, and the two terms will therefore be 

used interchangeably throughout the study. 

1.4 Research composition 

The aim of the study is to assess the ability of vegetation indices to explain inter-field yield 

variation in paddy rice for two study sites in India and to assess which VI design options are 

most suitable for this.  

Numerous VI variables will be created through processing of satellite images using different 

combinations of the selected design options. These will then be systematically assessed. 

Three statistical analyses will used to test the VI variables: A linear regression, returning the 

correlation between the individual variables and the yield. A multiple regression, providing the 
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correlation between the yield and multiple explanatory VI variables1, and lastly a Random 

Forest classification yielding an accuracy assessment of how well groups of VI variables were 

able to classify the samples according to their yield. Assessing the design options across three 

statistical analyses is expected to increase the robustness of the results. This approach can be 

referred to as methodological triangulation, which has been found to be beneficial when 

working with comprehensive data sources (Bekhet & Zauszniewski, 2012). The multiple 

regression and RF classification both run on groups of variables. It can therefore also be tested 

how well different VI variables can supplement each other and together explain the yield 

variation. The two tests also make it possible to correct for biases in the data, by including 

suspected bias-creating variables.   

Subsequently, it will be analysed which aspects create the most uncertainty in the results: The 

smoothing types and VIs will be compared, the effect of correcting for biases will be assessed 

and the amount of uncertainty from the mismatch between above ground biomass and grain 

yield will be evaluated. 

Before analysing the output-based VI variables, it will first be assessed which independent 

variables that affect the yield. This will be done with a similarly method, using linear regression, 

multiple regression and RF classification to assess the ability of the variables to estimate yield, 

but using input-based variables, such as climatic, socioeconomic and spatial variables instead 

of output-based. The aim of this is to get a better understanding of the factors determining the 

farm-level yield.  

 

 

 

 

 

 
1 In this study, the VI variables will frequently be referred to as explanatory or independent variables, as they are used 

to explain the variation in yield. This does however not imply a causal relation as it is the VIs that are dependent on the 

yield and not the other way around. When using the input-based variables to explain yield variation, a causality is 

expected and the yield is therefore also the dependent variable in reality.  
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1.4.1 Research questions 

The composition of the study can be summarised in following research questions, on which this 

thesis will be based: 

How much of the inter-field yield variation can be explained by Sentinel-2 derived vegetation 

indices and which design options give the best results? 

1. Which input-based variables influence the farm level yield?  

 

2. How well does the VI variables explain the inter-field yield variation? 

 

3. Which design options results in the VI variables most suitable to estimate yield?  

3.1. Vegetation index: NDVI or EVI  

3.2. Smoothing type: MWLR or DL  

3.3. Triggering measure: Peak, integral, mean, length, SoS or EoS 

3.4. The period: Phenologically tailored phases or only for the whole season 

3.5.  Seasonality: Dynamic or fixed seasonality 

 

4. What aspects of the index creating process create the largest sources of uncertainty?  

4.1. The smoothing type or VI choice 

4.2. The bias creating variables  

4.3. The imperfect correlation between grain yield and total yield 

 

1.5 Ambition of the study 

The recent launch of the Sentinel-2 satellite offers new possibilities for yield estimations of 

smallholder fields. The data provides sufficiently high spatial resolution to distinguish between 

individual fields, and the temporal resolution makes it possible to extract parameters 

representative of the entire crop season thus providing more information about how the crops 

have developed (Lambert et al. 2017; Lambert et al., 2018; Jain et al., 2016).  

Reliable ground truth data is often mentioned in the literature as a limiting factor for creating 

indices and assessing their accuracy. Farmer surveys of historical yield can be very uncertain 
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and systematically biased. When used to create and assess index products it can be difficult to 

determine how much of the error is due to inaccurate indices and how much is from inaccurate 

yield data. The very comprehensive yield dataset used in this study is made from crop cuts 

exercises (CCEs) of over 500 fields. CCEs have in previous studies been shown to be more 

reliable and basing the analyses on this data therefore allows for higher confidence when 

assessing the indices and specific design options (IFAD, 2017; Jain et al., 2016; Lobell et al., 

2018; Lobell et al., 2019; Guan et al., 2018).  

The yield dataset used in this study also provides information about the phenological stage of 

the crops at different times during the season. This provides the unique opportunity to, based 

on empirical information, divide the crop season according to different phenological stages and 

to access the effect of this specified information on the yield estimations. 

We are not aware of other studies that systematically assess the design options across multiple 

variables and statistical tests. In addition, comparable studies generally only include one 

triggering measure for the whole season. The benefit of combining different VI variables and of 

including variables from phenologically tailored phases is therefore not well explored in the 

literature. 

In the absence of a substantial theoretical body, this study aims to contribute to this important 

and emerging area of research with novel insights on how the VI variables can be designed to 

increase the accuracy of farm level yield estimations.  
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2 Theory 

Having covered the essential terms and concepts of index insurance in the glossary and 

introduction, the theoretical section will be short, only providing an introduction to the 

phenology of paddy rice.  

2.1 Rice phenology 

A thorough understanding of the rice phenology is essential to this study as an important aim 

is to create variables specifically designed to capture the condition of the vegetation in certain 

crop phases. The developing stages of the paddy rice crop will therefore be presented here. 

There are several ways to classify the rice crop stages. For this study the most simple, consisting 

of three phases, is sufficient. The three phases are:  

(1) The Vegetation Stage (VS), which has a duration of 50-100 days, is characterized by the 

formation of shoots and leaf development, and hereby an increase; in height, tillers and leaf 

area.  This initiates a gradual increase in above ground biomass (AGB) as seen in Figure 1 (Guan 

et al., 2018; Dong & Xiao, 2016).   

(2) The Flowering and Reproductive Stage (FRS) has a duration of 30-35 days. In this stage the 

growth of the reproductive parts is initiated and the AGB continue its gradual increases (Figure 

1). At this stage the rice experiences the fastest plant height increase, booting initiates with 

panicle production and flowering begins.  The FRS is a significant phase for the rice production, 

as the formation of flower buds determines the number of grains, a decisive measure for the 

grain yield (Guan et al., 2018; Dong & Xiao, 2016).  

(3) The Ripening and Maturity Stage (RMS) has a duration of 30-35 days in which the AGB 

reaches its maximum (Figure 1). When entering this stage, the number of grains is fixed 

equivalent to the number of flowers produced in the FRS. In the RMS, the filling of the grains 

begins, which leads to an increase in grain size and weight. The RMS ends as the leaves and the 

grains have gradually turned golden yellow and the rice is ready for harvest (Guan et al., 2018; 

Dong & Xiao, 2016; Hufkens et al., 2019; CGIAR, 2013). 
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Figure 1: Overview of paddy rice crop stages (Guan et al., 2018; Dong & Xiao, 2016). 

3 Study sites  

This study is done for two sites in India: Haryana in North West India and Odisha in East India 

(Figure 2). Using two study sites gives the possibility to compare the results and assess the 

impact of aspects that differ between the sites. It is also the expectation that the results will be 

more robust when assessed over two study sites.  

 

Figure 2: Map of study sites. 
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Haryana has a semi-arid climate with high temperatures and a condensed precipitation period. 

Odisha has a tropical savanna climate. It generally receives more precipitation, distributed over 

a longer period and the annual temperatures are more stable (Figure 3). 

 

Figure 3: Climographs from the two study sites. Left: Haryana (CLIMATE-DATA.ORG, 2020a). Right: Odisha (CLIMATE-DATA.ORG, 
2020b) 

The annual per capita income of the around 25 million people living in Haryana is 236 thousand 

rupees. In Odisha, which is populated by almost 44 million people, the annual per capita income 

is 96 thousand rupees (Table 1) (GOH, 2020; GOO, 2020; Statista, 2020a; Statista, 2020b). 

        Table 1: Information about the two study sites (GOH, 2020; GOO, 2020; Statista, 2020a; Statista, 2020b). 

 Haryana Odisha 

Location 

 

North West India 

 (30° 43′ 48″ N, 76° 46′ 48″ E) 

East India 

(20° 17' 46'' N, 85° 49' 28 '' E) 

Population 

 

25,35 million 43,73 million 

Climate 

 

Hot semi-arid climate Tropical savanna climate 

Per capita income 

 

236 thousand Indian rupees 

in financial year 2019 

96 thousand Indian rupees in  

   the financial year 2019 

 

The participating farmers have access to irrigation and are mainly practicing conventional 

paddy rice production for selling and exporting. The average field size is around 0.20 Ha (2032 

m2) for Haryana, and 0.05 Ha (465m2) in Odisha2. The average grain yield in 2019 was 24.6 

 
2 According to the manually drawn polygons around the fields with yield data. The method of this will later be 

described. 
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quintals per acre (6.08 t/Ha) in Haryana and 17.2 quintals per acre (4.25t/Ha) in Odisha. For 

both study sites, the variance was however rather high (Figure 4).  

 

Figure 4: Distribution of grain yield for fields in Haryana and Odisha 

An overview of the soil types and rice varieties for the two study sites can be found in the 

appendix (Figure 50 & Figure 51). 
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4 Data  

The data sources used in this study will be introduced here, starting with an overview of what 

is included in the yield data provided by IFPRI. This is followed by a presentation of the 

specifications of the three sources of satellite data. 

4.1 Yield data 

4.1.1 Data from IFPRI 

“This data was provided by IFPRI. IFPRI bears no responsibility for the analyses or interpretations 

of the data presented here” 

Farm level yield data from the Indian states, Haryana and Odisha was made available to us by 

Berber Kramer from IFPRI. The dataset contains information from field surveys of the late 2019 

rice harvest and from smartphone images of the fields during the entire length of the late 2019 

crop season. 

The dataset contains geo-localised information from CCEs of 317 fields in Haryana and 105 

fields in Odisha (Figure 5). Of these fields, the farmers in Haryana and Odisha had on instruction 

taken 766 and 718 smartphone pictures of the fields during the crop season. A manual 

classification of the vegetative stage of crops in each smartphone picture was also included in 

the dataset.  

The survey data includes: Grain yield (standardised at 14% moisture level) and biomass yield, 

collected in 9m2 or 25m2 CCE. (See appendix for further details about the CCE process: Figure 

54). A varying subset of the fields also had information on rice variety, soil type, money spent 

since last image, farmer reported cause of damage, observed cause of damage (on smartphone 

pictures) and farmer reported input use. 
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Figure 5: The spatial distribution of the yield data for Haryana (Left) and Odisha (Right). 

4.2 Satellite data 

4.2.1 Sentinel-2 MSI: MultiSpectral Instrument, Level-2A 

Sentinel-2 is a part of the Copernicus mission, which comprises a constellation of two twin 

Sentinel-2 satellites. Sentinel-2A was launched and set in orbit in June 2015 and Sentinel-2B in 

March 2017, both at an altitude of 786km (ESA, 2020a). They operate simultaneously, with a 

180° angle in a sun-synchronous orbit, which guarantees consistency of the illumination 

direction. This minimises the potential impact of differing shadows and ground illumination 

levels and is thus a vital feature when assessing time-series of images (ESA, 2015). The 

combination of the two satellites generates a revisit frequency of 5 days at the Equator i.e. a 

temporal resolution of 5 days (ESA, 2015). The Sentinel-2 produces 13 different spectral bands 

at different spatial resolutions. This study uses 3 bands to calculate the VIs, the Blue (B2), the 

Red (B4) and the Near-Infrared (B8), all with a spatial resolution of 10 meters. 

The Sentinel-2 product used is “Sentinel-2 MSI: MultiSpectral Instrument, Level-2A”. The Level-

2A data has been pre-processed, ensuring that the images are ortho-rectified and bottom of the 

atmosphere reflectance (ESA, 2020b). 

4.2.2 MOD11A2.006 Terra Land Surface Temperature and Emissivity 8-Day Global 1km 

This dataset is derived from the Terra satellite which was launched in 1999 and is part of the 

collection “Terra MODIS” (NASA, 2020). It provides land surface temperature and emissivity 
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with a spatial resolution of 1km and a temporal resolution of 8 days, averaged from the daily 

MOD11A1 values within the 8-day period (USGS, 2020). 

4.2.3 CHIRPS Daily: Climate Hazards Group InfraRed Precipitation with Station Data 

CHIRPS Daily was created in 1981 to produce rainfall maps, specifically in areas where surface 

data is limited. Like the National Oceanic and Atmospheric Administration’s (NOAA’s) rainfall 

predictions, it builds on approaches using thermal infrared (TIR) reflectance to estimate 

precipitation (USAID, 2020). It provides a daily global precipitation dataset, with a 0.05° spatial 

resolution (Funk et. al, 2015). 
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5 Scientific methodology 

5.1 A quantitative case study 

This project is a quantitative case study. A set of research questions creates the foundation for 

a quantitative analysis. The outcome of the analyses is assessed, and conclusions are drawn 

from the results. The method is then evaluated and recommendations for further research are 

made. 

A thorough understanding of the research field gained from recent scientific literature and 

through conversations with field experts, allowed us to identify very specific and unexhausted 

research questions that could potentially contribute with new knowledge to the field.   

Several modifications to the research design were made in the research process to improve the 

quality of the results. 

5.2 Choice of software 

The study has been carried out using Google Earth Engine (GEE). This ensures high 

transparency as the scripts contains all information of the analysis. While creating the scripts 

for the analysis we simultaneously create a pipeline for replicating the analysis for other study 

sites, as the scripts only need few adjustments to work at other locations. (Azzari et al., 2017; 

Lobell et al., 2015).  

The strong processing power and replicability of GEE allowed us to create many different VI 

variables for the two study sites. This made it possible to evaluation the design options across 

multiple variables, thus increasing the robustness of the results. Examples of the GEE scripts 

can be found in the appendix (11.11 GEE script: Data preparation and the temporal aggregation 

p.118 & 11.12 GEE script: Spatial aggregation p. 134). 
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6 Methods  

In this section, the methods of the study will be presented: It will be explained how the yield 

data has been processed and how the VI variables were created from the satellite data by 

calculating the VIs, smoothing the timeseries and then temporally and spatially aggregating the 

timeseries. It will then be presented how the created variables were evaluated in the three 

statistical analyses.  The section starts with a short overview of the entire analysis. 

The overall process has been to create variables from satellite data using many different design 

options, assessing the ability of these variables to explain the yield variation through three 

statistical tests and then systematically assess the results to isolate the suitability of the 

different design options. 

To create the VI variables from the satellite data several steps were needed. First the VIs had to 

be calculated for the images in the timeseries and the effect of clouds had to be smoothed out. 

A time period for when to extract the values then had to be defined along with a method to do 

so. The timeseries then had to be temporally aggregated to a single image. For each step in this 

process there are several different options i.e. the design options. In this study, two different 

VIs were created and two different smoothings were applied. Variables were extracted for four 

different periods, using two different ways of defining the phases and six different temporal 

aggregations. Images were then created for almost all the possible combinations of the chosen 

design options to be able to compare each design option against its alternative across multiple 

different variables.  

The prepared yield data points were associated with a field though manual plotting of the fields. 

All the created images were then spatially aggregated using the field plots to obtain a single 

value for each field. This result in a list of variables, which have a single VI value associated with 

each yield data value. The ability of the variables to explain inter-field yield variation either 

individually or in groups of variables was then assessed through three different analyses; linear 

regression, multiple regression and RF Classification.   

In addition, the three statistical tests were also one for different sources of input-based data to 

get an understanding of the decisive factors for rice yield. Different supplementary variables 

from the yield dataset were also utilised to in efforts to correct for biases in the yield values. 
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Lastly it was assessed which aspects of the process that produces the most uncertainty. A 

graphical representation of the workflow can be seen below (Figure 6). 

 

Figure 6: Workflow of the analyses. 

6.1 Yield data preparation 

A few pre-processing steps were done to prepare the yield data for the analysis.  

First the data was cleaned by removing certain troublesome values3.  

 
3 Values were deleted if they: 
- Had coordinates that places it outside the study-area 
- Had a harvest index above 1 
- Had a CCE GPS accuracy above 20m (i.e. over 20 meters possible error in the location estimation) 
- Were located in Odisha and had grain yield above 35 quintals per acre. On recommendation of the data 
provider. 
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Initially, each row of the data represented a picture taken by a farmer. This was converted to a 

dataset with a row per field, by exploiting that pictures of the same field were listed with an 

identical CCE yield and therefore could be grouped by a pivot table.  

Then, a new variable was added by taking the sum of the grain yield and biomass yield. This 

represents the total AGB and will henceforth be referred to a “total yield”. The total yield is what 

is measured by the satellite and is therefore expected to correlate better with the VIs. If what 

the satellite measures (total yield) does not correlate well with the variable we are trying to 

predict (grain yield), it is an early indicator that it will be difficult to explain the grain yield 

variation through satellite-derived VIs (Guan et al., 2018).  

In Odisha the grain yield correlates well with the total yield (R² = 0.74) but in Haryana much 

less of the grain yield variation can be explained by the total yield (R² = 0.22) (Figure 7).     

   

Figure 7: Relation between total yield and grain yield for Haryana (Left) and Odisha (Right). Throughout the thesis, the graphs 
from Haryana will be in green nuances and blue for Odisha. 

The unexpectedly low correlation for Haryana could have multiple explanations. If the critical 

phase of flowering and reproduction is mistimed it could result in low grain yield but still giving 

a high total yield. The Haryana samples could also include different groups with differing 

relation between grain yield and total yield. This could for example be caused by different rice 

varieties. Lastly, the low correlation could be related to the differing fertilizer application rate. 
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6.2 Satellite data processing 

In this section it will be presented how the VI variables were created from the Sentinel-2 data. 

6.2.1 Creating the vegetation indices 

From the pre-processed bottom-of-the-atmosphere satellite bands, NDVI and EVI were 

calculated with the following formulas (F1 & F2) (Lobell et al., 2019; Son et al., 2013). 

NDVI:  

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷
=  

𝐵8 − 𝐵4

𝐵8 + 𝐵4
 

(F1) 

EVI: 

𝐸𝑉𝐼 = 2.5 ∗
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 6 ∗ 𝜌𝑅𝐸𝐷 − 7.5 ∗ 𝜌𝐵𝐿𝑈𝐸 + 1
= 2.5 ∗

𝐵8 − 𝐵4

𝐵8 + 6 ∗ 𝐵4 − 7.5 ∗ 𝐵2 + 1
 

(F2) 

Both indices are frequently used in similar studies (Burke & Lobell, 2017; Guan et al., 2018; 

Lambert et al. 2017; Lobell et al., 2019; Lobell et al., 2019). 

In the preliminary comparisons of yield and NDVI measures, the yield spanned over a large 

interval while the differences in NDVI where relatively small. A potential explanation for this is 

that NDVI has a tendency to saturate at high biomass levels. EVI was therefore included as a 

supplement, as it is less prone to saturation (Son et al., 2013).  

6.2.2 Smoothing the time series 

On Figure 8, timeseries of NDVI and EVI can be seen. The irregularity of the VI´s over the season 

is due to cloud contamination. The clouds and cloud shadows consistently result in a lower 

NDVI value, while they can affect EVI in both directions.  
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Figure 8: Example of an NDVI and EVI timeseries affected by clouds. The NDVI values is always reduced by clouds, while the EVI 
can be affected in both directions. 

The Sentinel-2 level 2a data contains a band (QA60) with a pre-processed classification of 

clouds, which is intended to mask out the clouds from the images. However, this band is upon 

inspection unreliable in these study areas, as there are still cloud contaminated data that is not 

masked out. Lobell et al. (2019) encountered a similar challenge and as alternative to the cloud 

masking, they removed the effect of clouds by using an iterative smoothing that fitted to the 

upper envelope of the data points. Inspired by this, a similar approach was taken here, though 

with a different smoothing type. 

6.2.2.1 Iterative MWLR 

While Lobell et al. (2019) used a discrete Fourier transformation, we applied a moving window 

linear regression (MWLR), with a window size of 12 days i.e. 1 observation on either side, 

totalling 3 observations. The smoothing type and small size of the window were chosen to get 

the smoothing as close to the observations as possible. A goal of the analysis is to detect subtle 

differences between the fields in how the VI has developed at different periods. These might be 

overlooked if the smoothing has a generic form. Inside the window, a linear regression is made 

on the three observations and the middle observation is given the value of the trendline at the 

corresponding time. The window then moves one step and the process is repeated. The 

smoothing is comparable to a moving average and was satisfactory upon visual inspection.   

In  order to fit the smoothing to the upper envelope an iterative smoothing process was 

initiated: After the first smoothing a new timeseries identical to the original data was made but 
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if the original value was less than the smoothing, it was given the value of the smoothing 

instead. A new smoothing was then done on this newly created timeseries. This process was, 

similarly to Lobell et al. (2019) repeated 10 times. With every step the smoothing moves 

towards the upper envelope, though less and less the closer it gets (Figure 9). 

 

Figure 9: Example of the iterative process of smoothing an NDVI timeseries to the upper envelope of the data. On the graph is only 
showed 6 of the 10 smoothings that are applied in the study. The grey line represents the raw NDVI data, the dashed line the first 
MWLR smoothing and the orange and red lines represents the succeeding smoothings. 

6.2.2.2 Removing EVI outliers 

Fitting to the upper envelope works on NDVI timeseries as all cloud affected values are 

decreased. Because the EVI values can be influenced in both directions, it is necessary to first 

remove the positive outliers. This was done by first giving obvious outliers4 a value equal to the 

mean of the four closest observations. The remaining outliers were more difficult to identify in 

the noisy dataset.  

In the Timesat, a software specialised in extracting seasonality parameters, there are several 

ways of removing outliers. The one used for inspiration here, removes values that deviates a 

certain amount from the mean of the observations in a surrounding window (Eklundh & 

Jönsson, 2017). Because the timeseries of the AOIs are so heavily affected by clouds, the mean 

value alone is many places not a good measure to compare a potential outlier against (Figure 

8). It was therefore deemed necessary to alter the method for detecting outliers to make it 

suitable for the specific conditions in the AOIs.  

 

 
4 Values below zero and values above one 
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The new measure was calculated as shown below (F3):  

𝑀 =
σ𝑤 − σ𝑤.𝑜.

σ𝑤
∗ |

μ𝑤 − μ𝑤.𝑜.

μ𝑤
| 

(F3) 

σ is the variation and μ is the mean. 𝑤 and 𝑤. 𝑜 indicates whether the observation in question is 

included or not. 

How the mean of the 4 surrounding observations compare to the value is still included, but it is 

multiplied by the fraction of variation that is added when the value in question is included in 

the window. This way, it is taken into account how likely it is that the observation should have 

a value close to the mean of the neighbours. If there is high variation in the surrounding 

observations, it is less likely to register as an outlier, reflecting a reduced certainty in it being 

an outlier. Calculating the difference in variance and mean in relative terms allows 

comparability between high and low VI values i.e. to detect outliers in all parts of the season.  

The cut-off value was determined by visually inspecting numerous timeseries and was set at a 

value of one. Observations with a measure value above one were then given the mean value of 

its four neighbours (Figure 10). This process was then repeated to reduce the influence from 

outliers being part of the four neighbouring observations.   

 

Figure 10: Example of EVI outlier removal. The grey line represents the raw EVI timeseries and the red line is the EVI timeseries 
after the outlier removal.  

Due to the amount of cloudy observations, it was in some instances even challenging to 

distinguish outliers manually, but upon visual inspection the method appeared to identify the 

majority of the outliers. At rare occasions a seemingly correct observation was surrounded by 
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four observations, negatively affected by clouds, with similar values as each other and the value 

was therefore identified as an outlier. This is a source of uncertainty but in the rare occasions 

it happens the following iterative smoothing towards the upper envelope will likely correct 

some of the damage.   

In GEE, four duplicate timeseries are made in order to calculate the measure that identify outliers 

in the EVI data. The four timeseries are shifted in time, by adding and subtracting five and ten days 

to and from the timestamp. These four timeseries are then joined so that each image in the 

timeseries also included the value five and ten days later and prior. The measure was then 

calculated (F3) and the value above the threshold given the value of the mean value of the bands 

containing the neighbouring values. The process was then repeated (See 11.11.1 For EVI p. 126 

for example of the script).    

6.2.2.3 Double logistic smoothing  

Another type of smoothing was also applied to compare against the MWLR smoothing to get an 

indication of whether it improved the results and of how much uncertainty is created by the 

smoothing process.  

For the second type of smoothing, a double logistic smoothing (DL) was selected. As opposed 

to the MWLR that closely follow the observations, the DL is less sensitive to the individual 

observations, turning all timeseries into a predefined format that is known to represent 

vegetative seasonality well. Upon visual inspection of several timeseries in Timesat the DL 

appeared to fit the timeseries well.  

The DL smoothing was implemented in GEE, based on the template formulas presented in 

(Eklundh & Jönsson, 2017) and (Beck et al., 2006) though with slight alterations. The formula 

applied can be seen below (F4). 

𝑉𝐼𝐷𝐿(𝑡) =  𝑤1𝑉𝐼 + (𝑚𝑉𝐼 − 𝑤1𝑉𝐼) ∗ (
1

1 + exp (−𝑚𝑆 ∗ (𝑡 − 𝑆)
) + (𝑚𝑉𝐼 − 𝑤2𝑉𝐼) ∗ (

1

1 + exp (𝑚𝐴 ∗ (𝑡 − 𝐴)
− 1) 

(F4) 

It shows how the VI measure, 𝑉𝐼𝐷𝐿  develops as a function of time, 𝑡. 𝑤1𝑉𝐼 represents the VI 

value at the beginning of the season before it increases and 𝑤2𝑉𝐼 the value at the end of the 

season after its decrease. 𝑚𝑉𝐼 is the peak value of the timeseries. 𝑆 is the inflection point at the 
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increasing part of the curve i.e. the point where the function goes from being convex to concave 

and 𝐴 is the infliction point on the decreasing part. 𝑚𝑆 is the rate of increase at inflection point 

𝑆 and 𝑚𝐴 the rate of decrease at point 𝐴. Compared to the formula presented in (Beck et al., 

2006) the part (𝑚𝑉𝐼 − 𝑤2𝑉𝐼) was added and multiplied to the second part of the formula to 

allow the smoothing to flatten out at a different value at the end of the season than before. An 

example of the two smoothing types can be seen on Figure 11. 

 

Figure 11: A comparison of the MWLR and DL smoothings (in this example the MWLR only has 6 of the 10 smoothings).  

In GEE, first the peak value was found, which was then used to split the season in two, allowing us 

to find the minimum values in either part and then using these as 𝑤1𝑉𝐼 and 𝑤2𝑉𝐼. The inflection 

points were set on the date that the increase and decrease had reached 50 % of the amplitude. The 

rates of changes were then found by taking the absolute slope of a linear regression of the 

observations in a 16-day window around the inflection points. The slopes were multiplied by eight 

to make the smoothing better fit the observations. The DL was applied on the 10th MWLR 

smoothing to reduce the chance of the variables in the formula being affected by cloudy 

observations. The DL was applied after adding observations for every day (see 6.2.3 Inserting a 

value for every day), which reduces the potential error when selecting the inflection points (The 

GEE script can be found in 11.11.2 For the DL smoothings: p. 131). 

6.2.3 Inserting a value for every day 

A modification to the timeseries was needed before defining the season and extracting the VI 

variables. 

There is only an observation every fifth day, so when using a VI value to determine the date of 

the season boundaries, the time point related to the value will most likely fall somewhere in the 
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five-day span between two observations. It will then set the boundary at the first date with a 

value above that VI threshold. This result in a potential leap from the time point that is 

requested to the time that is returned. The leap can in the worst case be almost five days. This 

practical hurdle would not be evident if analytical integration was possible, but that would 

require a function for the VI timeseries, which is not possible with our MWLR smoothing. 

The implications of this is that a very small difference in the VI threshold value can determine 

whether an observation is included or not and thus lead to a large difference when aggregating 

the timeseries in the specific window to a VI variable. Two almost similar fields could for 

example end up with quite different areas under the curve. This difference is especially evident 

when extracting VI variables for the 3 phases, which are shorter and therefore include fewer 

observations. To address this challenge, values were added to those days without an 

observation, by assuming a simple linear development in the days between two original 

observations. This modification minimises the size of the potential leap when determining 

boundary dates and it is therefore expected to significantly improve the accuracy of the 

variables. This step is done prior to the double logistic smoothing, so that also the date of the 

inflection points can be more accurately determined. A graphical example of this can be found 

in the appendix (11.1 Inserting a value every day p. 104). 

In GEE, this modification was made by first making two duplicate timeseries, adding five days to 

the time stamp for one and subtracting 5 days from the other. The three timeseries were then 

joined, so that each observation now also included the observation 5 days later and 5 days prior.  

Then four duplicate timeseries were made, adding one day to the first, two days to the second, and 

subtracting one and two days from the third and fourth. A new VI measure was then calculated 

for each, based on the two original observations it is located between. For the first, a fifth of the 

difference between the two original observations it lay between was subtracted and two fifths for 

the second, and so on and so forth. The five timeseries were then joined into one timeseries (see 

11.11 GEE script: Data preparation and the temporal aggregation p. 118).    

6.2.4 Defining the season    

Before extracting VI variables it is necessary to first define the season. The season can either be 

defined by specific predetermined dates or based on the VI values. If it is based on dates, it is 

termed fixed seasonality as they will be identical for all fields. When it is based on the VI, the 
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dates can differ between fields and is therefore termed dynamic seasonality. The majority of 

the indices created in this study will be obtained through the dynamic method. Some indices 

will however also be created with the fixed method to be able to compare the difference.  

6.2.4.1 Dynamic seasonality 

The dynamic seasonality will both be used to determine the whole season and to determine the 

start and end of the three phases. 

The start of season (SoS) will be determined as the date where the VI reaches 20% of the 

increasing amplitude and end of season (EoS) as the date where the VI has decreased 80% from 

the peak.  

In GEE, the timeseries is first shortened with a fixed window, broad enough to contain the whole 

growing season for all fields within the study site. Then a new timeseries is made, within a window 

from the first day in the broad window to the day of VI peak. A similar window is made from the 

peak date to the last day of the broad window. In these two series the date with the minimum VI 

value is found. These are then used as the boundaries for the series used to find EoS and SoS (see 

11.11 GEE script: Data preparation and the temporal aggregation p. 118).     

6.2.4.1.1 Defining the crop phases 

As described, paddy rice goes through different phenological stages through the growing 

season. A hypothesis that is investigated in this project is that a higher correlation between the 

VI variables and the yield can be achieved if the period covered by the variables are divided in 

phases according to the crop phenology. To be able to define the boundaries of each stage, a few 

steps were necessary.   

The crop season was split into 3 phases according to the paddy rice phenology. The first was 

the VS phase, which include the early, mid and late vegetation stage combined into one. The 

second is FRS and the third is the RMS. Similar to the whole season, the phenological phases are 

here dynamic, determined by the VI´s instead of the date. This will allow for each field to have 

different timings of the phases.  

To estimate at what VI value, the crop changes phases, the smart phone pictures were utilised. 

It has prior to our study been analysed manually (by Dvara) which stage is seen on each picture. 
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The date of the image is also available5. For each picture, the VI value of the satellite images was 

found, at the day the picture was taken, separated in whether it is before or after the peak date, 

i.e. whether the VI is on the ascending or descending part of the growth cycle. This resulted in 

1263 pictures with a VI value and a crop stage. The pictures were then grouped according to 

their VI values. The groups were made by dividing the VI value range into equal intervals of 0.1 

each. For each group of pictures, it was calculated how many percent of them that were of a 

field with crop stage VS, FRS and RMS6. This was also done using relative VI values instead of 

the absolute VI values, i.e. making the intervals based on how many percent of the season 

amplitude that is increased or decreased at the time the picture was taken (Figure 12).          

 

Figure 12: For every VI value (x-axis) the figure shows how many percent of the fields in the smartphone pictures that are in the 
different phases (y-axis). The x-axis is the VI values fraction of the amplitude divided into intervals. The fractions larger than one 
are for the descending part of the VI curve. At the x-axis value 1.4 the graphs show the percentage distribution for pictures taken 
the day, when the VI has declined 40% of the amplitude from the peak. As it is in intervals 40 covers VI values in the interval: [35%-
45%]. Of the pictures taken of fields with a VI value in this interval, over 80% were in the RMS phase.    

The VS phase is dominant on the increasing part of the season. Around the peak, a switch occurs, 

and the RMS phase becomes the most dominant. Less prominent is the FRS phase, which tops 

around the VI peak and again when the VI has decreased to around 60 % of the amplitude. The 

 
5 As many farmers have taken several consecutive pictures, the initial approach (inspired by Hufkens et al., 2019) 
was to look at which date the field on the pictures changes from one phase to the next and then see what the VI 
value was at that date. However, not enough farmers had taken enough pictures for this to give robust results. 
Another approach was therefore used. 
6 The output of this could for example be: Of all the pictures with a VI value in the interval ]0.55:0.65], 90% were 
classified as being in the VS phase. 
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latter is disregarded as the FRS phase is known between the other two phases. Though the 

result is not unambiguous, it does give an estimate of which intervals of the VI values or VI 

percent of increase, that will most likely give a signal from the specific crop stages.  

From the graphs, three windows were made with the aim of isolating the signal from that phase. 

Different temporal aggregations could then be applied to gain variables for the length of the 

crop phase, the average value and the sum (see 6.3.1 Temporal aggregation). A preliminary 

analysis comparing the obtained measures with the farm yield showed that intervals based on 

the fraction of NDVI had higher correlation with the farm level yield than absolute NDVI. 

Similarly, broader windows appear to give better results than more narrow ones. These were 

therefore used henceforth. A graphical representation of the identified windows and how they 

relate to the crop stage and VI value can be seen on Figure 13 and Table 2 shows the exact 

interval boundaries. 

 

 

Figure 13: Graphical representation of the phase-windows. The graphs in the top are identical to the previous figure. The boxes 
represent the windows applied to isolate each phase. The black graph is a visual representation of the VI values and the plants 
represents the development stage of the rice plant. The blue box represents the window to isolate the VS phase, and the grey and 
green box the windows to isolate the FRS and RMS phase.   
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Table 2: Overview of the used VI windows boundaries. They numbers are the fraction of the amplitude. Values 
above one are on the decending part. 

Phase VS FRS RMS 

VI interval [0.4: 0.8] [0.8: 1.1] [1.3: 1.7] 

 

6.2.4.2 Fixed seasonality 

The fixed seasonality is determined by specific boundary dates for the selected windows. These 

window boundary dates were also found by utilising the smartphone pictures. By using the 

crop stage classification accompanying each picture, the pictures were separated into the three 

phases and the distribution of the picture dates for each phase was produced (Figure 14).  

 

Figure 14: Haryana: A boxplot showing for each phase the distribution of dates on which the smartphone picture was taken.  

The boxplots show that the observations for each phase are spread across a long time period, 

but that the middle 50 percent falls within much narrower windows, with the correct 

chronological order of the phases. Similar to when determining the phases by the VI measure, 

the FRS phase is more difficult to distinguish from the other two. The dates of the 25th and 75th 

percentile were used as the boundaries of the phases for the variables with fixed seasonality. 
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The 25th percentile of the VS phase and the 75th percentile of the RMS was used to create the 

fixed window for the whole season. The specific dates can be seen in Table 3. 

               Table 3: The fixed boundary dates of the phases and the whole season. 

 Boundary dates 

VS 15/08/2019 – 08/09/2019 

FRS 28/08/2019 – 25/09/2019 

RMS 19/09/2019 – 10/10/2019 

WS 15/08/2019 – 10/10/2019 

 

6.3 Aggregations – Creating the VI variables 

Here the temporal and spatial aggregations are described. The former is used to transform a 

timeseries into a single image, and the latter to transform that single image into one value for 

each field with yield data.  

6.3.1 Temporal aggregation  

The smoothed timeseries were transformed into 88 single images for Haryana and 64 for 

Odisha, see Table 6 and Table 7 in the appendix for an overview of the triggering measures used 

for the temporal aggregation.  

The series of VI values for each pixel were aggregated to a single value in several different ways, 

both for the entire season and the three different crop stages. Each triggering measure used for 

the aggregation is included because of its potential to reveal information about the growing 

season and therefore the yield. The measures will be explained in the following and a graphical 

overview can be found on Figure 15. 
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Figure 15: Graphical overview of the triggering measures. The example here is for the whole season. 

Peak value: The peak value is the highest value during the season. It is one of the simplest 

seasonal measures to indicate how well the harvest has been. In studies similar to this one, this 

measure is one of the most commonly used when estimating yield from timeseries of VI´s 

(Lobell et al., 2019; IFAD; 2017; Lambert et al., 2018; Azzari et al., 2017; Guan et al., 2018; 

Lambert et al., 2017, IFAD, 2017). 

Integral: The integral is found by numeric integration (i.e. the sum of the daily values) and is 

an estimate of the area under the curve. For our study, the area beneath 20 percent of the 

amplitude was subtracted as this gave higher correlations with yield in a preliminary analysis. 

It thus resembles the area between two curves where the second is representing the constant 

signal of the fields. The integral is used in several similar studies. It is expected to contain more 

information about the season than the peak as it is composed of all the values of the season 

(Flatnes et al., 2019; Lambert et al., 2017; Morel et al., 2014, IFAD, 2017). 

Length: The length of the season and of the individual crop stages is the number of days in the 

period. These measures could reveal different aspects of the season. The length of the FRS phase 

could be related to how many seeds the plants will produce. The length of the RMS phase could 

indicate how long the grains are ripening and thus be related to size of the grains. These could 

therefore contribute to explaining the yield. The length of the season will add to the information 

from the integral measure, if they are combined. A large integral value could both be due to a 
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short season with high values or a long with lower values. This could be revealed if the 

measures are combined. 

SoS and EoS: The SoS and EoS determines the temporal boundaries of the season. For the 

dynamic seasonality, the start of the season is the date that the VI value has increased 20 % of 

the amplitude from the minimum to the peak and the end of the season is when it has decreased 

80% of the amplitude. These measures will reveal information about the timing of the growth 

season, which could be related to the yield.  

SoFRS and EoFRS: The start and end date of the FRS phase. The FRS is an important phase for 

the yield as it is here the plant develops the flowers which determines the number of rice grains. 

If this period is timed poorly compared to the weather, it could have an influence on the yield. 

Only the FRS date boundaries are included as the VS and RMS boundary dates would be similar 

to FRS phase dates or SoS and EoS for the whole season. The phase date boundaries can 

therefore be viewed as more generally informing about the timing of the crop phenology.  

Mean: The mean value is only found for the three phases. Even with the modification described 

earlier, inserting a value for each day, one day added or not when calculating the integral could 

be a noteworthy percentage of these shorter periods. The mean value is less sensitive to this 

and is therefore included7.  

6.3.2 Spatial aggregation  

The timeseries have now been reduced to single images with one value per pixel. A spatial 

aggregation is then needed to get the VI measure for the individual fields (of which crop cut 

yield data is available). Using the coordinate of the CCE, the yield data was uploaded as points 

in GEE. Polygons were then manually drawn around the fields containing a yield data point, 

using the very high spatial resolution background-image in GEE as reference (Figure 16). 

 
7 The mean could however also be affected, especially of the phases on the slopes of the timeseries, as one more 
value in either the high or low end could change the mean in that direction. 
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Figure 16: An example of the polygons manually drawn to fit the fields containing a yield data point. 

Though the CCE was instructed to be undertaken 5 meters from the field edge (see Figure 54), 

many of the points were quite close to the edge, which made it more challenging to identify the 

associated field. The GPS accuracy might also have led to some complications. The polygons 

were drawn for all fields but separated in to three categories based on the confidence in the 

point laying in a field. In Haryana in the North, 262 points were clearly inside a field, 68 points 

were more questionable laying either between fields or on parcels of land not visually 

resembling paddy rice and 4 points were inside cities. Only the 262 points were used later for 

the later analyses. In Odisha, 83 points were clearly inside a field, 33 were more questionable 

and 11 were clearly not on a field. Again, only the 83 point were included in the further analyses. 

To get one value per field, the median VI value of the pixels within the field was found. The fields 

are relatively small compared to the size of the pixels. This increases the effect of edge pixels. 

Natural vegetation or a human made structures located right next to the field might bias the 

result if a pixel is not fully within the field. Taking the median value is expected to reduce the 

impact of extreme values within the field but to further reduce the effect of noisy edge pixels, a 

buffer of 5 meters was made inside the polygon and used as the field boundary instead (Figure 

17). 
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Figure 17: An example of the 5-meter internal buffers on the fields, created to reduce the effect of edge-pixels in the spatial 
aggregation. 

6.4 Preparing the supplementary data 

Aside from the VI variables, different sources of data were used to supplement the analyses. 

How these were prepared and why they were included will be explained in the following.  

6.4.1 Bias correcting measures 

The VI measures should be a result of the all the aspects influencing the crop. However, some 

measures were identified that could potentially have affected the yield data without being 

detected by the VIs. These will be referred to as bias creating variables and were included in 

the analysis to assess whether the results could be improved, when taking these potential 

biases into account. 

6.4.1.1 Timing of the CCE 

The timing of the CCE could bias the data. If assuming that the crops develop heterogeneously 

among the fields, the time when they are at their optimal harvest point would differ. The timing 

of the CCE date would thus have to be individualised to avoid potentially biasing the results. 

This would however be very impractical in practise. It is therefore hypothesised that some 

fields are harvested for the CCE at a suboptimal time which could lead to a lower yield. To take 

this into account, a new variable was calculated as the number of days from the EoFRS to the 

CCE. 



 

  

 

45 of 136 

 

6.4.1.2 Rice variety 

The relationship between the yield and the VIs differ between different types of crops. At both 

study sites, several types of paddy rice varieties were farmed. The results from Guan et al. 

(2018) indicates that even between different varieties of the same crop, there can be differences 

in the relationship between VI and the yield. 

In Haryana, 106 of the final 2118 fields had information about the rice variety, while all 73 of 

the final fields in Odisha had the variety information. To be able to include this information in 

the multiple regression and RF classification analyses, the varieties were ranked by the average 

grain yield for that variety and numbered according to their rank, giving a value of one to the 

variety with the lowest average grain yield and two to the second lowest and so on (Figure 50).   

6.4.1.3 Soil type 

The soil type is also included as a bias creating variable. If the yield is negatively affected by the 

soil type it would be expected to affect the crop health and therefore be detectable by the VIs. 

It was however included, as it was hypothesized that nutrient composition of the soil could have 

an effect on the grain size, thereby affecting the yield without the being detected by the VIs. 

For both study sites, there were several different soil types. Similar to the rice variety, they 

were ranked and numbered according to their average grain yield (Figure 51).  

6.4.2 Input variables and ground data 

Several other variables were also prepared. These are the input variables that will be used to 

understand what affects the yield. They include two climatic variables; precipitation and 

temperature and four ground variables from the yield dataset. All six variables are expected to 

have an influence on the yield.  

6.4.2.1 Temperature 

To estimate the temperature, Modis Land Surface Temperature was used. The spatial resolution 

of the data is 1 km and therefore limits the ability to see inter-field differences. The temperature 

is however expected to be spatially homogeneous and the data was therefore deemed 

satisfactory.  

 
8 The 262 fields with harvest data were reduced to 211, as the remaining were either not located in the same satellite 

image as the rest or removed because the value was an outlier. 
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The temperature data have week-to-week variation and is affected by seasonality (Figure 18). 

Like the Sentinel-2 data it is heavily affected by clouds, creating long periods without data. This 

only allowed us to extract the mean temperature, and not measures such as numbers of days 

with temperature above a certain threshold, as was initially intended. To find the mean 

temperature, the data was smoothed with a MWLR smoothing with a window of 40 days (Figure 

18). 

 

Figure 18: Haryana: An example of the cloud affected LST data (blue) and the smoothed timeseries (red).  

The mean temperature was found both for the whole season and the three phases, as defined 

by the VI values. This was only done for Haryana case, and only with the phases defined by the 

MWLR smoothing. As the timing of the crop development is unique for each field, the mean 

temperature in the different phases will also be individualised.  

6.4.2.2 Precipitation  

The Chirps daily data is used to estimate the precipitation. Similar to the temperature, the 

spatial scale is large (0.05º ≈ 5 km at the study sites), so the inter-field variation primarily stems 

from individualised phases in which the mean and sum of the precipitation was calculated. 

Though the sum and the mean are expected to be quite similar, they could differ based on the 

length of the periods. This was also only calculated for Haryana, and only in phases created by 

VI variables with the MWLR smoothing. 

6.4.2.3 Money spent  

For each smartphone picture in the yield dataset, the farmer was also asked how much money 

that were spent on the field since last image (on fertiliser, labour etc.). When summing this for 

each field, it gives an indication of how much the farmer has spent during the season. The 
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uncertainty of this measure is expected to be high, primarily due to the difference in number of 

pictures taken.    

6.4.2.4 Latitude and Longitude 

Both the longitude and latitude of the fields were hypothesised to have an impact on the yield 

and were therefore included.   

6.4.2.5 Sowing date 

The sowing date could also be a decisive variable for the yield and was therefore included in 

the analyses. 

6.5 Three statistical analyses 

To test the created variables´ ability to estimate yield, three statistical analyses were made: A 

linear regression, testing the variables´ ability to individually explain the yield variation. A 

multiple regression, testing the ability of a combined group of variables, and lastly a RF 

Classification, testing the ability of groups of variables to correctly classify the samples 

according to their yield. 

6.5.1 Linear Regression 

Linear regression is used regularly in comparable studies to assess the ability of VI variables to 

explain the variation in yield. The relation found in the regression would then serve as the basis 

for estimating yield of a field with a known VI value but unknown yield (Lambert et al., 2017; 

Lobell et al., 2019; Burke & Lobell, 2017; Guan et al., 2018; Jain et al., 2016). 

The prepared VI variables, bias correcting variables and the input-based and ground data 

variables were compared individually to the yield in a linear regression analysis to assess the 

strength of the correlation. As the primary aim of this was to compare the measures against 

each other, the linear regressions were made with the total yield as the dependent variable even 

though it is the grain yield that is the essential parameter. The rationale for this was that the 

strength of the correlations was expected to be higher than with the grain yield and that higher 

correlations are more suitable for comparison, as difference are less likely to be by chance.    

In linear regression, a straight line is fitted to the data points by minimising the sum of the 

squared residuals. This line represents the best overall relationship between the dependent 

and independent variables. The strength of the relationship is indicated by the coefficient of 
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determination (R2), which can be interpreted as what fraction of the variation in the dependent 

variable that can be explained by the independent variable (McGrew & Monroe, 2009).  

The linear regression was first done for all variables in both Haryana and Odisha using all the 

available samples (fields with VI value and yield data). To test if the bias correcting variables 

could improve the strength of the relationship, the linear regression analysis was repeated 

multiple times but each time only including a certain subset of the samples. 

In Haryana it was repeated five times for all the variables, each time including only the fields 

with: 1) The dominant rice variety “12”. 2) Soil type “Loam”. 3) Soil type “Sandy Loam”. 4) 

Variety “12” & “Loam”. 5) Variety “12” & “Sandy Loam”. 

In Odisha it was repeated five times, only including samples with: 1) The rice variety “Pusa 

Basmati 1509”. 2) The variety “12”. 3) Soil type “Loam”. 4) Soil type “Sandy Loam”. 5) The rice 

variety “Pusa Basmati 1509” & soil type “Sandy Loam”. 

Lastly the linear regressions were done again comparing with the grain yield instead of the total 

yield. This will be used later, when assessing how large a role the imperfect correlation between 

total yield and grain yield plays in the analyses.    

6.5.1.1 t-test and p-value 

To assess whether the correlations are statistically significant, a t-test was made. This is 

especially important when comparing the R² between two regression analysis with a different 

number of observations, as datasets with fewer observations tend to have higher R². The test 

statistic used can be seen in the formula below (F5) (McGrew & Monroe, 2009). 

𝑡 =
𝑟√𝑛 − 2

√1 − 𝑅2
 

(F5) 

t is the test statistic. n is the number of observations. r is the correlation coefficient and R² is 

the coefficient of determination. 

From the test statistic and the number of observations a probability value or “p-value” can be 

calculated. This value indicates the probability to get that exact test statistic (t) if the hypothesis 

of no relation between the variables was true. If the p-value is very small, we can reject the 
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hypothesis that there is no relation as there is only a very small change that an error is made. 

The level of significance i.e. the p-value threshold used in this study is α = 0.05. Linear 

regression with a p-value below this will be considered statistically significant (McGrew & 

Monroe, 2009). 

6.5.2 Multiple Regression 

The majority of the variables are not expected to explain the yield variation alone, but rather in 

combination with other variables. Several multiple regression analyses were therefore made. 

Multiple regression analysis is an extension of the linear regression analysis, where multiple 

independent variables are included to explain the variation of the dependent variable. The 

output coefficients of a multiple regression could then be used for yield estimation for fields 

were the independent variables are known.  

Multiple regression analyses were made in Excel for several different groups of variables. The 

variables were divided into the following groups for both Haryana and Odisha9. 

1. WS_VI: A group with only VI variables from the entire season i.e. no variables that 

differentiated between crop stages. 

2. WS_VI_Bias_Corrected: A group with the same WS_VI-variables and the three bias 

correcting variables (rice variety, soil type and days-to-CCE). 

3. ALL_Fixed: A group with the WS variables and the five VI variables found with fixed 

season boundaries (integral of the three phases and WS, and the peak value). This one 

was only done for Haryana. 

4. All_Fixed_Bias_Corrected: A group with the same variables as ALL_fixed, but also 

including the bias correcting variables. 

5. Phases_VI: A group with VI variables from both the whole season, but also the three 

phases.  

6. Phases_VI_Bias_Corrected: A group with the same variables as Phases_VI and the three 

bias correcting variables. 

7. NO_VI: A group with the bias correcting variables, the input-based variables and the 

ground data. For Odisha, neither precipitation nor temperature were included. 

 
9 Group 3 and 4 are not made for Odisha. 
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For each of the groups 1, 2, 5 and 6, four different groups were made, separating the variables 

based on the vegetation index and smoothing type. Splitting the variables in groups will give 

indications of: 

- Which vegetation index and smoothing type is to be preferred.   

- How much the variables from the phases improves the explanatory ability compared to 

when only including variables of the entire season.  

- Whether the dynamic seasonality is preferred over the fixed. 

- Whether including the bias creating variables improves the correlation. 

- Which ground and input variables that affect the yield. 

Details of the groups can be found in the appendix (11.5 Overview of grouped variables p. 108). 

In multiple regression analysis it is important that each variable contributes to the model. An 

iterative process of running the analysis and then removing the variable with the highest p-

value was therefore done. The p-value for each variable in multiple regression indicates the 

probability of that variable not contributing to the model. Variables were removed until only 

variables with p-value below 0.05 remained. Another important aspect in multiple regression 

is to eliminate multicollinearity i.e. not have independent variables with strong correlations 

among them. Two of the triggering measures, the mean and the integral are very similar, and it 

was therefore decided to prior to the multiple regression, remove that variable of the two with 

the lowest individual correlation with the yield (McGrew & Monroe, 2009; ArcGIS Pro, 2020). 

The output of the analyses is an R² value which has been adjusted to the number of variables 

used (adjusted R²) and a significant F statistic indicating whether the model is statistically 

significant. 

6.5.3 Random forest classification and variable importance 

To supplement the results of the multiple regression analysis and to gain further information 

about the importance of each variable, several Random Forest Classifications (RF 

Classifications) were performed. Having discretised the yield data into five categories, the 

analysis will show to what extent the variables can be used to correctly categorise the yield 

data. Additionally, it will show which of the input variables that contributes most to this 
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categorisation. The RF Classification, trained on the samples, could then be used on an AOI to 

classify each pixel to a yield category. It would thus give a yield estimate for all fields. 

The RF classifier is an ensemble model classification method consisting of multiple 

classification threes (Belgiu & Dragut, 2016).   

A classification three can be interpreted as a ruleset or a set of binary questions through which 

observations are divided into homogeneous subgroups. It much resembles a decision tree but 

allocates qualitative data where a decision tree allocates quantitative data. Each binary 

question splits the data in two subgroups, and this continuing process grows the classification 

tree. The process is called recursively binary splitting, indicating that successive splits of 

subgroups are dependent on the previous splits. Which input variable and which threshold that 

is used to make each split is governed by what split of the observations that will create the most 

homogeneous groups i.e. minimize the number of observations not belonging in the dominant 

class of the subgroups. The homogeneity of the subgroup is referred to as the purity (James et 

al., 2013; Boehmke & Greewell, 2020). 

For each tree in the RF Classification, only a randomly selected subset of the input variables is 

considered as candidates for each split. This is done to reduce the amount of correlation 

between the trees. Additionally, each classification three is trained on an individual subset of 

the samples, found with a “bagging approach”. For each classification tree, the bagging 

approach randomly selects samples from the dataset equivalent to around two thirds of the 

data. A process that allows for samples to be used multiple times, thereby increasing the 

number of different training samples available (James et al., 2013; Boehmke & Greewell, 2020; 

Belgiu & Dragut, 2016).    

In this study, 500 decision trees were used, a typical amount for a study like this. The 

classification trees each assign all the samples to a yield class. This is aggregated into one 

classification result for the entire random forest using a majority vote i.e. each sample will be 

assigned to the class where most classification trees allocated it (James et al., 2013; Boehmke 

& Greewell, 2020; Belgiu & Dragut, 2016).     

The remaining third of the samples are used as validation samples (out-of-bag samples) to 

estimate the performance of the classification. The output variable of this cross-validation 
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method is the proportion of out-of-bag samples that are correctly classified by the random 

forest classification, measured by the Cross-Validation Score (CVS) (James et al., 2013; 

Boehmke & Greewell, 2020; Belgiu & Dragut, 2016).    

Two essential measures for statistical learning methods, such as RF classification is the bias and 

the variance. The bias refers to the ability of the model to fit to the dataset while the variance 

refers to how much the accuracy changes, when using a different training dataset. These often 

poses a trade-off, as very flexible models will have low bias but high variance (overfitting) and 

vice versa. The advantages of using ensembles of decision trees and the bagging approach in 

the random forest classification is that each decision tree can minimize the bias while the high 

variance is reduced by averaging the results of the trees (James et al., 2013; Boehmke & 

Greewell, 2020; Belgiu & Dragut, 2016). 

The random forest classifications also produce an importance-measure for each variable. This 

indicates how well the variable on average has been able to split the samples into pure 

subgroups in the RF classification. For this study, the measure will be used as an indicator of 

how suitable the VI variable is for use in index creation. This will be done by observing the 

difference in appearance among the top 10 most important VI variables for each site, when the 

RF classification is run with all VI variables. 

For the multiple regression analysis, it is important to reduce multicollinearity, but as RF 

Classification is less sensitive to this, the RF Classification was first run using all VI variables 

and then on all VI variables and the bias correcting, the input-based and the supplementary 

ground data. This was done for both Haryana and Odisha (Belgiu & Dragut, 2016; McGrew & 

Monroe, 2009). 

It was then run on the same groups of variables as presented above in the description of the 

multiple regression analysis and with the same objectives. The analyses were made in the 

software “Spyder” using 500 threes10. The used script can be found in the appendix (11.13 

Spyder script – RF Classification p. 136). The grain yield was discretised into five equal intervals 

for both Haryana and Odisha though merging the highest and lowest to the adjacent interval to 

avoid intervals with only very few observations (Table 4). 

 
10 The default setting was chosen for the number of variables to select when randomly selecting a subset. 
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Table 4: Grain yield intervals for the RF Classification. 

Haryana Odisha 

]10: 17.5] ]2.5: 7.5] 

]17.5: 22.5] ]7.5: 12.5] 

]22.5: 27.5] ]12.5: 17.5] 

]27.5: 32.5] ]17.5: 22.5] 

]32.5: 40] ]22.5: 27.5] 

 

Lastly, a RF classification will be run on the total yield using all variables for later comparison 

of the effect of the mismatch between total yield and grain yield.  

6.6 Uncertainty from choice of smoothing and VI 

From the analyses above, it is already possible to compare the VIs, the smoothings, the effect of 

bias creating measures and the effect of the imperfectly correlation between total and grain 

yield. However, to elaborate on the uncertainty from the smoothings and choice of VI, an 

uncertainty analysis was done to assess which aspects of the index-creating method that 

creates the most uncertainty. This was done for the smoothing type by parring the previously 

obtained VI variables, so that the only difference is the smoothing type. For each pair, the 

coefficient of determination (R²) was then calculated with linear regression. The higher the R² 

values obtained, the more similar the pairs are, and the less decisive is the choice of smoothing. 

This was then done similarly for the two VIs and the two design options were then compared. 

The results can be interpreted as an indication how much uncertainty is created from the choice 

of VI and smoothing type.   
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7 Results  

In this section, the results of the analyses will be presented. The section will be structured 

according to the research questions. For each question the results of all three statistical 

analyses for both study sites will be included. Conclusions from the results will first be drawn 

and discussed in the discussion section that follows immediately after the result section. 

7.1 Factors influencing the yield  

Here it will be presented which input-variables influence the yield according to our results and 

how much of the yield variation can be explained by them (Research Question 1). 

7.1.1 Linear Regression  

In Haryana, the linear regression showed that of the ground- and bias correcting variables; 

longitude, sowing date, rice variety and two of the four variables with “days to CCE”, had a 

significant correlation with the total yield. Of the eight precipitation variables 3 were significant 

and of the 8 temperature variables 2 were significant. Longitude had the highest R² (0.07), 

while the rest could explain less than 5% of the total yield variation. See appendix for a full 

overview of the results (11.9 Linear regression – No VI variables p. 116). 

In Odisha, the date of the CCE, the rice variety, four of the four temperature variables and four 

of the four “days to CCE” had a significant correlation with total yield. Six of these could explain 

more than 15% of the yield variation (11.9 Linear regression – No VI variables p. 116).  

7.1.2 Multiple Regression 

When only using the climatic, the ground and the bias correcting variables (i.e. no VI variables) 

the multiple regression show that 12% of the grain yield variation could be explained in 

Haryana and 17% in Odisha. 

7.1.3 RF Classification 

When using no VI variables, the RF classification could correctly classify 46% of the samples in 

Haryana, which is the highest CVS score in Haryana. 

In Odisha 40% were correctly classified by the RF classification, which is among the lowest CVS 

scores for Odisha. 
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7.2 VI variables´ ability to explain yield variation 

In this section the results showing the overall ability of the VI variables to estimate the field 

level yield will be presented (Research Question 2). 

7.2.1 Linear Regression 

The key results of this comprehensive analysis will be presented here. A visual representation 

of the full results of the analysis can be found in the appendix (11.6 Results of the individual 

correlations p. 110).  

In Haryana, 49% of the 70 produced VI variables had a statistically significant correlation with 

the total yield, when using all available observation pairs (Figure 19). Much fewer variables 

(16%) had a significant correlation with the grain yield. The mean R² of only the significant 

variables was below 0.05 for both total yield and grain yield. This indicates that the VI variables 

on average can explain less than five percent of the variation in the farm level yield in Haryana. 

The variable with the highest R², could explain 15% of the total yield variation and 5% of the 

grain yield variation.  

In Odisha more variables had a significant correlation with the grain yield (46% of the 61 VI 

variables) than with the total yield (23%). Even though the total yield and grain yield were 

more similar in Odisha, this result was unexpected and might be an indication that caution 

should be taken when comparing results of correlations with low R². The significant VI 

variables in Odisha could on average explain 9% of the variation in total and grain yield, while 

the best could explain 15% and 20 % respectively (Figure 19).  

 

Figure 19: Overview of the linear regression results. 



 

  

 

56 of 136 

 

7.2.2 Multiple Regression  

In Haryana, 19 multiple regressions were made on groups of variables and grain yield. 16 of 

them resulted in significant models. These significant models could on average explain 10 % of 

the grain yield variation and the best model could explain 24 % (Figure 20). In Odisha only 1 of 

the 17 multiple regression results were not significant, and the significant variables could on 

average explain 26 % of the variation in yield. The best model in Odisha could explain 53% of 

the variation in grain yield (Figure 20). A table with all the results of the multiple regression 

analysis can be found in the appendix (11.7 Full result of the multiple regression analyses p. 

112). 

 

Figure 20: Overview of the multiple regression results. 

7.2.3 RF Classification 

The result of the RF Classification run with all VI variables showed that they could correctly 

classify around 38 % of the samples into the correct grain yield class in Haryana and around 50 

% in Odisha (Figure 21). The output graphs also show that the additional gain in classification 

accuracy from including more 15-20 variables is limited and even worsening in the Haryana 

example. A result that justify the limited number of variables in the different groups on which 

the RF Classification was run subsequently. 
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Figure 21: CVS as a function of Number of features selected in the RF Classification with all VI variables for Haryana (Left) and 
Odisha (Right). 

Two groups of variables in Haryana and one in Odisha did not return any results. The results of 

the remaining runs using the different groups of variables show that on average 34% were 

correctly classified for Haryana and 41% for Odisha and that the best group could correctly 

classify 46% and 47% in Haryana and Odisha respectively (Figure 22). Tables with the full 

results of the RF classification analyses can be found in the appendix (11.8 Full results of the RF 

classification p. 114). 

 

 

Figure 22: Overview of the RF Classification results (excluding the runs with all variables). 

 

7.3 Suitability of the design options 
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comparison will be based on the ability to estimate grain yield. The design options to be 

assessed are the VI (EVI or NDVI), the smoothing type (MWLR or DL), the triggering 

measurement (peak, integral, mean, length, SoS or EoS), the period (phenologically tailored 

phases or the whole season) and the seasonality (dynamic or fixed seasonality). It is important 

to note that there is a high degree of uncertainty when comparing very low R², which are 

evident in especially the linear regression results. 

7.3.1 Vegetation index: EVI and NDVI  

As described previously, the EVI should have less tendency to saturate and might therefore be 

better at distinguishing between the high VI values found in the study areas (Son et al., 2013). 

However, the EVI timeseries were more complicated to smooth due to its two-sided respond to 

cloud and cloud shadow disturbances. This might also have played a role in the following 

results. 

7.3.1.1 Linear Regression 

For Haryana, 21 of the 37 NDVI-based variables were significant, while only 15 of the 37 EVI-

based were. Additionally, the significant NDVI-variables could explain more of the total yield 

variation (5% for NDVI and 3% for EVI) (Figure 23 - Left). In Odisha, both NDVI and EVI only 

had 9 significant variables of the 32, but they could on average explain 10% for NDVI and 9% 

for EVI (Figure 23 – Right).  

 

Figure 23: Comparison of the linear regression results between EVI and NDVI for Haryana (Left) and Odisha (Right). 

For both study sites the difference between NDVI and EVI thus appear quite small. When 
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consistently higher and have several variables with around double the R² compared to EVI 

(Figure 24).  

 

Figure 24: Comparison of the linear regression results for each comparable variable between EVI and NDVI for Haryana (Left) and 
Odisha (Right). 

7.3.1.2 Multiple Regression 

For Haryana, all three groups that did not yield a significant result were EVI groups, but the one 

insignificant group for Odisha was an NDVI group. When comparing the groups against each 

other with only the VI as difference, the results for Haryana is not very clear. On average the 

NDVI groups are slightly better, but three of the four categories with R² above 0.1 are based on 

EVI (Figure 25 - Left). The results for Odisha consistently show higher R² for the EVI groups 

and have a more than 50% higher mean value compared to the NDVI groups (Figure 25 - Right).  
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Figure 25: Comparison of the multiple regression results between NDVI and EVI for Haryana (Left) and Odisha (Right). 

7.3.1.3 RF Classification 

The RF classifications showed only very little difference in accuracy between the classifications 

from the EVI and NDVI groups, with slightly higher average CVS for EVI in Haryana and slightly 

lower CVS for EVI in Odisha (Figure 26). 

 

Figure 26: Comparison of the RF classification results between NDVI and EVI for Haryana (Left) and Odisha (Right). 
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observed. Of these 20 variables, 8 were with NDVI and 12 with EVI (Figure 33). 
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subtle inter-field differences. In contrast, the DL smoothing was expected to be less sensitive to 

the individual datapoints but more secure, due to its predefined shape.  

7.3.2.1 Linear Regression 

More of the DL-based variables were significant compared to the MWLR for both Haryana and 

Odisha and the average R² of the significant variables were higher. The differences are however 

negligible (Figure 27).  

 

Figure 27: Comparison of the linear regression results between MWLR and DL for Haryana (Left) and Odisha (Right). 

7.3.2.2 Multiple Regression 

For Haryana, the groups based on the MWLR returned the highest R² in the multiple regression 

analysis. In Odisha it was opposite, as the DL-based groups consistently showed higher R² 

(Figure 28). 

 

Figure 28: Comparison of the multiple regression results between MWLR and DL for Haryana (Left) and Odisha (Right). 
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7.3.2.3 RF Classification 

The RF classification did not show any clear differences between the groups with MWLR-based 

variables and DL-based variables in neither Haryana nor Odisha (Figure 29).   

 

Figure 29: Comparison of the RF classification results between MWLR and DL for Haryana (Left) and Odisha (Right). 

Of the 20 most important variables, 9 were with the MWLR smoothing and 11 were with the DL 

smoothing (Figure 33). 

7.3.3 Triggering measure: peak, integral, mean, length, SoS or EoS 

The triggering measures´ influence on the results will here be compared. The “peak” and the 
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information of the crop season and might therefore be more important in the multiple 

regression and RF classification. The triggering measures are more difficult to directly compare, 
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variables for the phases. The mean result is therefore also be affected by whether the triggering 

measure is included more frequently with other design options that performs well. 

7.3.3.1 Linear Regression 

In Haryana, the two highest correlations were with “length” as the trigger measurement and 

the two second highest were with “integral”. The remaining variables were all considerably 

lower (Figure 30 - Left). Looking more closely at these (Figure 30 - Right), it becomes apparent 
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the middle, but with much less variance. This might however also be due to it being used in 

fewer variables.  

 

Figure 30: For Haryana: Comparison of correlation with total yield between variables with different triggering measurements, 
first for the individual variables (left) and then summarised in boxplots (Right). The four highest R² from the left are not included 
in the boxplots to the right.  
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In Odisha, the highest R² were from variables with “length” and the “integral”, while the EoS 

variables had the highest mean R² and SoS the lowest. The peak variables were the second 

lowest on average and with a higher variance than in Haryana (Figure 31).  

 

Figure 31: For Odisha: Comparison of correlation with total yield between variables with different triggering measurements, first 
for the individual variables (left) and then summarised in boxplots (Right).  
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As an alternative, it was assessed how many times a variable with the specific triggering 

measurement was included as a significantly contributor in the multiple regression analysis. Of 

the 32 multiple regression analysis11, all triggering measurements were included regularly. VI 

variables with “length” and “integral” were however used more often (Figure 32).  

 

Figure 32: Number of times a variable with the specific triggering measure was used in the 32 multiple regression analyses for 
Haryana and Odisha 

7.3.3.3 RF Classification 

The variable importance output from the RF classification can also reveal information about 

the suitability of the different triggering measures. Of the 10 most important variables for 

Haryana and 10 most important variables for Odisha, six had “integral” as the triggering 

measure, six had “mean”, another six had “length” and two had the “peak”. Neither “SoS” nor 

“EoS” featured in the top 20 most important variables from the two RF classifications using all 

VI-variables (Figure 33).  
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Figure 33: Top 10 most important variables in the RF classification with all VI variables for Haryana (Left) and Odisha (Right). 
The bars are color coded according to the triggering measure.  

7.3.4 Period: Whole season and phases 

Here it will be assessed whether including variables derived from phenologically tailored 

phases can increase the accuracy of the yield estimations compared to only including variables 

for the whole season.  

7.3.4.1 Linear Regression 

For the individual correlations with the total yield, the VI variables derived from the FRS phase 

have the highest R² for both Haryana and Odisha, followed by the variables from WS (Figure 

34).  
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Figure 34: Comparison between the whole season and the phases of the R² found in the linear regression with total yield for 
Haryana (left) and Odisha (Right). 

7.3.4.2 Multiple Regression 

On average, the adjusted-R² of the multiple regression increased when including the variables 

from the three phases, especially in Odisha where it improved around 50%. The phase-group 

that could explain most of the grain yield variation, could explain 24% in Haryana and 53% in 

Odisha, while the best WS-groups could only explain 18% and 42% (Figure 35). 
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Figure 35: Comparison between the whole season and the phases of the R² found in the multiple regressions with grain yield for 
Haryana (left) and Odisha (Right). 

7.3.4.3 RF Classification 

In Haryana, the mean CVS increased when including the phase-variables, but only very little. 

For Odisha, including the phase-variables also improved the groups´ ability to correctly classify 

the samples into the correct grain yield category, with a mean CVS around 15% higher than 

when only including WS-variables (Figure 36).  

 

Figure 36: Comparison between the whole season and the phases of the CVS found in the RF Classifications with grain yield for 
Haryana (left) and Odisha (Right). 

The variable importance measure from the RF classification with all VI variables also reveal the 

importance of the phases (Figure 33). Of the 10 most important variables for each study site, 

only three were for the whole season, placed 9th Haryana and 9th and 10th in Odisha.  
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7.3.5 Seasonality: Dynamic and fixed 

The last design option to be assessed is whether a dynamic seasonality based on the VI value or 

a fixed seasonality based on specific dates will result in the variables best able to estimate grain 

yield. The dynamic seasonality is capable of individualising the timing for when the variables 

are extracted and is therefore expected to be better able to identify differences in farm level 

yield. The fixed variables were only done for Haryana with NDVI and the MWLR smoothing, 

resulting in eight variables (integral and mean for the three phases, and integral and peak for 

the whole season).  

7.3.5.1 Linear Regression 

The linear regression did not show any clear differences between the dynamic and fixed 

seasonality. Of the eight fixed-season variables, only three had a significant correlation with 

total yield. So had the dynamic seasonality for the corresponding variables. Neither could 

explain more than 5% of the yield variation (Figure 37).  

 

Figure 37: Haryana: Comparison between the dynamic and fixed seasonality of the R² found in the linear regression with total 
yield. 

7.3.5.2 Multiple Regression 

The results of the multiple regression analysis showed that for the two groups without bias 

correcting variables, the R² was around 70% higher for the group with dynamic seasonality. 

For the two groups with bias correcting variables, the group with dynamic variables had a 16% 

higher R² (Figure 38).  
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Figure 38: Haryana: Comparison between the dynamic and fixed seasonality of the R² found in the multiple regression with grain 
yield. 

7.3.5.3 Rf Classification 

The group with dynamic seasonality was only slightly better at correctly categorising the 

samples in the RF classification (Figure 39). Had the design option been compared over more 

examples, the results would likely have been more clear. 

 

Figure 39: Haryana: Comparison between the dynamic and fixed seasonality of the CVS found in the RF classification of the grain 
yield. One of the dynamic runs did not return a result. 

7.4 Sources of uncertainty in the index creation process 

In this section, results will be presented to assess the magnitude of uncertainty from different 

sources. The aim of this is to give an indication of what should be focussed on in succeeding 

studies (Research Question 4).  
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7.4.1 Uncertainty from VI and smoothing 

For both VI type and choice of smoothing, the correlation between matching variables was 

found. These R² values for the different variables were presented as boxplots in the graphs 

below for both Haryana and Odisha (Figure 40). For both design options and both study sites, 

there was a variance in the R² values. The correlations between MWLR and DL variables were 

on average around 0.53 for Haryana and 0.58 for Odisha. Significantly lower were the 

correlations between NDVI and EVI variables, with an average of 0.29 in Haryana and 0.33 in 

Odisha. This indicates that the choice of VI is the most decisive of the two.  

 

Figure 40: Comparison between the R² distribution of vegetation index and smoothing type for a linear regression of matching 
variables, for Haryana (Left) and Odisha (Right).  

7.4.2 Effect of bias correcting variables 

Several bias correcting variables were identified. It will here be assessed whether including 

these could improve the results. 

7.4.2.1 Linear Regression 

The linear regression analysis was also done on certain subsets of the samples, split according 

to rice variety and soil type. See appendix for the full result (11.6 Results of the individual 

correlations  p. 110). An important thing to note is that the number of samples in each group 

varies and is significantly lower than when including all the samples.  
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For Haryana, more VI variables had a significant correlation with the total yield, when including 

all samples. For grain yield it did however increase the fraction of significant VI variables when 

running the regression with only samples with rice variety “12” and when running with 

samples with the soil type “Loam” (Figure 41 - Left).  In Odisha, isolating the samples with rice 

variety “12” increased the fraction of VI variables with a significant correlation with the total 

yield and only slightly decreases it for grain. The other isolated sample groups reduced the 

fraction considerably for both total yield and grain yield (Figure 41 - Right). 

 

Figure 41: Fraction of variables with a significant correlation with yield for the different sample groups for Haryana (Left) and 
Odisha (Right). 

The mean R² of these isolated groups of the samples can be seen below on Figure 42. In both 

Haryana and Odisha, the mean R² of the groups are higher for all the groups compared to 

including the full sample. For both study sites the highest R² are found on the groups with the 

fewest samples and there appears to be a consistently lower R² the more samples are included 

(Figure 42 & Figure 43).  

In Haryana, the significant VI variables can on average explain more than 25% of the variation 

in total yield and grain yield of the field samples with “Sandy Loam” & “12” (Figure 42). As seen 

on Figure 41 it is however only a very little fraction of the variables that are significant, which 

challenge the robustness of the result. 

0.00

0.10

0.20

0.30

0.40

0.50

[R2] Total Yield Grain Yield

0.00

0.10

0.20

0.30

0.40

0.50

R2 (n = 73) R2 (Pusa
Basmati

1509 (n =
23))

R2 ("12" (n
= 12))

R2 (Pusa
Basmati
1509 &
Sandy

Loam (n =
15))

R2 (Loam
(n = 20))

R2 (Sandy
Loam (n =

35))

[R2]
Total Yield Grain Yield



 

  

 

73 of 136 

 

 

Figure 42: Haryana: Comparison between the different groups of samples of the R² from a linear regression with total yield (Left) 
and grain yield (Right). 

In Odisha, the highest mean R² was found when isolating the samples with rice variety “12” 

(Figure 43). The VI variables could on average explain 45% of the total yield variation and 65% 

of the grain yield variation, when isolating this specific variety. The best VI variables could with 

this sample subset explain around 86% (Figure 43 & Figure 44) of the grain yield variation and 

15 VI variables could explain more than 60%. The consistently high R² across multiple VI 

variables, also seen on the large fraction of significant variables (Figure 41), increase the 

robustness of the results and suggest that the R² can be improved if analysing the rice varieties 

separately. Had the high R² only been due to the small sample size, it would also have been 

expected to find some significant correlations when isolating the 15 samples with variety “Pusa 

Basmati 1509” & soil type “Sandy Loam”, but none were found.    
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Figure 43: Odisha: Comparison between the different groups of samples of the R² from a linear regression with total yield (Left) 
and grain yield (Right). 

A scatterplot of the best correlation for Odisha found with a subset of the samples (variety “12”) 

can be seen on Figure 44. 

 

Figure 44: Odisha: A scatterplot of the best correlation with grain yield. The variable is: EVI_MWLR_DY_RMS_MEAN and it is with 
the sample subset: rice variety “12”. 
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7.4.2.2 Multiple Regression 

For the multiple regressions, the potential bias in the yield data was accommodated by 

including three variables. One with the rice variety ranked and numbered according to the 

mean yield for that variety. One with soil type, similarly ranked and numbered by the mean 

yield, and lastly one with the number of days to the CCE from either EoFRS (for phase variables) 

or SoS (for WS variables).  

For both Haryana and Odisha, more groups of variables became significant when including the 

bias correcting variables, and the mean adjusted-R² of the significant groups increased with 

169% and 117% respectively. Including the bias correcting variables thus dramatically 

improved how much of the variation in grain yield that could be explained by the different 

groups of VI variables (Figure 45). 

 

Figure 45: Comparison between groups with and without bias correcting variables of R² from multiple regressions with grain yield 
for Haryana (Left) and Odisha (Right). 

7.4.2.3 RF Classification  

The effect of including the bias correcting variables in the groups for the RF classification was 

less clear. In Haryana, the mean CVS increased 14% when included, while there was almost no 

difference in Odisha (2%) when including the bias correcting variables (Figure 46).  
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Figure 46: Comparison between groups with and without bias correcting variables of CVS from RF classifications of grain yield for 
Haryana (Left) and Odisha (Right). 

7.4.3 Effect of the imperfect relation between total and grain yield 

As established earlier (in 6.1 Yield data preparation p. 27), the grain yield does not perfectly 

correlate with the total yield. The total yield is the closest to what the satellite observes and the 

imperfect correlation with grain yield therefore poses a challenge for the efforts to estimate 

grain yield. 

7.4.3.1 Linear Regression   

The correlation with the individual variables found in the linear regression showed that a 

considerable higher fraction of the VI variables had a statistically significant relation with total 

yield compared to grain yield. This was however opposite for Odisha (Figure 19).  

7.4.3.2 Multiple Regression 

When running the multiple regressions for the four bias corrected phase-groups using total 

yield as the dependent variable instead of grain yield, they could on average explain 38% more 

of the yield variation in Haryana, while it had no effect in Odisha (Figure 47). 
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Figure 47: Comparison of R² between having grain yield or total yield as the dependent variable in multiple regressions for Haryana 
(Left) and Odisha (Right). 

7.4.3.3 RF Classification    

An RF Classification was run again with all VI variables (no ground variables etc.) and with 

discretized total yield as the categories (same number of categories as for grain yield). For 

Haryana the ability of the groups to correctly classify the samples was 0.41, an 8% increase, 

while it was 0.45 in Odisha, a decrease of 10% compared to the CVS for the grain yield classes 

(Figure 48).  

 

Figure 48: Comparison of CVS between RF classifications of grain yield or total yield. 
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8 Discussion 

In this section, the methods and results of the study will be discussed. The discussion will be 

structures as follows: First the uncertainties in the method of creating the variables will be 

discussed, followed by a discussion of the three statistical tests. Then it will be discussed how 

the results answer the research questions. This will be followed by a discussion of what could 

have improved the results. It will then be discussed how our findings contribute to the research 

field, which will be followed by a discussion of recommended further research. 

8.1 Discussion of uncertainties in the methods 

Before assessing how the results of the study answered the research questions, the 

uncertainties in the method of creating the variables and assessing them in the three statistical 

tests will first be discussed to create a basis for the following discussions.   

8.1.1 Creating the variables 

In the processes of creating the variables used in the three statistical analyses, several sources 

of uncertainty occurred. 

8.1.1.1 The VIs 

NDVI is among the most used VIs for vegetation assessment and is considered reliable in its 

ability to estimate the biomass accumulation. The EVI is a modified version of the NDVI and is 

also widely used. The EVI is less affected by the soil background and less prone to saturation, 

which the low inter-field NDVI variation indicated might be a problem for the NDVI (Lillesand 

et al., 2015; Son et al., 2013; Lambert et al., 2017; Lobell et al., 2019; Burke & Lobell, 2017; Guan 

et al., 2018). Many other indices are included in similar studies for example GCVI, MTCI, LAI, 

NDVI705, NDVI740 (Lobell et al., 2019; Guan et al., 2018; Lambert et al., 2017; Lobell et al., 

2018; Burke & Lobell, 2017). These could also have been included in this study. This would 

however have dramatically increased the number of variables and thus not given us the 

possibility to also differ between the other design options. The NDVI and EVI were generally 

considered reliable and supplemented each other well and was therefore deemed a good choice 

for this study. 

One challenge of the chosen VIs is that they react differently to clouds and cloud shadows. An 

extra processing step was therefore needed for EVI to adjust for this. This however reduces the 
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ability to directly compare the two indices, as it cannot be assessed to what degree the 

differences between NDVI and EVI is because one VI is better at estimating the yield and what 

is because the efforts to remove the effect of positive cloud outliers in the EVI data was 

insufficient. 

The process of removing positive outliers in the EVI timeseries was complicated due to the 

heavy influence by clouds. Though developing a method that took the variation of the 

neighbouring observations into account, this processing step still contributed with an amount 

of uncertainty, as correct observations sometimes appeared as positive outliers because the 

previous and succeeding observations all was similarly reduced by clouds. It is therefore 

recommended that future research develop this processing step further.  

8.1.1.2 The smoothings  

The timeseries were heavily affected by clouds and cloud shadow, which complicated the 

process of creating smoothed timeseries. This is problematic as the objective of the study is to 

be able to differentiate between individual fields which might only have subtle differences in 

the shape of the VI timeseries. The iterative MWLR smoothing appeared through visual 

inspection to be a good way to remove the effect of the clouds without cancelling out the inter-

field differences. Smoothing to the upper envelope have prior to this study been observed to 

lead to overestimations of the VI in the start and end of the season as smoothed values can be 

dragged up by the high values of the previous and succeeding seasons (Kong et al., 2019). The 

short window is however expected to limit the effect of this in this study.  

The number of iterative smoothings was set at 10, as in Lobell et al. (2019). To assess whether 

10 was enough to approximate the upper envelope a test was done, comparing the correlation 

between a VI with 6 smoothings and 10 smoothings. The high R² revealed that more than six 

smoothings only added very limited to the upper-envelope fitting. The test did however not 

directly indicate if the 10th smoothing is in fact at the upper envelope. Additionally, the test 

could have been performed more systematically to find the optimal number of smoothings  

The DL smoothing is widely used and appeared to have a good fit with the visually inspected 

examples (Eklundh & Jönsson, 2017). It was much less dependent on the individual 

observations and its generic form was a good supplement to the MWLR as a smoothing type in 

the other end of the spectra. The implementation of the DL smoothing in GEE also created some 
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uncertainty as parameters, such as the inflection points and rate of increase and decrease are 

influenced by individual observations. This is however limited by the inserted daily values and 

the preceding MWLR smoothing. 

8.1.1.3 Creating the phase-windows 

The process of determining the phase windows based on the VIs is also associated with a degree 

of uncertainty. The smartphone pictures, taken a date where the VI is on the increasing part, 

were dominantly of crops in the VS stage and similarly for of the RMS stage in the decreasing 

part. Less dominant was the FRS around the peak of the VI timeseries. At best, only around 30% 

of the pictures, taken a date where the field had reached the peak of the VI timeseries, were 

classified as being in the FRS stage. This result also entails that if inspecting the crops around 

the time that the VI peaks, only 30% will be in the FRS phase. Whether it is possible to extract 

the variables with information for that phase alone is therefore questionable. However, there 

was expected to be a lot of noise in the picture data and the manual classification hereof and 

the ability to isolate the FRS phase will therefore likely be higher than what the 30% indicates. 

It is for example unlikely that many fields should be in the FRS phase after the VI timeseries has 

decreased 60%. The clear signal of the VS and RMS phase alone increases the confidence that 

the FRS phase is located in between them, around the peak of the VI timeseries. Efforts could 

be done in further research to find the optimal VI boundaries for each phase though it is not 

expected to have a large impact on the results.  

8.1.1.4 The supplementary data 

There are large sources of uncertainties related to the supplementary data.  

Both temperature and precipitation had a low spatial resolution thus only allowing to 

differentiate between fields by the differing time windows created by the dynamic seasonality. 

In addition, the temperature data was heavily influenced by clouds. 

The “money-spent” variable was only an estimate as described previously and the information 

was not available for all fields.  

The rice variety and soil type were also not available for all fields and could only be included in 

the linear regression by isolating samples with certain varieties or soil types, often leading to 

only few included samples, and thus less reliable results. To include them in the multiple 
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regression analyses and RF classification they were ranked and numbered according to their 

average yield. This does however only reflect which variety or soil type that on average have a 

higher yield but not how much higher it was. 

8.1.1.5 The temporal aggregation 

In the temporal aggregations were also several potential sources of uncertainty, especially 

related to the temporal resolution of the satellite data. A timeseries with an observation every 

fifth day naturally lacks information on the days in between. The direct effect of this in this 

study is however expected to be limited due to the relatively slow development of the crops. A 

potential indirect bias from the five-day span between observations was however identified. 

This related to the potential jump when going from a VI boundary value to a date boundary. 

Inserting a value for each day by assuming a linear development of the VI between the 

observations is expected to have eliminated most of this uncertainty. It is however not able to 

remove the uncertainty from the numerical integration as an approximation of the area beneath 

the VI curve. If comparing two smoothings with known functions, analytical integration could 

have been applied and the uncertainty thereby reduced. 

8.1.1.6 The spatial aggregation 

The fields were on average 45m x 45m in Haryana and 22m x 22m in Odisha. This is small 

relative to the size of the pixels. Some fields would only be covered by a few pixels and have a 

high risk of being affected by edge-pixels.   

Several measures were taken to reduce the uncertainty from the spatial aggregation. All the 

fields were drawn in manually with very high-resolution imagery as reference and the 

datapoints not connected to an obvious field was excluded. The effect of the edge pixels was 

reduced by creating a five-meter inner buffer and by taking the median value of the pixels. An 

inner buffer of 10 meters, as used in Lambert et al. (2017), would have had a greater effect, but 

was rejected as too many fields would have been erased due to the very small field. 

8.1.2 The three statistical analyses 

Three statistical analyses were made to assess the ability of the created variables to explain the 

inter-field yield variation. Each analysis does however contain certain limitations in doing so, 

which will be discussed in the following.  
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The methodological triangulation has led to more ambiguous results and therefore more 

conservative conclusions. This is however also considered a strength as the results are expected 

to be more reliable when assessed in multiple ways. 

8.1.2.1 Linear Regression  

All variables could individually only explain a minor part of the yield variation. Such low R² 

values does not create a good foundation for comparing the different design options, as the 

differences in correlations can be heavily influenced by randomness. As the comparisons of the 

design options are done across multiple variables the uncertainty is expected to be reduced. It 

will however still be acknowledged in the following discussion of the results. 

An assumption of the linear regression is that the relationship between the variables is linear, 

which is often not the case. Upon visual inspection of several scatterplots of yields and VI 

variables, the low R² did not appear to be due to non-linear relationship, but merely because of 

weak association between the variables i.e. there did not appeared to be systematic biases in 

the residuals. The relation between yield and the VI variable could still be non-linear, but the 

uncertainty from this appears to be cancelled out by the low covariance (McGrew & Monroe, 

2009). 

8.1.2.2 Multiple Regression  

Similar to the linear regression, multiple regression also assumes a linear relationship between 

the variables, which again might not be the case in reality.  

To improve the models, efforts were done to only include variables that contributed to the 

model, by iteratively removing the variable with the highest p-value and running the analysis 

again until only significant variables remained. Additionally, multicollinearity was reduced by 

not including both “mean” and “integral” variables. There are however more steps that could 

have been taken to improve the reliability of the multiple regression models. The remaining 

variables could have been tested for redundancy and the residuals could have been tested for 

biases, including spatial biases (ArcGIS Pro, 2020).   

8.1.2.3 RF Classification  

Random forest is a powerful tool with high predictive accuracy. Compared to the other two 

tests, it allows for non-linear relations between the variables and is less sensitive to 
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multicollinearity. In this study it was used on discretised yield data. With a slight 

methodological alteration the RF Classification can also function on continuous data which 

might have been a better fit for this study, as the aim is to estimate the exact yield, which the 

five categories does not fully allow12 (James et al., 2013; Boehmke & Greewell, 2020; Belgiu & 

Dragut, 2016).   

Though the rationale behind the outcome of a single classification tree can be easily understood, 

the reasoning behind the outcome of the RF Classification cannot be intuitively interpreted. For 

both the linear and multiple regression analysis the relationship between the dependent 

variable and each independent variable can be assessed. This grants the possibility to check if 

the relations are scientifically sound i.e. whether the dependent and independent variables 

have the expected relationship. A check that is not possible with the RF Classification (Boehmke 

& Greewell, 2020).     

A method that has been proposed to increase the accuracy of the RF classification, is to 

iteratively remove the least contributing features, much similar to the process in the multiple 

regression analysis. This might have increased the accuracy of the classifications, especially of 

those groups with many variables (Belgiu & Dragut, 2016). 

An important point to note, is that the CVS does not consider, that in a random classification, 

some samples would also be correctly classified. This is referred to as the expected accuracy. 

With the relatively few categories used in this study, the correctly classified samples in a 

random classification would be a significant amount of the CVS. The Cohen´s Kappa Coefficient 

is a measure similar to the accuracy but adjusted for the expected accuracy and would therefore 

have been a beneficial measure to use in this study. In absence of this, it will in the following 

discussion be assumed that the actual accuracy is somewhat lower than the CVS (Lee et al., 

2019). 

8.2 Discussion of the results 

In this part, it will be discussed how the results of the analyses answer the research questions. 

The question regarding the overall ability of the VI variables to explain the yield will be saved 

 
12 Though it’s a slight methodological alteration to go from RF classification to RF regression, the practical implications 

can be large, which is why the RF Classification was used in this study.  
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for last and will include a comparison to similar studies and a discussion of the implications of 

the results for the research field and in relation to the aim of the study. 

8.2.1 Input variables influencing the yield 

The aim of this analysis was to get an understanding of what factors affected the yield, as this 

could be useful when afterwards estimating the yield (Research Question 1). From the results 

it however became apparent that a more thorough analysis would be necessary to explain the 

yield variation with input variables. 

In the linear regression many of the chosen variables did not have a significant correlation with 

the yield and each variable could only explain very little of the two study sites´ yield variation. 

Similarly, the multiple regression could only explain 12% of the variation in Haryana and 17% 

in Odisha. The RF Classification was able to correctly classify 46% in Haryana and 40% in 

Odisha. This should however also be considered an optimistic score as the actual accuracy will 

be lower. 

The generally low results are likely due to several aspects: Some input variables essential to the 

yield have likely not been included in this analysis. The uncertainties of the used data might 

have reduced the variables´ ability to explain the yield variation. And lastly, the variables should 

likely have been more specifically tailored to better estimate the yield. It could for example be 

the case, that it is not the mean temperature but rather the number of very warm days that is 

decisive, or that the very heavy rainfalls should have been omitted from the precipitation data 

etc.  

8.2.2 Design options 

An important aim of the study was to compare different design options to see which are 

preferable and to get an indication of the importance of choosing the best suited design options 

for the specific case (Research Question 3). The comparison was done across multiple variables 

and with three different tests. Though this might lead to less unambiguous results, it will 

increase the overall robustness of the results.  

8.2.2.1 The VIs 

In Haryana, the linear regression showed that more NDVI-based variables had a significant R² 

and that the significant variables on average had a higher R². The low R² did however not 
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provide a good basis for comparison. A more indicative result was that four NDVI variables 

could explain more than 10% while there was only one EVI variable that could explain more 

than 5%. In the multiple regressions, the mean R² of the significant groups was higher for NDVI, 

but the group with the highest R² had EVI-based variables. The RF classification also only had 

small differences, with slightly higher CVS for the EVI-based groups. 

In Odisha, the linear regression showed almost no difference between NDVI and EVI variables. 

The multiple regression did however clearly show that the groups with EVI variables 

performed better. Less clear was the results of the RF classification, which showed a minor 

advantage to the NDVI.  

When assessing the variable importance from the RF classification with all VIs for both study 

sites, the EVI-based variables had a slightly higher representation in the top 20 of most 

important variables. 

Overall, no clear conclusions can be drawn on whether the NDVI or EVI is to be preferred. The 

clearest results were from the multiple regression in Odisha, were EVI was considerable higher. 

While it cannot be concluded from this result alone that EVI is to be preferred, the result does 

show that the choice of VI can lead to large differences and it can thus be concluded that it is 

important to assess several different VIs when estimating yield. 

8.2.2.2 The choice of smoothing 

In both Haryana and Odisha, the differences between the two smoothings were small for all 

three statistical tests and not consistently in favour of either. In Haryana the three groups with 

the highest R² in the multiple regression were all with MWLR smoothed variables, but the two 

groups with the highest CVS in the RF classification were DL smoothed groups. The remaining 

results for Haryana and the results of all three statistical test in Odisha were all less indicative. 

This either indicates that whether the smoothing closely follows the datapoints as the MWLR 

or has a more generic form as the DL does not have a decisive impact on the results, or that 

general results were not strong enough to detect the differences from the smoothings. As larger 

differences could be observed comparing other design options, it indicates the former.   
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8.2.2.3 The triggering measures 

In both Haryana and Odisha, the variables with the highest R² in the linear regression were 

“length” and “integral”. In Haryana the variables with these triggering measures on average also 

had the highest R², while they were surpassed by the EOS-variables in Odisha. 

In the multiple regressions the “length” and “integral” were also contributing more often to the 

models, almost twice as often as the other variables. In the RF classifications using all VI 

variables, the 6 of the 20 most important variables had “integral” as triggering measure and 6 

had “length”.  Another 6 of the most important variables had “mean” as triggering measure. 

Overall, the results clearly showed differences between the triggering measures, with “integral” 

and “length” as the most suitable options. They did however also show that all triggering 

measures were used in a considerable part of the multiple regressions, indicating that they do 

provide useful, supplementary information of the crop season.  

The “peak”, which is most commonly used in similar studies, was generally less suitable to 

estimate yield according to results of this study, though not the worst performing triggering 

measure. This implies that if only using the “peak” as measure, some explanatory power might 

be lost (Lambert et al., 2017; Lobell et al., 2019; Guan et al., 2018).  

8.2.2.4 The time period 

The variables with the highest R² in the linear correlations were from the FRS phase for 

Haryana and the WS for Odisha. For both study sites the average R² of significant variables was 

higher for the variables from the FRS phase. This is however not a very robust result, due to the 

low R². The advantages of focussing on the phases were also primarily expected to be evident 

when used in combination with each other. The multiple regression reinforced this hypothesis, 

as the groups including the phase variables on average had 18% and 42% higher adjusted R² 

for Haryana and Odisha respectively. The RF classification also supported this, with a 15% 

higher CVS in Odisha though only slightly higher in Haryana. Additionally, the 16 most 

important variables in the RF classification with all VI variables were from one of the phases, 

while the WS had only 3 in top 20. The result is considered robust due to the consistency in the 

results and it clearly indicates that valuable information of the crop season can be obtained 

when taking the phenology of the crop into consideration when creating the VI variables. The 
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results also indicate that separating the phases using the relative a VI value did to at least some 

extent enable isolation of the specific crop phases.  

8.2.2.5 The seasonality 

Only a limited number of variables were calculated with the fixed seasonality, and only in 

Haryana. This decreases the reliability of the results compared to the other design options that 

were compared across more variables. 

The linear regression did not result in any clear differences between the dynamic and fixed 

variables. The multiple regression showed 70% (non-biased corrected group) and 16% (bias 

corrected group) higher R² for the dynamic seasonality. Similarly, the RF classification showed 

slightly higher CVS for the group with variables determined with dynamic seasonality. The 

result indicates that the dynamic seasonality is a better design option when estimating inter-

field yield variation. The differences were however not as clear as expected. Had the design 

option been compared over more VI variables, the differences might have been clearer. 

8.2.3 Uncertainties and biases 

Efforts were also done to assess the sources of uncertainty and bias in the study (Research 

Question 4). The results of these efforts will be discussed in the following. 

8.2.3.1 Smoothing type or VI type  

It was assessed how much agreement there were between variables which only differed from 

the type of smoothing, and afterwards for the choice of VI.  For both Haryana and Odisha there 

was a markedly higher agreement between variables with differing smoothing type than 

between variables with variables with differing VI. This is even though the smoothings were 

chosen purposely to be on either end of the spectrum regarding how closely they follow the 

initial observations. The results thus indicate that the choice of VI is more decisive for the 

output and including more VIs in succeeding research would therefore be recommendable over 

including more different smoothings types. This is also supported by the results described 

previously, where only minor differences were found when comparing the three statistical test 

results of MWLR and DL variables. If the EVI variables consistently performed poorly in the 

three statistical tests, the results of the bias test could have been due to an inadequate removal 

of positive outliers in the extra processing step of the EVI. Had that been the case, it could not 

have been concluded that the VI generally is more decisive.  
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There is however the reservation that only two smoothing types and two VIs were used in this 

analysis. Had more been included the results would have been more robust.  

8.2.3.2 Bias creating variables  

The linear regression of isolated groups of samples revealed that considerable higher R² of 

significant variables could be achieved when differentiating between different rice varieties 

and soil types. The results for the majority of these groups were however not very robust, as 

only few of the VI variables returned significant correlations.  In Odisha, isolating the samples 

with rice variety “12” drastically increased the R² of many of the VI variables, achieving R² up 

to 0.65 for total yield and 0.86 for grain yield. The consistent increase in the R² across multiple 

variables strongly indicates that the rice variety have a large influence on the results.   

The multiple regressions where the rice variety, soil type and days to CCE had been included, 

consistently resulted in adjusted R² much higher than when not included. On average the R² 

increased 169% in Haryana and 117% in Odisha. For the RF classification the results were less 

clear but pointed in the same direction. It should be noted that these results are from including 

the ranked and numbered rice varieties and soil type, which are not perfect representations of 

the variables. Even better results might be achieved using more representative variables.   

Overall, the results clearly indicate that correcting for biases in the yield data and differing 

between rice variety and soil type in the analyses can drastically improve the results. 

From the result it can also be deducted that if other types of biases exist in the yield data it could 

be limiting the ability of the variables to explain the yield variation.    

8.2.3.3 Mismatch between grain yield and total yield 

The last source of uncertainty assessed in this study was a result of the mismatch between the 

total yield observed by the satellite and the grain yield that was to be estimated. This was 

especially evident in Haryana where the R² for the correlation between total yield and grain 

yield was only 0.22. In Odisha there was a much higher agreement, with an R² of 0.74. 

On average across the three statistical tests, the VI variables in Haryana were considerably 

more able to explain the variation in total yield than grain yield. This was opposite for Odisha 

but with less consistent across the three statistical tests. Between the two study sites, the 

analyses from Odisha consistently showed higher results. 
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The results thus support that the mismatch can have a significant influence on the results and 

that the size of this challenge appears to be directly related to the agreement between the total 

yield and grain yield. It is therefore recommended for future studies that the correlation is 

tested prior to the analyses and that effort are taken to understand and reduce the mismatch. 

8.2.4 How well the VI variables explain the yield variation 

Here the overall results of how well the VI variables are able to explain yield variation will be 

discussed (Research Question 2). The results will be compared to similar studies, taking 

difference in approaches into account. Lastly, the results will be discussed in relation to the 

chosen school of research.    

8.2.4.1 The results compared to similar studies 

The linear regression of all the field samples showed that less than half the created VI variables 

had a significant correlation with the yield and that these significant VI variables could on 

average only explain a minor part of the yield variation (<5% for Haryana and <10% for 

Odisha). The best VI variables could explain 15% of the variation in total yield in both Haryana 

and Odisha, while the highest correlations with grain yield could explain 5% in Haryana and 

20% in Odisha.  

Compared to similar studies that estimate yield on field level, the results of this study are 

generally somewhat lower (Table 5). Though they all use linear regression to assess the 

variables, a direct comparison is difficult as there are multiple differences in analysis design, 

including both different crop types, satellite data, continents and VIs. The comparison should 

however give some indication of quality of this study´s results.  
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Table 5: Overview of comparable studies. 

~R²  Crop Notes VI Reference  

0.6-0.8 Cotton & 

Millet 

Only able to obtain the high values when 

using a subset of the most homogeneous 

fields as samples (n<10) 

NDVI & LAI Lambert et al. (2017) 

0.2-0.6 Maize & 

Sorghum 

0.25 Sorghum  NDVI & GCVI Lobell et al. (2019) 

0.3-0.4 (2014) Maize  NDVI & GCVI Burke & Lobell (2017) 

0.15-0.2 (2015) 

0.27-0.33 Wheat  LAI & GCVI Jain et al. (2016) 

0.4 Rice Only use 71 of the 255 available fields as 

they removed fields that might be 

influenced by nearby landcovers types. 

NDVI, EVI & 

GCVI 

Guan et al. (2018) 

0.06 When including all samples 

0.69 When isolating rice varieties 

 

When isolating the samples with a certain rice variety or soil type in this study, the mean R² of 

the significant variables considerably improved for almost all sample groups. The isolated 

group of samples which gave the highest correlation with grain yield, returned an average R² 

of over 0.25 for the significant variables in Haryana and around 0.65 in Odisha, with the best 

being 0.35 in Haryana and 0.86 in Odisha. These are in the high end compared to similar studies. 

It should however be noted that the sample size of these is quite small and the result therefore 

less reliable. This was however also the case for several of the studies, especially Lambert et al. 

(2017) and Guan et al. (2018) when isolating the rice varieties. The consistently high 

correlations with grain yield across different types of VI variables when isolating the dominant 

rice variety in Odisha (variety “12”) does however indicate that it is a more reliable result. 

The multiple regression and RF classification allows for the variables to supplement each other. 

The majority of the groups of variables returned a significant result for both tests. Through the 

multiple regressions, the significant groups could on average explain 20% of the grain yield 

variation in Haryana and 26% in Odisha, while the best groups could explain 24% in Haryana 

and 53% in Odisha. The RF classification, which also allow for non-linear relationships between 

dependent and independent variables could for the best groups of variables correctly classify 

just less than half the samples, though without adjusting for the expected accuracy. 



 

  

 

91 of 136 

 

These results are less comparable to the similar studies but implies that the variables can 

supplement each other and thereby better estimate the yield. 

8.2.4.2 The results and the school of research 

The results of this study indicate that there is still some work to be done before the methods 

can be used for index insurance. If indices were created on the basis of the correlations found 

in this study the mean error would be too high and the insurance thus be too unreliable to 

benefit the farmers. The results do however also indicate that there are still substantial 

improvements to be gained and that the objective might therefore not be unachievable.  

The alternative source of farm level yield data will in many cases be retrospective farm yield 

surveys which have been shown to very inaccurate. Considering this, the accuracy of the yield 

estimations found in this study suggests that the approach used here can be an effective and 

scalable way to identify yield gaps and assess the impacts of policy interventions. Measures that 

are both relevant for accelerating rural development (Lambert et al., 2017; Burke & Lobell, 

2017; Lambert et al., 2018; Lobell et al. 2018).   

8.2.5 Limiting factors 

In this section, it will be discussed which aspects, aside from the already discussed uncertainties 

in the methods, that are limiting the ability of the VI variables to explain yield variation and 

what measures could have been done to improve them. 

8.2.5.1 The data used 

One of the clearest results of the study is that adjusting the yield data for biases considerably 

improves the accuracy of the yield estimates. It is likely that there are other biases, which were 

not corrected for. This has likely been a limiting factor for the yield estimates. Given the 

improvement from adjusting to the identified biases, there might be potential to improve the 

results considerably, if the yield data can be further corrected for biases.   

The other main source of data used in the study, the Sentinel-2 satellite data, might also have 

been a limiting factor. Though the spatial resolution of 10 meters is considered high, the very 

small field sizes in especially Odisha, meant that only few pixels could have covered each field 

and that the effect of edge pixels potentially could have been large. Though measures were 

taken to reduce the effect of this, it could have influenced the VI signal from the fields. It would 
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however not necessarily be beneficial for the analysis to trade off the temporal, radiometric or 

spectral resolution for a higher spatial resolution. A lower temporal resolution could amplify 

the challenges of removing the effect of clouds from the data, and as the VI values between fields 

were observed to be relatively close, a reduction in the sensitivity of the satellite could also 

degrade the results. It could however be worth analysing if the very high spatial resolution 

Planet data could achieve better results.      

8.2.5.2 Field size 

Beside the challenge of the spatial resolution of the satellite images, the small field size might 

also be limiting in other ways. The GPS accuracy of the yield data points, and the geolocation 

uncertainty of the satellite data do create some uncertainty in the analyses. The risk of a 

mismatch between which field the CCE is done for and where the satellite measures, is 

increased the smaller the size of the fields (Guan et al., 2018; ESA, 2020). The effect of the field 

size was not assessed in this study. The fields were generally smaller in Odisha were the results 

were better, but this is more likely to be attributed to stronger correlation between total yield 

and grain yield. 

8.2.5.3 The clouds 

The satellite data in the study areas was heavily influenced by clouds and cloud shadows, which 

created challenges for the data processing. The implications of this on the results is difficult to 

assess. Active sensors are not affected by clouds in the same way and might therefore seem a 

viable alternative. Guan et al. (2018) did however find that radar data did not improve their 

yield estimations. The similarities between the two smoothings used in this study also indicate 

that the effect of the clouds was not the most decisive factor. 

8.2.5.4 Fertilizer  

Differences in rates of fertilizer application might also complicate the yield estimations, as 

sufficient access to essential nutrients might increase the grain yield without proportionally 

increasing the VI signal observed by the satellite (Lambert et al., 2017). For a subset of the fields 

in Haryana, the yield dataset included information on whether fertilizer was applied. This 

showed that fertilizer had been applied to 81% of the fields. The limited amount of data did 

however not allow for the inclusion of this aspect in analyses. The fertilizer data was 

unfortunately not available for Odisha. The lower per capita income in Odisha might result in 
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lower fertilizer application rates and could thus be an explanation for why the total yield and 

grain yield had a stronger correlation in Odisha compared to Haryana. In future studies the 

effect of fertiliser application would be an interesting aspect to include, as the superior results 

from the study site in Odisha indicate that considerably gains in index accuracy can be achieved 

if the mismatch between grain yield and total yield can be reduced.  

8.2.5.5 The causes of crop damage 

A subset of the yield data also had information about the cause of crop damage, either self-

reported by the farmer or classified based on the smartphone-images. The data reveals a 

diverse range of damage causes, including rain, wind, heat, fire and pest as the most frequently 

occurring causes. Several of these causes might be difficult to detect with the VI variables and 

might thus have been a limiting factor in this study. If the plants have been overturned by strong 

winds, it could destroy the grains, while the satellite still detects very green vegetation. It is 

therefore recommended that efforts are made to understand the effect of these damages on the 

VI values and to develop ways that can specifically detect damages from these sources.  

8.2.5.6 Including more years 

The analyses in this study were only done for 2019. As seen in the differing results between 

years in Burke & Lobell (2017) there can be interannual differences. Analyses with more years 

are thus another way to increase the robustness of the results. 

8.2.5.7 Localised estimations  

The differences between the two study sites indicate that though the crop might be the same, it 

is important that yield estimations are done on the basis of localised relations between yield 

and VI variables. The results also indicate that the most suitable design options might differ 

between locations.  
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8.3 Further research 

The main recommendations for further research are summarised here. 

- The very high spatial resolution and temporal coverage of the Planet data might improve 

the yield estimations on very small fields. A similar assessment as this, but with the use 

of Planet data is therefore recommended. 

 

- The results indicated that analysing different rice varieties individually could improve 

the accuracy of the yield estimations considerably. It is recommended to consider this 

in further research and to verify this result on a larger dataset to get a more robust 

result.  

 

- Based on the results, it is more important to include more VIs than to try more different 

smoothings, which is therefore recommended for succeeding studies. 

 

- It is recommended that efforts to assess and understand the mismatch between grain 

yield and total yield are done prior to the analyses, as these most likely have a substantial 

impact on the results. Assessing the effect of fertilizer application rates is recommended 

as a starting point for these efforts. 

 

- Isolating the season in phases according to the crop phenology does improve the results, 

and it is therefore recommended that further studies incorporate this and try to find 

methods to more accurately isolate the crop phases. 

 

- It is also recommended that more effort is done to estimate the response of the VI values 

to specific types of damages, so that the yield estimates can be better tailored to the 

diverse causes of crop damage.  

 

- Lastly it is recommended that yield estimates are done on localised conditions and that 

the analyses are done across more years to increase the robustness of the results.  
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9 Conclusions  

The aim of the study has been to assess the ability of Sentinel-2 derived vegetation indices to 

explain inter-field yield variation in paddy rice and to systematically compare the suitability of 

selected design options. This has been done by creating VI variables for almost all the different 

combinations of the selected design options and assessing them through linear regression, 

multiple regression and RF Classification.  

The preliminary analyses of input variables show that the selected variables can only explain a 

minor part of the yield variation. This can either be due to uncertainty in the data sources and 

applied methods, a need of more specifically tailored variables or because some important 

variables were not included. 

The VI variables can generally only explain a small part of the variation in farm level yield, less 

than comparable studies. If only including a subset of the samples according to rice variety or 

soil type, the results significantly improve and are in the high end compared to similar studies. 

The few samples included and the inconsistency across the different variables does however 

reduce the robustness of the result. Isolating the dominant rice variety (“12”) in Odisha does 

however result in consistently higher R², with the highest being 0.86. 

The multiple regression and RF Classification have revealed the benefits of combining multiple 

variables and the best groups of variables can explain 24% of the grain yield variation in 

Haryana and 53% in Odisha and they can correctly classify 46% of the samples in Haryana and 

47% in Odisha. 

The assessment of the design options shows only small differences between the two smoothing 

types and not consistently in favour of either. The choice of VI creates larger differences, but 

the results are inconclusive on whether NDVI or EVI was more suitable. The assessment of the 

triggering measures suggests that the “integral” and “length” are better able to capture the 

inter-field yield variation, but that all triggering measures can contribute with information in 

the multiple regression analyses and RF Classifications. The variables from the phenologically 

tailored phases did contribute significantly to the explanatory ability of the multiple 

regressions and RF Classifications. Though less robust, the assessment also indicates that the 

dynamic seasonality is to be preferred over the fixed.  
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When assessing the sources of uncertainty in the results, the choice of VI is considerably more 

decisive than the smoothing type. The results also suggest that including the bias correcting 

variables significantly improves the results and that the mismatch between total yield and grain 

yield are decisive for the results. 

The study generally finds that the VI variables obtained through the used methods cannot 

sufficiently capture the inter-field yield variation to use the approach for index insurance of 

individual paddy rice fields. The study does however identify and recommend several ways to 

potentially achieve significant gains in accuracy and therefore concludes that the objective 

might not be unachievable. Lastly, the result of this analyses indicate that the used methods can 

pose an effective and scalable way to identify yield gaps and specifically target and evaluate 

rural development efforts. 
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11 Appendix  

11.1 Inserting a value every day 

 

Figure 49: Example of an unsmoothed NDVI timeseries were a value has been inserted for every day.  
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11.2 Rice variety 

 

Figure 50: The bar charts shows the number of fields with the different rice varieties (left) and the average grain yield for each 
variety (right), for both Haryana (top) and Odisha (bottom). 

 

 

 

 

 

11.3 Soil type 

 

Figure 51: The bar charts shows the number of fields with the different soil types (left) and the average grain yield for soil type 
(right), for both Haryana (top) and Odisha (bottom). 
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11.4 Overview of the triggering measures 
 
Table 6: Overview of created variables in Haryana. 

Haryana 

WS VS FRS RMS 

NDVI 

MWLR  DL MWLR  DL MWLR  DL MWLR  DL 

Peak value 

Sum of values 

Length 

SoS 

EoS 

Precip mean 

Precip sum 

Temp mean 

Peak_fix 

Sum_fix 

Peak 

Sum 

Eos 

Sos 

Length 

 

 

 

 

Sum 

Preci-mean 

Preci_sum 

Temp_mean 

Length 

Mean 

Mean_fix 

Sum_fix 

Sum 

Length 

Mean 

 

Sum 

Preci-mean 

Preci_sum 

Temp_mean 

Length 

Mean 

Eos 

Sos 

Mean_fix 

Sum_fix 

Sum 

Length 

Mean 

Eos 

Sos 

 

Sum 

Preci-mean 

Preci_sum 

Temp_mean 

Length 

Mean 

Mean_fix 

Sum_fix 

Sum 

Length 

Mean 

 

EVI 

MWLR  DL MWLR  DL MWLR  DL MWLR  DL 

Peak value 

Sum of values 

Length 

SoS 

EoS 

Temp mean 

Peak 

Sum 

Eos 

Sos 

Length 

 

Sum 

Temp_mean 

Length 

Mean 

 

Sum 

Length 

Mean 

 

Sum 

Temp_mean 

Length 

Mean 

Eos 

Sos 

Sum 

Length 

Mean 

Eos 

Sos 

 

Sum 

Temp_mean 

Length 

Mean 

 

Sum 

Length 

Mean 
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Table 7: Overview of created variables in Odisha 

Odisha 

WS VS FRS RMS 

NDVI 

MWLR  DL MWLR  DL MWLR  DL MWLR  DL 

Peak value 

Sum of values 

Length 

SoS 

EoS 

Peak 

Sum 

Eos 

Sos 

Length 

Sum 

Length 

Mean 

 

Sum 

Length 

Mean 

 

Sum 

Length 

Mean 

Eos 

Sos 

Sum 

Length 

Mean 

Eos 

Sos 

Sum 

Length 

Mean 

 

Sum 

Length 

Mean 

 

EVI 

MWLR  DL MWLR  DL MWLR  DL MWLR  DL 

Peak value 

Sum of values 

Length 

SoS 

EoS 

Peak 

Sum 

Eos 

Sos 

Length 

Sum 

Length 

Mean 

 

Sum 

Length 

Mean 

 

Sum 

Length 

Mean 

Eos 

Sos 

Sum 

Length 

Mean 

Eos 

Sos 

Sum 

Length 

Mean 

 

Sum 

Length 

Mean 
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11.5 Overview of grouped variables 
Table 8: Overview of the grouped variables in Haryana and Odisha. 

HARYANA NDVI_DL NDVI_MWLR EVI_DL EVI_MWLR 

WS_VI NDVI_DL_DY_WS_INTEGRAL 

NDVI_DL_DY_WS_LENGTH 

NDVI_DL_DY_WS_PEAK 

NDVI_DL_DY_WS_SOWS 

NDVI_MWLR_DY_WS_EOSWS 

NDVI_MWLR_DY_WS_INTEGRAL 

NDVI_MWLR_DY_WS_LENGTH 

NDVI_MWLR_DY_WS_PEAK 

NDVI_MWLR_DY_WS_SOWS 

EVI_DL_DY_WS_INTEGRAL 

EVI_DL_DY_WS_LENGTH 

EVI_DL_DY_WS_PEAK 

EVI_DL_DY_WS_SOWS 

EVI_MWLR_DY_WS_EOSWS 

EVI_MWLR_DY_WS_INTEGRAL 

EVI_MWLR_DY_WS_LENGTH 

EVI_MWLR_DY_WS_PEAK 

EVI_MWLR_DY_WS_SOWS 

WS_VI_BiasC Variety_number 

SoilType_number 

NDVI_DL_DY_WS_EOWS 

NDVI_DL_DY_WS_INTEGRAL 

NDVI_DL_DY_WS_LENGTH 

NDVI_DL_DY_WS_PEAK 

NDVI_DL_DY_WS_SOWS 

Days_to CCE_fromSoWS 

Variety_number 

SoilType_number 

Days_to_CCE_from_SoWS 

NDVI_MWLR_DY_WS_EOSWS 

NDVI_MWLR_DY_WS_INTEGRAL 

NDVI_MWLR_DY_WS_LENGTH 

NDVI_MWLR_DY_WS_PEAK 

NDVI_MWLR_DY_WS_SOWS 

Variety_number 

SoilType_number 

Days_to_CCE_from_SoWS 

EVI_DL_DY_WS_INTEGRAL 

EVI_DL_DY_WS_LENGTH 

EVI_DL_DY_WS_PEAK 

EVI_DL_DY_WS_SOWS 

 

Variety_number 

SoilType_number 

Days_to_CCE_from_SoWS 

EVI_MWLR_DY_WS_EOSWS 

EVI_MWLR_DY_WS_INTEGRAL 

EVI_MWLR_DY_WS_LENGTH 

EVI_MWLR_DY_WS_PEAK 

EVI_MWLR_DY_WS_SOWS 

Fixed  

 

 NDVI_MWLR_FI_FRS_INTEGRAL 

NDVI_MWLR_FI_RMS_INTEGRAL 

NDVI_MWLR_FI_VS_INTEGRAL 

NDVI_MWLR_FI_WS_INTEGRAL 

NDVI_MWLR_FI_WS_PEAK 

  

Fixed_BiasC  Variety_number, SoilType_number 

DOY of CCE 

NDVI_MWLR_FI_FRS_INTEGRAL 

NDVI_MWLR_FI_RMS_INTEGRAL 

NDVI_MWLR_FI_VS_INTEGRAL 

NDVI_MWLR_FI_WS_INTEGRAL 

NDVI_MWLR_FI_WS_PEAK 

  

Phases_VI NDVI_DL_DY_FRS_EOFRS 

NDVI_DL_DY_FRS_INTEGRAL 

NDVI_DL_DY_FRS_LENGTH 

NDVI_DL_DY_FRS_SOFRS 

NDVI_DL_DY_RMS_LENGTH 

NDVI_DL_DY_RMS_MEAN 

NDVI_DL_DY_VS_LENGTH 

NDVI_DL_DY_VS_MEAN 

NDVI_DL_DY_WS_INTEGRAL 

NDVI_DL_DY_WS_LENGTH 

NDVI_DL_DY_WS_PEAK 

NDVI_DL_DY_WS_SOWS 

NDVI_MWLR_DY_FRS_EOFRS 

NDVI_MWLR_DY_FRS_INTEGRAL 

NDVI_MWLR_DY_FRS_LENGTH 

NDVI_MWLR_DY_FRS_SOFRS 

NDVI_MWLR_DY_RMS_LENGTH 

NDVI_MWLR_DY_RMS_MEAN 

NDVI_MWLR_DY_VS_LENGTH 

NDVI_MWLR_DY_VS_MEAN 

NDVI_MWLR_DY_WS_EOSWS 

NDVI_MWLR_DY_WS_INTEGRAL 

NDVI_MWLR_DY_WS_LENGTH 

NDVI_MWLR_DY_WS_PEAK 

NDVI_MWLR_DY_WS_SOWS 

EVI_DL_DY_FRS_EOFRS 

EVI_DL_DY_FRS_INTEGRAL 

EVI_DL_DY_FRS_LENGTH 

EVI_DL_DY_FRS_SOFRS 

EVI_DL_DY_RMS_LENGTH 

EVI_DL_DY_RMS_MEAN 

EVI_DL_DY_VS_LENGTH 

EVI_DL_DY_VS_MEAN 

EVI_DL_DY_WS_INTEGRAL 

EVI_DL_DY_WS_LENGTH 

EVI_DL_DY_WS_PEAK 

EVI_DL_DY_WS_SOWS 

EVI_MWLR_DY_FRS_EOFRS 

EVI_MWLR_DY_FRS_LENGTH 

EVI_MWLR_DY_FRS_MEAN 

EVI_MWLR_DY_FRS_SOFRS 

EVI_MWLR_DY_RMS_INTEGRAL 

EVI_MWLR_DY_RMS_LENGTH 

EVI_MWLR_DY_VS_LENGTH 

EVI_MWLR_DY_VS_MEAN 

EVI_MWLR_DY_WS_EOSWS 

EVI_MWLR_DY_WS_INTEGRAL 

EVI_MWLR_DY_WS_LENGTH 

EVI_MWLR_DY_WS_PEAK 

EVI_MWLR_DY_WS_SOWS 

Phases_VI_BiasC. Variety_number 

SoilType_number 

Days_to_CCE_FROM_NDVI_DL_DY_FRS_

EOFRS 

NDVI_DL_DY_FRS_EOFRS 

NDVI_DL_DY_FRS_INTEGRAL 

NDVI_DL_DY_FRS_LENGTH 

NDVI_DL_DY_FRS_SOFRS 

NDVI_DL_DY_RMS_LENGTH 

NDVI_DL_DY_RMS_MEAN 

NDVI_DL_DY_VS_LENGTH 

NDVI_DL_DY_VS_MEAN 

NDVI_DL_DY_WS_INTEGRAL 

NDVI_DL_DY_WS_LENGTH 

NDVI_DL_DY_WS_PEAK 

NDVI_DL_DY_WS_SOWS 

Variety_number 

SoilType_number 

Days_to_CCE_FROM_NDVI_MWLR_DY_FRS_E

OFRS 

NDVI_MWLR_DY_FRS_EOFRS 

NDVI_MWLR_DY_FRS_INTEGRAL 

NDVI_MWLR_DY_FRS_LENGTH 

NDVI_MWLR_DY_FRS_SOFRS 

NDVI_MWLR_DY_RMS_LENGTH 

NDVI_MWLR_DY_RMS_MEAN 

NDVI_MWLR_DY_VS_LENGTH 

NDVI_MWLR_DY_VS_MEAN 

NDVI_MWLR_DY_WS_EOSWS 

NDVI_MWLR_DY_WS_INTEGRAL 

NDVI_MWLR_DY_WS_LENGTH 

NDVI_MWLR_DY_WS_PEAK 

NDVI_MWLR_DY_WS_SOWS 

Variety_number 

SoilType_number 

Days_to_CCE_FROM_EVI_DL_DY_F

RS_EOFRS 

EVI_DL_DY_FRS_EOFRS 

EVI_DL_DY_FRS_INTEGRAL 

EVI_DL_DY_FRS_LENGTH 

EVI_DL_DY_FRS_SOFRS 

EVI_DL_DY_RMS_LENGTH 

EVI_DL_DY_RMS_MEAN 

EVI_DL_DY_VS_LENGTH 

EVI_DL_DY_VS_MEAN 

EVI_DL_DY_WS_INTEGRAL 

EVI_DL_DY_WS_LENGTH 

EVI_DL_DY_WS_PEAK 

EVI_DL_DY_WS_SOWS 

Variety_number 

SoilType_number 

Days_to_CCE_FROM_EVI_MWLR_DY_FRS_

EOFRS 

EVI_MWLR_DY_FRS_EOFRS 

EVI_MWLR_DY_FRS_LENGTH 

EVI_MWLR_DY_FRS_MEAN 

EVI_MWLR_DY_FRS_SOFRS 

EVI_MWLR_DY_RMS_INTEGRAL 

EVI_MWLR_DY_RMS_LENGTH 

EVI_MWLR_DY_VS_LENGTH 

EVI_MWLR_DY_VS_MEAN 

EVI_MWLR_DY_WS_EOSWS 

EVI_MWLR_DY_WS_INTEGRAL 

EVI_MWLR_DY_WS_LENGTH 

EVI_MWLR_DY_WS_PEAK 

EVI_MWLR_DY_WS_SOWS 

No_VI  - Latitude CCE, Longitude CCE 

Date of the CCE, DOY of CCE 

Amount spent (in Rs), SowingDate 

Variety_number, SoilType_number 

NDVI_MWLR_DY_FRS_TEMP_MEAN 

NDVI_MWLR_DY_RMS_TEMP_MEAN 

NDVI_MWLR_DY_VS_TEMP_MEAN 

NDVI_MWLR_DY_WS_TEMP_MEAN 

NDVI_MWLR_DY_FRS_PRECIP_SUM 

NDVI_MWLR_DY_RMS_PRECIP_SUM 

NDVI_MWLR_DY_VS_PRECIP_MEAN 

NDVI_MWLR_DY_WS_PRECIP_MEAN 

- - 



 

  

 

109 of 136 

 

Odisha NDVI_DL NDVI_MWLR EVI_DL EVI_MWLR 

WS_VI NDVI_DL_DY_WS_SOWS 

NDVI_DL_DY_WS_LENGTH 

NDVI_DL_DY_WS_PEAK 

NDVI_DL_DY_WS_INTEGRAL 

NDVI_MWLR_DY_WS_INTEGRAL 

NDVI_MWLR_DY_WS_EOWS 

NDVI_MWLR_DY_WS_LENGTH 

NDVI_MWLR_DY_WS_PEAK 

NDVI_MWLR_DY_WS_SOWS 

EVI_DL_DY_WS_SOSWS 

EVI_DL_DY_WS_LENGTH 
EVI_DL_DY_WS_PEAK 
EVI_DL_DY_WS_INTEGRAL 

EVI_MWLR_DY_WS_INTEGRAL 

EVI_MWLR_DY_WS_EOSWS 

EVI_MWLR_DY_WS_LENGTH 

EVI_MWLR_DY_WS_PEAK 

EVI_MWLR_DY_WS_SOSWS 

WS_VI_BiasC. Variety_number_ny 

Soiltype_NY 

NDVI_DL_DY_WS_SOWS 

NDVI_DL_DY_WS_LENGTH 

NDVI_DL_DY_WS_PEAK 

NDVI_DL_DY_WS_INTEGRAL 

DAYS_TO_CCE_FROM_NDV_DL_SO

WS 

Variety_number_ny 

Soiltype_NY 

NDVI_MWLR_DY_WS_INTEGRAL 

NDVI_MWLR_DY_WS_EOWS 

NDVI_MWLR_DY_WS_LENGTH 

NDVI_MWLR_DY_WS_PEAK 

NDVI_MWLR_DY_WS_SOWS 

DAYS_TO_CCE_FROM_NDVI_MWLR_SOWS 

Variety_number_ny 

Soiltype_NY 

EVI_DL_DY_WS_SOSWS 

EVI_DL_DY_WS_LENGTH 

EVI_DL_DY_WS_PEAK 

EVI_DL_DY_WS_INTEGRAL 

Days_to_CCE_from_EVI_DL_SOWS 

Variety_number_ny 

Soiltype_NY 

EVI_MWLR_DY_WS_INTEGRAL 

EVI_MWLR_DY_WS_EOSWS 

EVI_MWLR_DY_WS_LENGTH 

EVI_MWLR_DY_WS_PEAK 

EVI_MWLR_DY_WS_SOSWS 

Days_to_CCE_from_EVI_MWLR_SOWS6.191096

41552169E-07 

Phases_VI NDVI_DL_DY_FRS_EOFRS 

NDVI_DL_DY_FRS_SOFRS 

NDVI_DL_DY_FRS_LENGTH 

NDVI_DL_DY_FRS_INTEGRAL 

NDVI_DL_DY_RMS_LENGTH 

NDVI_DL_DY_RMS_MEAN 

NDVI_DL_DY_VS_LENGTH 

NDVI_DL_DY_VS_MEAN 

NDVI_DL_DY_WS_SOWS 

NDVI_DL_DY_WS_LENGTH 

NDVI_DL_DY_WS_PEAK 

NDVI_DL_DY_WS_INTEGRAL 

NDVI_MWLR_DY_FRS_INTEGRAL 

NDVI_MWLR_DY_FRS_EOFRS 

NDVI_MWLR_DY_FRS_SOFRS 

NDVI_MWLR_DY_FRS_LENGTH 

NDVI_MWLR_DY_RMS_INTEGRAL 

NDVI_MWLR_DY_RMS_LENGTH 

NDVI_MWLR_DY_VS_LENGTH 

NDVI_MWLR_DY_VS_MEAN 

NDVI_MWLR_DY_WS_INTEGRAL 

NDVI_MWLR_DY_WS_EOWS 

NDVI_MWLR_DY_WS_LENGTH 

NDVI_MWLR_DY_WS_PEAK 

NDVI_MWLR_DY_WS_SOWS 

EVI_DL_DY_FRS_INTEGRAL 

EVI_DL_DY_FRS_EOSFRS 

EVI_DL_DY_FRS_SOSFRS 

EVI_DL_DY_FRS_LENGTH 

EVI_DL_DY_RMS_LENGTH 

EVI_DL_DY_RMS_MEAN 

EVI_DL_DY_VS_INTEGRAL 

EVI_DL_DY_VS_LENGTH 

EVI_DL_DY_WS_SOSWS 

EVI_DL_DY_WS_LENGTH 

EVI_DL_DY_WS_PEAK 

EVI_DL_DY_WS_INTEGRAL 

EVI_MWLR_DY_FRS_INTEGRAL 

EVI_MWLR_DY_FRS_EOSFRS 

EVI_MWLR_DY_FRS_SOSFRS 

EVI_MWLR_DY_FRS_LENGTH 

EVI_MWLR_DY_RMS_LENGTH 

EVI_MWLR_DY_RMS_MEAN 

EVI_MWLR_DY_VS_LENGTH 

EVI_MWLR_DY_VS_MEAN 

EVI_MWLR_DY_WS_INTEGRAL 

EVI_MWLR_DY_WS_EOSWS 

EVI_MWLR_DY_WS_LENGTH 

EVI_MWLR_DY_WS_PEAK 

EVI_MWLR_DY_WS_SOSWS 

Phases_VI_BiasC Variety_number_ny 

Soiltype_NY 

DAYS_TO_CCE_FROM_NDVI_DL_DY

_FRS_EOFRS 

NDVI_DL_DY_FRS_EOFRS 

NDVI_DL_DY_FRS_SOFRS 

NDVI_DL_DY_FRS_LENGTH 

NDVI_DL_DY_FRS_INTEGRAL 

NDVI_DL_DY_RMS_LENGTH 

NDVI_DL_DY_RMS_MEAN 

NDVI_DL_DY_VS_LENGTH 

NDVI_DL_DY_VS_MEAN 

NDVI_DL_DY_WS_SOWS 

NDVI_DL_DY_WS_LENGTH 

NDVI_DL_DY_WS_PEAK 

NDVI_DL_DY_WS_INTEGRAL 

Variety_number_ny 

Soiltype_NY 

DAYS_TO_CCE_FROM_NDVI_MWLR_DY_FRS_

EOFRS 

NDVI_MWLR_DY_FRS_INTEGRAL 

NDVI_MWLR_DY_FRS_EOFRS 

NDVI_MWLR_DY_FRS_SOFRS 

NDVI_MWLR_DY_FRS_LENGTH 

NDVI_MWLR_DY_RMS_INTEGRAL 

NDVI_MWLR_DY_RMS_LENGTH 

NDVI_MWLR_DY_VS_LENGTH 

NDVI_MWLR_DY_VS_MEAN 

NDVI_MWLR_DY_WS_INTEGRAL 

NDVI_MWLR_DY_WS_EOWS 

NDVI_MWLR_DY_WS_LENGTH 

NDVI_MWLR_DY_WS_PEAK 

NDVI_MWLR_DY_WS_SOWS 

Variety_number_ny 

Soiltype_NY 

DAYS_TO_CCE_FROM_EVI_DL_DY_FRS_E

OSFRS 

EVI_DL_DY_FRS_INTEGRAL 

EVI_DL_DY_FRS_EOSFRS 

EVI_DL_DY_FRS_SOSFRS 

EVI_DL_DY_FRS_LENGTH 

EVI_DL_DY_RMS_LENGTH 

EVI_DL_DY_RMS_MEAN 

EVI_DL_DY_VS_INTEGRAL 

EVI_DL_DY_VS_LENGTH 

EVI_DL_DY_WS_SOSWS 

EVI_DL_DY_WS_LENGTH 

EVI_DL_DY_WS_PEAK 

EVI_DL_DY_WS_INTEGRAL 

Variety_number_ny 

Soiltype_NY 

DAYS_TO_CCE_FROM_EVI_MWLR_DY_FRS_EOS

FRS 

EVI_MWLR_DY_FRS_INTEGRAL 

EVI_MWLR_DY_FRS_EOSFRS 

EVI_MWLR_DY_FRS_SOSFRS 

EVI_MWLR_DY_FRS_LENGTH 

EVI_MWLR_DY_RMS_LENGTH 

EVI_MWLR_DY_RMS_MEAN 

EVI_MWLR_DY_VS_LENGTH 

EVI_MWLR_DY_VS_MEAN 

EVI_MWLR_DY_WS_INTEGRAL 

EVI_MWLR_DY_WS_EOSWS 

EVI_MWLR_DY_WS_LENGTH 

EVI_MWLR_DY_WS_PEAK 

EVI_MWLR_DY_WS_SOSWS 

No_VI  Latitude CCE 

Longitude CCE 

Date of the CCE 

DOY of CCE 

SowingDate 

Variety_number_ny 

Soiltype_NY 
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11.6 Results of the individual correlations  

11.6.1 Haryana 

 



 

  

 

111 of 136 

 

11.6.2 Odisha 
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11.7 Full result of the multiple regression analyses 

11.7.1 Haryana 
Table 9: Results of the multiple regressions for Haryana. If more than one end variables are used, the R² is the adjusted R². 

Haryana NDVI_DL NDVI_MWLR EVI_DL EVI_MWLR 

WS_VI 

     Start variables 

     R²  

    End variables 

    Significant  

 

 4 

0.04 

1 

0.01 

 

5 

0.08 

4 

0.001 

 

4 

0.02 

1 

0.08 

 

5 

0.01 

1 

0.18 

WS_VI_BiasC. 

     Start variables 

    R² 

    End variables 

   Significant 

 

8 

0.11 

2 

2.00E-03 

 

8 

0.18 

3 

1.00E-05 

 

7 

0.15 

2 

1.80E-04 

 

8 

0.07 

1 

0.01 

Phases_VI 

    Start variables 

    R² 

    End variables 

    Significant 

 

12 

0.05 

1 

2.06E-03 

 

13 

0.08 

2 

2.40E-04 

 

12 

0.02 

1 

0.06 

 

13 

0.04 

4 

0.02 

Phases_VI_BiasC 

     Start variables 

     R² 

    End variables 

    Significant 

 

15 

0.13 

2 

7.80E-04 

 

16 

0.17 

6 

8.60E-04 

 

15 

0.16 

2 

1.10E-04 

 

16 

0.24 

6 

1.76E-05 

No_VI  

    Start variables 

     R² 

    End variables 

    Significant 

  

16 

0.12 

2 

1.33E-03 

  

All_VI_Fixed 

    Start variables 

     R² 

    End variables 

    Significant 

  

5 

0.05 

1 

3.20E-05 

  

All_VI_Fixed_BiasC 

    Start variables 

     R² 

    End variables 

    Significant 

  

8 

0.15 

3 

1.36E-04 
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11.7.2 Odisha 
Table 10: Results of the multiple regressions for Odisha. If more than one end variables are used, the R² is the adjusted R². 

Odisha NDVI_DL NDVI_MWLR EVI_DL EVI_MWLR 

WS_VI 

     Start variables 

     R²  

    End variables 

    Significant  

 

4 

0.08 

1 

0.02 

 

5 

0.06 

1 

0.04 

 

4 

0.24 

3 

5.80E-05 

 

5 

0.14 

2 

2.20E-03 

WS_VI_BiasC. 

     Start variables 

    R² 

    End variables 

   Significant 

 

7 

0.29 

4 

1.46E-05 

 

8 

0.27 

4 

3.59E-05 

 

7 

0.42 

6 

1.54E-07 

 

8 

0.37 

5 

6.19E-07 

Phases_VI 

    Start variables 

    R² 

    End variables 

    Significant 

 

12 

0.14 

1 

0.14 

 

13 

0.17 

7 

0.01 

 

12 

0.24 

3 

8.23E-05 

 

13 

0.31 

5 

1.22E-05 

Phases_VI_BiasC 

     Start variables 

     R² 

    End variables 

    Significant 

 

15 

0.39 

4 

2.34E-07 

 

16 

0.30 

4 

1.19E-05 

 

15 

0.53 

9 

4.05E-09 

 

16 

0.49 

8 

1.23E-08 

No_VI  

    Start variables 

     R² 

    End variables 

    Significant 

-  

7 

0.17 

3 

9.98E-04 

- - 
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11.8 Full results of the RF classification 

11.8.1 Haryana 
Table 11: Haryana: Full results of the RF Classifications for the different groups of variables. 

Haryana NDVI_DL NDVI_MWLR EVI_DL EVI_MWLR 

WS_VI 

     OFS 

     CVS 

 

1 

0.25 

 

4 

0.31 

 

2 

0.26 

 

2 

0.33 

WS_VI_BiasC. 

     OFS 

     CVS 

 

8 

0.37 

 

4 

0.31 

 

2 

0.26 

 

2 

0.33 

Phases_VI 

     OFS 

     CVS 

 

8 

0.32 

 

 

 

3 

0.43 

 

Phases_VI_BiasC 

     OFS 

     CVS 

 

9 

0.32 

 

10 

0.35 

 

8 

0.33 

 

16 

0.37 

No_VI  

     OFS 

     CVS 

  

8 

0.46 

  

All_VI_Fixed 

     OFS 

     CVS 

  

5 

0.25 

  

All_VI_Fixed_BiasC 

     OFS 

     CVS 

  

6 

0.32 
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11.8.2 Odisha 
Table 12: Odisha: Full results of the RF Classifications for the different groups of variables. 

Odisha NDVI_DL NDVI_MWLR EVI_DL EVI_MWLR 

WS_VI 

     OFS 

     CVS 

 

3 

0.42 

 

2 

0.4 

 

3 

0.38 

 

4 

0.36 

WS_VI_BiasC. 

     OFS 

     CVS 

 

3 

0.44 

 

4 

0.41 

 

3 

0.37 

 

5 

0.34 

Phases_VI 

     OFS 

     CVS 

 

5 

0.39 

 

12 

0.46 

 

4 

0.47 

 

Phases_VI_BiasC 

     OFS 

     CVS 

 

14 

0.45 

 

14 

0.47 

 

5 

0.46 

 

7 

0.44 

No_VI  

     OFS 

     CVS 

  

2 

0.40 
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11.9 Linear regression – No VI variables 

 

Figure 52: Results of the linear regression between the Non-VI-variables and total yield for Haryana.  

 

Figure 53: Results of the linear regression between the Non-VI-variables and total yield for Odisha.  
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11.10 CCE method 

Crop cut method. IFPRI, 2019 - Protocol for Crop Cutting Experiments: Gp-Level Yield 

Estimation Through Smartphone Based Near-Surface Sensing Approach 

 

Figure 54: Instructions for the CCEs. 
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11.11 GEE script: Data preparation and the temporal aggregation 

The script is generally similar for all the different variables with MWLR. However, the step 

when finding SOS and EOS will be different if the variables is to be found for a phase. Similarly, 

the triggering measure will differ. In the end will be shown examples of how the DL smoothing, 

precipitation, temperature and fixed seasons differ. 
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11.11.1 For EVI 
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This process is then repeated once more. 
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11.11.2 For the DL smoothings: 

This code is inserted after the 10 MWLR smoothings and shortening of the season, and before 

finding the SOS and EOS. 

 

11.11.3 For fixed: 

Instead of using the VI value to find SOS and EOS, the fixed dates are used: 
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11.11.4 For precipitation: 

 

Finds the EOS and SOS though the VI values as normal but uses the boundary dates as window 

for the precipitation. And also use triggering measure on precipitation 
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11.11.5 For temperature: 

Temperature is inserted after the smoothings. And it is smoothed once.  

 

After the EOS and SOS is found by the VI values, they are used to shorten the temperature 

timeseries and the triggering measure is applied for temporal aggregation: 
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11.12 GEE script: Spatial aggregation 

Script showing how the created images were turned into variables. 
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11.13 Spyder script – RF Classification 

 

 

 

 




