UNIVERSITY OF COPENHAGEN
DEPARTMENT OF GEOSCIENCES AND NATURAL RESOURCE MANAGEMENT

Assessing the ability of Sentinel-2 derived vegetation indices to

explain inter-field yield variation in the context of index insurance

— A case study of paddy rice in Haryana and Odisha, India

Master thesis

Nicolai Bloch Pedersen & Kristian Wille @stergaard

Supervisor: Rasmus Fensholt

Submitted on: 02-07-2020



Name of department:

Authors:

Title and subtitle:

Topic description:

Supervisor:
Submitted on:

Study points:

Pages:

Department of Geosciences and Natural Resource Management
Nicolai Bloch Pedersen (qzv877) & Kristian Wille @stergaard (Imw255)

Assessing the ability of Sentinel-2 derived vegetation indices to explain
inter-field yield variation in the context of index insurance - A case study of
paddy rice in Haryana and Odisha, India

Based on two study sites in India, Haryana and Odisha, this study aims to
contribute to the technical aspect of improving the indices for index
insurance, more specifically on how field level yield can be estimated
through Sentinel-2 derived VI variables and which design options are more
suitable to create these variables.

Rasmus Fensholt

02-07-2020

30 ECTS

~65 (of 2400 characters)

2 of 136



Table of contents

N 01 0 7 Tt PP 5
E ol 4o L0 N U=Ta Fodc) 0] oL PPN 6
IR ES ) =1 o] 00 =T P U 1) o 10 PP 7
T 0 0 oo U U LT 8
0 L0 T | /PP 9
3 0¥ o1 Yo 10 Fod o) PP 11
1.1 IMIOTIVALION ...ttt e et e et e e sne e e e st e e e enteeennaeeennseneanseaeenneeeas 11
1.2 RESEAICH TIEIU ... 11
1.3 FOCUS OF the STUAY....ccueiiiieieieiie et 14
1.4 ReSearch COMPOSITION .......coiiiiiiiiiiie ittt ettt ettt e e enree s 14
1.5  AmDItion OF the STUAY .....c.ooiiiiiiiiie e 16
1 U 1 1= 0 ) SO 18
2.1 RICE PRENOIOGY .. ettt 18
G T 11 | TSP 19
S - | SO 22
O AT (o o - W TP PP PP PRSP 22
4.2 SALEIIITE A8 ... .coeieiieeie s 23
I Y03 1=) o Yt 0 Coll 4o U<t a Voo (o] Uo 0000 PO 25
51 A qUANTITALIVE CASE STUAY ...eeiuveeeieiiieiiie ettt et e et e e e e e e anaeee e 25
5.2 ChOICE OF SOTIWAIE.....c.eiiiiiiiiii ettt e e nree s 25
6 MELNOAS oottt 26
6.1  Yield data preparation..........cceeeiieeeiiiie e 27
6.2  Satellite data PrOCESSING......ccouvieiiieeiiie et e e e e e e areeeanes 29
6.3  Aggregations — Creating the VI variables............cccccoooviiiii i, 40
6.4  Preparing the supplementary data ............ccccooveiiiiii i 44
6.5  Three StatiStiCal ANAIYSES. .......uveeiiieeiiie et 47
6.6  Uncertainty from choice of smoothing and Vl...........ccccoooiiiiiii i, 53
T RESUILS oA 54
7.1  Factorsinfluencing the Yield...........coovri i 54
7.2 Vlvariables™ ability to explain yield variation...............ccccceeiiiei i, 55
7.3 Suitability of the design OPLIONS...........ccoiiiiiiie e 57

3 of 136



7.4 Sources of uncertainty in the index Creation ProCeSS ............cceiviereeinieririenreenee e 70
o T D ) Y01 B 1Y (0 ) o PO 78
8.1  Discussion of uncertainties in the Methods............ccoiiiii e 78
8.2 DiSCUSSION OF the FESUILS .....cveeeeiiii e 83
8.3 FUIMNEI FESEAICI ...t et e e sna e e anreee e 94
20 00 Vol 1 1] 1) o 1 PP 95
10 ] o] =) Lo <1 PPN 97
11 N 0] 013 4 T B O 104
11,1 Inserting @ Value BVEIY AY .........ooiieiiiieiie et 104
11,2 RICE VAITELY ..ottt ettt ettt ettt et et 105
11,3 SOM Y et 105
11.4  Overview Of the triggering MEASUIES. ........cccueeiiiereiiieeieee sttt 106
11.5 Overview Of grouped Variables ............ccouiiiiiiiiiiii s 108
11.6  Results of the individual COrrelations ...........cccoviieiiiieiii e 110
11.7  Full result of the multiple regression analyses............ccooieiiiiiiiiieni 112
11.8  Full results of the RF ClasSifiCation .............ccoiiiiiiiiiieiiesic e 114
11.9  Linear regression — NO VI VariableS...........ccuveeiiireiiie e 116
O O O = 41T o To PSPPSR 117
11.11  GEE script: Data preparation and the temporal aggregation .............cccccceevveervnnnne, 118
11.12  GEE script: Spatial aggregation .............ccuvieiiieeiiie e e 134
11.13  Spyder script — RF ClassIfiCation ...........cccoveeiiiieeiiie s 136

4 of 136



Abstract

Smallholder agriculture in the Global South is characterised by high degree of risk, which
disincentivises investment in productivity gains and limits rural development. Index Insurance
aims to overcome the limitations of traditional insurance to insurance farmers against exposure
to climatic extremes. Based on two study sites in India, Haryana and Odisha, this study
contributes to the technical aspect of improving the indices, more specifically on how field level
yield can be estimated through Sentinel-2 derived VI variables and which design options are
more suitable to create these variables. The study shows that the best variables alone can
explain 20% of the inter-field grain yield variation and that the best combination of variables
can explain 53%. Furthermore, the main findings of the study suggest that it is beneficial to test
different triggering measures and that including variables from phenologically tailored phases
and isolating the rice varieties significantly improves the results. Additional research is needed
before the approach is suitable for individualised index insurance but compared to alternative
data sources the method will likely pose an effective and scalable way to identify yield gaps and

to specifically target policy interventions.
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Reading guide

The thesis will begin with a glossary, giving the reader an introduction to the concepts that will
be used in the study. The motivation behind the topic of index insurance will then be described,
followed by an exploration of the existing research field. How this study is placed in the
research field will then explained, followed by the composition of the research, culminating in

the specific research question and the aim of the study.

Theoretical knowledge of rice phenology will then be presented and the two the study sites and
the used data will be introduced. This will be followed by some considerations of the scientific
methodology applied in the study. The method of the analyses will then be presented, followed
by a presentation of the results. These will then be evaluated in the discussion, along with a
comparison of the results to similar studies and a discussion about the implications of the study
for the research field. The discussion will result in a list of recommendations for further

research of the topic and lastly the main findings of the study will be concluded.
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Glossary

This list of concepts will be useful to be familiarised with, when reading this study.

Inclusive insurance: Inclusive insurance is a school of insurance that focuses on affordable
and fair insurance products, providing insurance to lower-income population segments,

typically in the Global South (Cheston, 2018).

Adverse selection: Adverse selection describes a situation where the information between a
buyer and seller is unequal. In insurance, adverse selection entails a higher demand for
insurance from farmers that know they are more at risk. The insurance companies then need
to adjust for this when assessing their exposure and determining the premiums (Investopedia,

2020).

Morale hazard: Morale hazard describes how being insured can change the behaviour of the
insured towards more risk-taking behaviour. In agriculture, insurance can lead farmers
towards practices that are more likely to suffer losses (BD, 2020; IRMI, 2020; Greatrix et al.,
2015).

Index insurance: Index insurance is a relatively new approach for insurance where the
insurance pay-outs are determined by an objective index, and thus detached from the
experienced losses. The index could for example be based on precipitation, vegetation indices,
wind, or temperature. For the insurance to be reliable, the indices should be closely related to

the agricultural production losses (GIFF, 2020; Greatrix et al.,, 2015).

Basis risk: Basis riskis aterm in index insurance, that describes the risk of a mismatch between
the experienced loss and the insurance pay-out. It is an inherent challenge in index insurance

as the index is decoupled from the experienced losses (GIFF, 2020; Greatrix et al., 2015).

Design options: In this context, design options cover the different possibilities when designing
an index for index insurance. When creating an index, it must be decided which variable to base
the index on, how that variable is aggregated to one value, which period is covered and how the
start of the period is determined. The design will often depend on the objectives of the index

(IFAD, 2017).
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Input-based variables: In the context of index insurance, input-based variables are variables
that directly influence the crop production, such as precipitation and temperature. Index
insurances based on input-based variables builds on the assumption that the variables are

drivers of crop changes and therefore a good indicator for the yield (IFAD, 2017).

Output-based variables: Output-based variables are in this context, variables that can be used
as proxies for the yield. The variables do not influence the crop growth but are merely
estimations of the changes in vegetation productivity. Vegetation indices are an example of an

output-based variable (IFAD, 2017).

Smoothing type: Smoothing the data is an important tool working with satellite dataset. The
reflection from the vegetation is frequently altered or blocked, typically due to aerosols, clouds
or changing illumination patterns. This produces noise in the dataset. In order to address this,
the raw dataset is processed through a smoothing technique that produces a more

representative data set (USGS, 2020).

Vegetation indices: Vegetation indices (VIs) are an indicator of the ‘greenness’ of the
vegetation, derived from its reflective properties. Vegetation indices are created from the
values of specific spectral bands, combined in different mathematical formulas. In this study
two vegetation indices are used: Normalized Difference Vegetation Index (NDVI) and Enhanced

Vegetation Index (EVI) (Lillesand et al., 2015; Pasimeni et. al., 2019).

VI variables: In the study there will occasionally be referred to VI variables. This will refer to

the variables created on the bases of vegetation indices from satellite data.

10 of 136



1 Introduction

1.1 Motivation

Smallholder agriculture is an important foundation for employment and food security in many
countries in the Global South. It is however characterised by a high degree of risk, especially
from exposure to climate variability and adverse weather events. Events, such as droughts and
floods can force farmers to utilise short-term strategies to cope with the immediate crisis. These
responses can however reduce the development of the farmers” livelihood in the long term, as
they often involve deterioration of productive assets. Large investments in smallholder
agriculture are necessary to accelerate rural development and to meet the increasing food
demand from growing populations. However, the vulnerability context of the agricultural
sector disincentivise investments in production gains, keeping people in many rural areas in
the Global South trapped in a state of food insecurity and persistent poverty (Carter etal., 2017;
Hansen etal.,, 2017; IFAD, 2017; Miranda & Farrin, 2012). Climate change which in many places
is expected to increase the frequency and severity of extreme events, will further strengthen

this poverty trap (IPCC, 2018; GIZ, 2016).

Increasing agricultural productivity and empowering smallholder farmers is widely considered
an effective way to increase resilience and reduce poverty and hunger (Ivanic & Martin, 2018;
Lobell et al., 2018; UN, 2019). Inclusive insurance can contribute to this by providing a safety
net, preventing farmers from falling into poverty after a shock, and by making it more attractive
for investments. Agricultural insurance is however not well developed in the Global South, and
traditional indemnity insurance suffers from several challenges, such as lack of trust between
insurance provider and policyholder and proportionally high verification cost. Index insurance
has been proposed as a solution to these challenges. By basing the claim and verification
process on an objective, automated index, the verification costs and the mistrust can be reduced
(GIZ, 2017; Miranda & Farrin, 2012; Greatrex et al. 2015; Carter et al. 2017; Platteau etal. 2017;
Liu & Myers, 2016; The World Bank Group, 2018; GIIF, 2019).

1.2 Research field

1.2.1 Challenges for index insurance
There are several challenges that needs to be overcome to increase the scalability and

socioeconomic impact of index insurance in the Global South. These challenges can be grouped
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in two; delivery challenges and technical challenges. The delivery challenges are related to how
index insurance policies can be designed to add the most value for the policyholders, how the
products can be scaled, keeping the cost low and how demand can be increased by raising
awareness and building trust. The technical challenges are related to how the specific indices
can be created to increase the agreement between the experienced loss by the farmer and the
detected loss by the index i.e. how the basis risk can be reduced (IFAD, 2017; GIZ, 2016; Carter
etal, 2017; Greatrex et al. 2015). The focus of this study will be on the latter, more specifically
on how satellite data can contribute to overcome the technical challenges and increase the

index accuracy.

The research field of technical challenges is quite diverse, and research varies in terms of the
overall objective for the index, the variables used, the scale, the specific design options and the
resolution of the used satellite products (IFAD, 2017). To place this study in the research field
it can be useful to categorise the diverse field in two schools of research. The boundaries are
however unrestrictive, and a range will likely be more beneficial understanding of the field than

categories, as many studies fall somewhere between the two.

1.2.2 Firstschool of the technical challenges

The first school is characterised by a goal to insure against the most severe events, caused
generally by a single peril. The essential aspect is whether the index is able to accurately
capture which years that has been the worst, as experienced by the farmers. It is less important
to be able to estimate the precise yield each year. The index is typically based on input-based
measures, such as rainfall or soil moisture and will often only insure against a single weather-
related peril. If a farmer is hit by a pest attack, it will not be captured by the index nor
compensated from the insurance. The Unit Area of Insurance (UAI) in which all policyholders
are assumed to be similar, are typically large (sub-county to district), also as a consequence of
low-resolution data sources. The large UAI are a source of basis risk, as specific local conditions
are averaged out. A farmer who has been victim of a flood might not be compensated if the
majority of the other farmers in the region are unaffected by the shock (IFAD, 2017; Rosema et
al, 2014; Enenkel et al,, 2018; Osgood, et al., 2018). Studies which focus on output-based
measures, such as NDVI, can also be considered part of this school when the size of the UAI's

are large (sub-district to region). Due to the large UAI’s the insurance will not typically cover
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multiple perils, as individual losses from e.g. pest attack will be lost when focusing on the
average of a large area, even though the loss could have been detected in the VI at the farmer’s
field. (Klisch & Atzberger, 2016; Flatnes et al., 2019; Chantarat et al, 2013; Makaudze &
Miranda, 2010; Son et al,, 2013).

1.2.3 Second school of the technical challenges

Recognising the heterogeneity of crop losses, the aim of the research in the second school is to
create indices that are able to insure a village or even individual farmers against multiple perils
on a seasonal basis i.e. to be able to estimate the yield of the farmers after each season and
compensate if the yield is less than average. For this, high-resolution data is necessary in order
to differentiate between villages or single fields. Output-based data, such as vegetation indices
are often used in this school of research. As these indices directly reflects the crop growth, they
will typically insure against multiple perils, ranging from pest and diseases to the different
climatic conditions. If the accuracy of the indices is adequate, basis risk will be less severe when
the index is individualised. But this specified insurance approach increases the risk of morale
hazard and adverse selection, two inherent challenge of insurance. These challenges impose
high demands on the overall design of the insurance policies. Several innovative solutions are
being developed, but that is a topic belonging in the delivery challenges category and will not
be further elaborated in this study (Burke & Lobell, 2017; Hufkens et al., 2019; Lobell et al,,
2019; Lambert et al., 2017; Jain et al., 2016; Azzari et al.,, 2017; Guan et al., 2018).

Index insurance products are not the only application for field level yield estimations obtained
through satellite images and therefore not the only objective of the research in this school.
Accurate estimates of farm level yield can also be used to identify productivity gaps, enabling
specific targeting of policy interventions, such as fertilizer and seed supply or access to
microcredit. As such intervention are often otherwise implemented as one-size-fits-all, the farm
level yield estimates will likely increase the effectiveness of such interventions. Furthermore,
the estimates can be used to assess the results of implemented initiatives. These initiatives can
all contribute to increased agricultural production and thus rural development and food
security. The estimates can also be used as verification data for when developing insurance

products on a larger scale, as an alternative to other sources of yield data that are often
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expensive and unreliable (Lambert et al. 2017; Hufkens et al,, 2019; Guan et al., 2018; Burke &
Lobell, 2017; Lobell et al., 2018; Lambert et al., 2018).

1.3 Focus of the study
This study is placed in the second school of the research field and aims to contribute to how
high-resolution satellite data can be utilised to accurately estimate farm level yield and to

ultimately, develop effective insurance mechanisms for farmers in the Global South.

To create an index insurance, a prerequisite is that farm level yield can be approximated by
objective data. If a reliable relationship between farm level yield and a satellite derived VI
variable can be established, this can be used as a foundation for the index insurance. The VI
variable would then be referred to as the index. Insurance pay-outs for a specific farmer would
then be dependent on the VI value observed by the satellite. Pay-outs would be made if the
index estimates a poor harvest for the specific farmer, irrespective to the farmers experienced
loss. The exact threshold and price for the insurance policy would typically be determined by
historical data. In this study it is however only the relation between yield and the index that

will be in focus (Miranda & Farrin, 2012; GIIF, 2019; Greatrex et al. 2015).

The study will not make yield estimations as such but only create and assess VI variables” ability
to explain yield variation. How well the VI variables can explain the inter-field yield variation is
a direct measure of well they can estimate farm level yield, and the two terms will therefore be

used interchangeably throughout the study.

1.4 Research composition
The aim of the study is to assess the ability of vegetation indices to explain inter-field yield
variation in paddy rice for two study sites in India and to assess which VI design options are

most suitable for this.

Numerous VI variables will be created through processing of satellite images using different

combinations of the selected design options. These will then be systematically assessed.

Three statistical analyses will used to test the VI variables: A linear regression, returning the

correlation between the individual variables and the yield. A multiple regression, providing the
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correlation between the yield and multiple explanatory VI variables?, and lastly a Random
Forest classification yielding an accuracy assessment of how well groups of VI variables were
able to classify the samples according to their yield. Assessing the design options across three
statistical analyses is expected to increase the robustness of the results. This approach can be
referred to as methodological triangulation, which has been found to be beneficial when
working with comprehensive data sources (Bekhet & Zauszniewski, 2012). The multiple
regression and RF classification both run on groups of variables. It can therefore also be tested
how well different VI variables can supplement each other and together explain the yield
variation. The two tests also make it possible to correct for biases in the data, by including

suspected bias-creating variables.

Subsequently, it will be analysed which aspects create the most uncertainty in the results: The
smoothing types and VIs will be compared, the effect of correcting for biases will be assessed
and the amount of uncertainty from the mismatch between above ground biomass and grain

yield will be evaluated.

Before analysing the output-based VI variables, it will first be assessed which independent
variables that affect the yield. This will be done with a similarly method, using linear regression,
multiple regression and RF classification to assess the ability of the variables to estimate yield,
but using input-based variables, such as climatic, socioeconomic and spatial variables instead
of output-based. The aim of this is to get a better understanding of the factors determining the

farm-level yield.

1 In this study, the VI variables will frequently be referred to as explanatory or independent variables, as they are used
to explain the variation in yield. This does however not imply a causal relation as it is the VIs that are dependent on the
yield and not the other way around. When using the input-based variables to explain yield variation, a causality is
expected and the yield is therefore also the dependent variable in reality.
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1.4.1 Research questions
The composition of the study can be summarised in following research questions, on which this

thesis will be based:

How much of the inter-field yield variation can be explained by Sentinel-2 derived vegetation

indices and which design options give the best results?

1. Which input-based variables influence the farm level yield?

2. How well does the VI variables explain the inter-field yield variation?

3. Which design options results in the VI variables most suitable to estimate yield?
3.1. Vegetation index: NDVI or EVI
3.2. Smoothing type: MWLR or DL
3.3. Triggering measure: Peak, integral, mean, length, SoS or EoS
3.4. The period: Phenologically tailored phases or only for the whole season

3.5. Seasonality: Dynamic or fixed seasonality

4. What aspects of the index creating process create the largest sources of uncertainty?
4.1. The smoothing type or VI choice
4.2. The bias creating variables

4.3. The imperfect correlation between grain yield and total yield

1.5 Ambition of the study

The recent launch of the Sentinel-2 satellite offers new possibilities for yield estimations of
smallholder fields. The data provides sufficiently high spatial resolution to distinguish between
individual fields, and the temporal resolution makes it possible to extract parameters

representative of the entire crop season thus providing more information about how the crops

have developed (Lambert et al. 2017; Lambert et al.,, 2018; Jain et al., 2016).

Reliable ground truth data is often mentioned in the literature as a limiting factor for creating

indices and assessing their accuracy. Farmer surveys of historical yield can be very uncertain
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and systematically biased. When used to create and assess index products it can be difficult to
determine how much of the error is due to inaccurate indices and how much is from inaccurate
yield data. The very comprehensive yield dataset used in this study is made from crop cuts
exercises (CCEs) of over 500 fields. CCEs have in previous studies been shown to be more
reliable and basing the analyses on this data therefore allows for higher confidence when
assessing the indices and specific design options (IFAD, 2017; Jain et al., 2016; Lobell et al,,
2018; Lobell et al., 2019; Guan et al., 2018).

The yield dataset used in this study also provides information about the phenological stage of
the crops at different times during the season. This provides the unique opportunity to, based
on empirical information, divide the crop season according to different phenological stages and

to access the effect of this specified information on the yield estimations.

We are not aware of other studies that systematically assess the design options across multiple
variables and statistical tests. In addition, comparable studies generally only include one
triggering measure for the whole season. The benefit of combining different VI variables and of
including variables from phenologically tailored phases is therefore not well explored in the

literature.

In the absence of a substantial theoretical body, this study aims to contribute to this important
and emerging area of research with novel insights on how the VI variables can be designed to

increase the accuracy of farm level yield estimations.
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2 Theory

Having covered the essential terms and concepts of index insurance in the glossary and
introduction, the theoretical section will be short, only providing an introduction to the

phenology of paddy rice.

2.1 Rice phenology
A thorough understanding of the rice phenology is essential to this study as an important aim
is to create variables specifically designed to capture the condition of the vegetation in certain

crop phases. The developing stages of the paddy rice crop will therefore be presented here.

There are several ways to classify the rice crop stages. For this study the most simple, consisting

of three phases, is sufficient. The three phases are:

(1) The Vegetation Stage (VS), which has a duration of 50-100 days, is characterized by the
formation of shoots and leaf development, and hereby an increase; in height, tillers and leaf

area. This initiates a gradual increase in above ground biomass (AGB) as seen in Figure 1 (Guan

etal.,, 2018; Dong & Xiao, 2016).

(2) The Flowering and Reproductive Stage (FRS) has a duration of 30-35 days. In this stage the
growth of the reproductive parts is initiated and the AGB continue its gradual increases (Figure
1). At this stage the rice experiences the fastest plant height increase, booting initiates with
panicle production and flowering begins. The FRS is a significant phase for the rice production,
as the formation of flower buds determines the number of grains, a decisive measure for the

grain yield (Guan et al., 2018; Dong & Xiao, 2016).

(3) The Ripening and Maturity Stage (RMS) has a duration of 30-35 days in which the AGB
reaches its maximum (Figure 1). When entering this stage, the number of grains is fixed
equivalent to the number of flowers produced in the FRS. In the RMS, the filling of the grains
begins, which leads to an increase in grain size and weight. The RMS ends as the leaves and the
grains have gradually turned golden yellow and the rice is ready for harvest (Guan et al., 2018;

Dong & Xiao, 2016; Hufkens et al., 2019; CGIAR, 2013).
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Early Vegetative Stage
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The Flowering and Reproductive Stage (FRS) The Ripenin%e‘md Maturity Sta; e(RMS)
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e Grain Weight (aka. Yield)
—— Green LAl

Figure 1: Overview of paddy rice crop stages (Guan et al, 2018; Dong & Xiao, 2016).

3 Study sites

This study is done for two sites in India: Haryana in North West India and Odisha in East India
(Figure 2). Using two study sites gives the possibility to compare the results and assess the
impact of aspects that differ between the sites. It is also the expectation that the results will be

more robust when assessed over two study sites.

Haryana

INDIA

Odisha

SR1 LAN KA

- e ™
Indian Ocean 0 200 400km

Figure 2: Map of study sites.
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Haryana has a semi-arid climate with high temperatures and a condensed precipitation period.
Odisha has a tropical savanna climate. It generally receives more precipitation, distributed over

a longer period and the annual temperatures are more stable (Figure 3).
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Figure 3: Climographs from the two study sites. Left: Haryana (CLIMATE-DATA.ORG, 2020a). Right: Odisha (CLIMATE-DATA.ORG,
2020b)

The annual per capita income of the around 25 million people living in Haryana is 236 thousand
rupees. In Odisha, which is populated by almost 44 million people, the annual per capitaincome

is 96 thousand rupees (Table 1) (GOH, 2020; GOO, 2020; Statista, 2020a; Statista, 2020b).

Table 1: Information about the two study sites (GOH, 2020; GOO, 2020; Statista, 2020q; Statista, 2020b).
Haryana Odisha
Location North West India East India
(30°43"48" N, 76° 46’ 48" E) (20°17'46" N, 85°49' 28 " E)

Population 25,35 million 43,73 million

Climate Hot semi-arid climate Tropical savanna climate

Per capita income 236 thousand Indian rupees 96 thousand Indian rupees in
in financial year 2019 the financial year 2019

The participating farmers have access to irrigation and are mainly practicing conventional
paddy rice production for selling and exporting. The average field size is around 0.20 Ha (2032
m2) for Haryana, and 0.05 Ha (465m2) in Odisha2. The average grain yield in 2019 was 24.6

2 According to the manually drawn polygons around the fields with yield data. The method of this will later be
described.
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quintals per acre (6.08 t/Ha) in Haryana and 17.2 quintals per acre (4.25t/Ha) in Odisha. For

both study sites, the variance was however rather high (Figure 4).

[ Haryana [ Odisha
40
35
30

25 % T

20

[Quintals/acre]

15

10

Figure 4: Distribution of grain yield for fields in Haryana and Odisha

An overview of the soil types and rice varieties for the two study sites can be found in the

appendix (Figure 50 & Figure 51).
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4 Data

The data sources used in this study will be introduced here, starting with an overview of what
is included in the yield data provided by IFPRI. This is followed by a presentation of the

specifications of the three sources of satellite data.

4.1 Yield data

4.1.1 Data from IFPRI
“This data was provided by IFPRI. IFPRI bears no responsibility for the analyses or interpretations
of the data presented here”

Farm level yield data from the Indian states, Haryana and Odisha was made available to us by
Berber Kramer from IFPRI. The dataset contains information from field surveys of the late 2019
rice harvest and from smartphone images of the fields during the entire length of the late 2019

Crop season.

The dataset contains geo-localised information from CCEs of 317 fields in Haryana and 105
fields in Odisha (Figure 5). Of these fields, the farmers in Haryana and Odisha had on instruction
taken 766 and 718 smartphone pictures of the fields during the crop season. A manual
classification of the vegetative stage of crops in each smartphone picture was also included in

the dataset.

The survey data includes: Grain yield (standardised at 14% moisture level) and biomass yield,
collected in 9m? or 25m? CCE. (See appendix for further details about the CCE process: Figure
54). A varying subset of the fields also had information on rice variety, soil type, money spent
since last image, farmer reported cause of damage, observed cause of damage (on smartphone

pictures) and farmer reported input use.
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Figure 5: The spatial distribution of the yield data for Haryana (Left) and Odisha (Right).

4.2 Satellite data

4.2.1 Sentinel-2 MSI: MultiSpectral Instrument, Level-2A

Sentinel-2 is a part of the Copernicus mission, which comprises a constellation of two twin
Sentinel-2 satellites. Sentinel-2A was launched and set in orbit in June 2015 and Sentinel-2B in
March 2017, both at an altitude of 786km (ESA, 2020a). They operate simultaneously, with a
180° angle in a sun-synchronous orbit, which guarantees consistency of the illumination
direction. This minimises the potential impact of differing shadows and ground illumination
levels and is thus a vital feature when assessing time-series of images (ESA, 2015). The
combination of the two satellites generates a revisit frequency of 5 days at the Equator i.e. a
temporal resolution of 5 days (ESA, 2015). The Sentinel-2 produces 13 different spectral bands
at different spatial resolutions. This study uses 3 bands to calculate the VIs, the Blue (B2), the
Red (B4) and the Near-Infrared (B8), all with a spatial resolution of 10 meters.

The Sentinel-2 product used is “Sentinel-2 MSI: MultiSpectral Instrument, Level-2A”. The Level-
2A data has been pre-processed, ensuring that the images are ortho-rectified and bottom of the

atmosphere reflectance (ESA, 2020b).

4.2.2 MOD11A2.006 Terra Land Surface Temperature and Emissivity 8-Day Global 1km
This dataset is derived from the Terra satellite which was launched in 1999 and is part of the

collection “Terra MODIS” (NASA, 2020). It provides land surface temperature and emissivity
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with a spatial resolution of 1km and a temporal resolution of 8 days, averaged from the daily

MOD11A1 values within the 8-day period (USGS, 2020).

4.2.3 CHIRPS Daily: Climate Hazards Group InfraRed Precipitation with Station Data

CHIRPS Daily was created in 1981 to produce rainfall maps, specifically in areas where surface
data is limited. Like the National Oceanic and Atmospheric Administration’s (NOAA’s) rainfall
predictions, it builds on approaches using thermal infrared (TIR) reflectance to estimate
precipitation (USAID, 2020). It provides a daily global precipitation dataset, with a 0.05° spatial
resolution (Funk et. al, 2015).
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5 Scientific methodology

5.1 A guantitative case study

This project is a quantitative case study. A set of research questions creates the foundation for
a quantitative analysis. The outcome of the analyses is assessed, and conclusions are drawn
from the results. The method is then evaluated and recommendations for further research are

made.

A thorough understanding of the research field gained from recent scientific literature and
through conversations with field experts, allowed us to identify very specific and unexhausted

research questions that could potentially contribute with new knowledge to the field.

Several modifications to the research design were made in the research process to improve the

quality of the results.

5.2 Choice of software

The study has been carried out using Google Earth Engine (GEE). This ensures high
transparency as the scripts contains all information of the analysis. While creating the scripts
for the analysis we simultaneously create a pipeline for replicating the analysis for other study
sites, as the scripts only need few adjustments to work at other locations. (Azzari et al., 2017;

Lobell et al., 2015).

The strong processing power and replicability of GEE allowed us to create many different VI
variables for the two study sites. This made it possible to evaluation the design options across
multiple variables, thus increasing the robustness of the results. Examples of the GEE scripts
can be found in the appendix (11.11 GEE script: Data preparation and the temporal aggregation
p.118 & 11.12 GEE script: Spatial aggregation p. 134).
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6 Methods

In this section, the methods of the study will be presented: It will be explained how the yield
data has been processed and how the VI variables were created from the satellite data by
calculating the VIs, smoothing the timeseries and then temporally and spatially aggregating the
timeseries. It will then be presented how the created variables were evaluated in the three

statistical analyses. The section starts with a short overview of the entire analysis.

The overall process has been to create variables from satellite data using many different design
options, assessing the ability of these variables to explain the yield variation through three
statistical tests and then systematically assess the results to isolate the suitability of the

different design options.

To create the VI variables from the satellite data several steps were needed. First the VIs had to
be calculated for the images in the timeseries and the effect of clouds had to be smoothed out.
A time period for when to extract the values then had to be defined along with a method to do
so. The timeseries then had to be temporally aggregated to a single image. For each step in this
process there are several different options i.e. the design options. In this study, two different
VIs were created and two different smoothings were applied. Variables were extracted for four
different periods, using two different ways of defining the phases and six different temporal
aggregations. Images were then created for almost all the possible combinations of the chosen
design options to be able to compare each design option against its alternative across multiple

different variables.

The prepared yield data points were associated with a field though manual plotting of the fields.
All the created images were then spatially aggregated using the field plots to obtain a single
value for each field. This result in a list of variables, which have a single VI value associated with
each yield data value. The ability of the variables to explain inter-field yield variation either
individually or in groups of variables was then assessed through three different analyses; linear

regression, multiple regression and RF Classification.

In addition, the three statistical tests were also one for different sources of input-based data to
get an understanding of the decisive factors for rice yield. Different supplementary variables

from the yield dataset were also utilised to in efforts to correct for biases in the yield values.
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Lastly it was assessed which aspects of the process that produces the most uncertainty. A

graphical representation of the workflow can be seen below (Figure 6).

Importing Sentinal 2A in GEE The yield data
Cleaned
Calculate VI
EVT timeseries NDVTI timeseries Aggregated to value
per field
Removing positive outliers
from the EVI data The 10 iterative MWLR Uploaded to GEE
smoothing

Manually draw

Inserti ral ch day
bR Sy polygons around fields

The DL smoothing
Join polygon and yield
The different temporal data point
aggregations
Create internal buffer

The spatial aggregation

Yield Vi1 win
23 07 05

27 05 0.5

Linear regression RR
Multiple Classification

regression

Figure 6: Workflow of the analyses.

6.1 Yield data preparation

A few pre-processing steps were done to prepare the yield data for the analysis.

First the data was cleaned by removing certain troublesome values3.

% Values were deleted if they:

- Had coordinates that places it outside the study-area

- Had a harvestindex above 1

- Had a CCE GPS accuracy above 20m (i.e. over 20 meters possible error in the location estimation)

- Were located in Odisha and had grain yield above 35 quintals per acre. On recommendation of the data
provider.
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Initially, each row of the data represented a picture taken by a farmer. This was converted to a
dataset with a row per field, by exploiting that pictures of the same field were listed with an

identical CCE yield and therefore could be grouped by a pivot table.

Then, a new variable was added by taking the sum of the grain yield and biomass yield. This
represents the total AGB and will henceforth be referred to a “total yield”. The total yield is what
is measured by the satellite and is therefore expected to correlate better with the VIs. If what
the satellite measures (total yield) does not correlate well with the variable we are trying to
predict (grain yield), it is an early indicator that it will be difficult to explain the grain yield
variation through satellite-derived VIs (Guan et al., 2018).

In Odisha the grain yield correlates well with the total yield (R* = 0.74) but in Haryana much
less of the grain yield variation can be explained by the total yield (R? = 0.22) (Figure 7).
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Figure 7: Relation between total yield and grain yield for Haryana (Left) and Odisha (Right). Throughout the thesis, the graphs
from Haryana will be in green nuances and blue for Odisha.

The unexpectedly low correlation for Haryana could have multiple explanations. If the critical
phase of flowering and reproduction is mistimed it could result in low grain yield but still giving
a high total yield. The Haryana samples could also include different groups with differing
relation between grain yield and total yield. This could for example be caused by different rice

varieties. Lastly, the low correlation could be related to the differing fertilizer application rate.
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6.2 Satellite data processing

In this section it will be presented how the VI variables were created from the Sentinel-2 data.

6.2.1 Creating the vegetation indices
From the pre-processed bottom-of-the-atmosphere satellite bands, NDVI and EVI were

calculated with the following formulas (F1 & F2) (Lobell et al.,, 2019; Son et al., 2013).

NDVI:
— B8 — B4
NDVI = PNIR — PRED _
Pnir + PrED B8 + B4
(F1)
EVI:
- B8 — B4
EVI = 2.5 « Pnir — PrED = 2.5 x
pNIR+6*pRED_7-5*,DBLUE+1 B8+6*B4‘—75*B2+1
(F2)

Both indices are frequently used in similar studies (Burke & Lobell, 2017; Guan et al., 2018;
Lambert et al. 2017; Lobell et al., 2019; Lobell et al., 2019).

In the preliminary comparisons of yield and NDVI measures, the yield spanned over a large
interval while the differences in NDVI where relatively small. A potential explanation for this is
that NDVI has a tendency to saturate at high biomass levels. EVI was therefore included as a

supplement, as it is less prone to saturation (Son et al., 2013).

6.2.2 Smoothing the time series
On Figure 8, timeseries of NDVI and EVI can be seen. The irregularity of the VI's over the season
is due to cloud contamination. The clouds and cloud shadows consistently result in a lower

NDVI value, while they can affect EVI in both directions.
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Figure 8: Example of an NDVI and EVI timeseries affected by clouds. The NDVI values is always reduced by clouds, while the EVI
can be affected in both directions.

The Sentinel-2 level 2a data contains a band (QA60) with a pre-processed classification of
clouds, which is intended to mask out the clouds from the images. However, this band is upon
inspection unreliable in these study areas, as there are still cloud contaminated data that is not
masked out. Lobell et al. (2019) encountered a similar challenge and as alternative to the cloud
masking, they removed the effect of clouds by using an iterative smoothing that fitted to the
upper envelope of the data points. Inspired by this, a similar approach was taken here, though

with a different smoothing type.

6.2.2.1 lIterative MWLR

While Lobell et al. (2019) used a discrete Fourier transformation, we applied a moving window
linear regression (MWLR), with a window size of 12 days i.e. 1 observation on either side,
totalling 3 observations. The smoothing type and small size of the window were chosen to get
the smoothing as close to the observations as possible. A goal of the analysis is to detect subtle
differences between the fields in how the VI has developed at different periods. These might be
overlooked if the smoothing has a generic form. Inside the window, a linear regression is made
on the three observations and the middle observation is given the value of the trendline at the
corresponding time. The window then moves one step and the process is repeated. The

smoothing is comparable to a moving average and was satisfactory upon visual inspection.

In order to fit the smoothing to the upper envelope an iterative smoothing process was

initiated: After the first smoothing a new timeseries identical to the original data was made but
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if the original value was less than the smoothing, it was given the value of the smoothing
instead. A new smoothing was then done on this newly created timeseries. This process was,
similarly to Lobell et al. (2019) repeated 10 times. With every step the smoothing moves

towards the upper envelope, though less and less the closer it gets (Figure 9).

Sentinel 2 - NDVI time series at field in Haryana

NDVI
NDVIsmooth1
NDVIsmooth2
NDVIsmooth3
NDVIsmoothd
NDVIsmooth5
—— NDVIsmooth6

0.0 —

02

-0.4
10 17 July 2019 15 August 2019 12 September 2019 16 October 2019 14 November 2019 18 25

Figure 9: Example of the iterative process of smoothing an NDVI timeseries to the upper envelope of the data. On the graph is only

showed 6 of the 10 smoothings that are applied in the study. The grey line represents the raw NDVI data, the dashed line the first
MWLR smoothing and the orange and red lines represents the succeeding smoothings.

6.2.2.2 Removing EVI outliers

Fitting to the upper envelope works on NDVI timeseries as all cloud affected values are
decreased. Because the EVI values can be influenced in both directions, it is necessary to first
remove the positive outliers. This was done by first giving obvious outliers* a value equal to the
mean of the four closest observations. The remaining outliers were more difficult to identify in

the noisy dataset.

In the Timesat, a software specialised in extracting seasonality parameters, there are several
ways of removing outliers. The one used for inspiration here, removes values that deviates a
certain amount from the mean of the observations in a surrounding window (Eklundh &
Jonsson, 2017). Because the timeseries of the AOIs are so heavily affected by clouds, the mean
value alone is many places not a good measure to compare a potential outlier against (Figure
8). It was therefore deemed necessary to alter the method for detecting outliers to make it

suitable for the specific conditions in the AOIs.

4 Values below zero and values above one
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The new measure was calculated as shown below (F3):

M =

Ow — Ow.o. . |uw — Hw.o.

Hw

(F3)

o is the variation and [ is the mean. w and w. o indicates whether the observation in question is

included or not.

How the mean of the 4 surrounding observations compare to the value is still included, but it is
multiplied by the fraction of variation that is added when the value in question is included in
the window. This way, it is taken into account how likely it is that the observation should have
a value close to the mean of the neighbours. If there is high variation in the surrounding
observations, it is less likely to register as an outlier, reflecting a reduced certainty in it being
an outlier. Calculating the difference in variance and mean in relative terms allows
comparability between high and low VI values i.e. to detect outliers in all parts of the season.
The cut-off value was determined by visually inspecting numerous timeseries and was set at a
value of one. Observations with a measure value above one were then given the mean value of
its four neighbours (Figure 10). This process was then repeated to reduce the influence from

outliers being part of the four neighbouring observations.
EVI - outlier removal
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Figure 10: Example of EVI outlier removal. The grey line represents the raw EVI timeseries and the red line is the EVI timeseries
after the outlier removal.

Due to the amount of cloudy observations, it was in some instances even challenging to
distinguish outliers manually, but upon visual inspection the method appeared to identify the

majority of the outliers. At rare occasions a seemingly correct observation was surrounded by
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four observations, negatively affected by clouds, with similar values as each other and the value
was therefore identified as an outlier. This is a source of uncertainty but in the rare occasions
it happens the following iterative smoothing towards the upper envelope will likely correct

some of the damage.

In GEE, four duplicate timeseries are made in order to calculate the measure that identify outliers
in the EVI data. The four timeseries are shifted in time, by adding and subtracting five and ten days
to and from the timestamp. These four timeseries are then joined so that each image in the
timeseries also included the value five and ten days later and prior. The measure was then
calculated (F3) and the value above the threshold given the value of the mean value of the bands
containing the neighbouring values. The process was then repeated (See 11.11.1 For EVI p. 126
for example of the script).

6.2.2.3 Double logistic smoothing
Another type of smoothing was also applied to compare against the MWLR smoothing to get an
indication of whether it improved the results and of how much uncertainty is created by the

smoothing process.

For the second type of smoothing, a double logistic smoothing (DL) was selected. As opposed
to the MWLR that closely follow the observations, the DL is less sensitive to the individual
observations, turning all timeseries into a predefined format that is known to represent
vegetative seasonality well. Upon visual inspection of several timeseries in Timesat the DL

appeared to fit the timeseries well.

The DL smoothing was implemented in GEE, based on the template formulas presented in
(Eklundh & Jonsson, 2017) and (Beck et al., 2006) though with slight alterations. The formula
applied can be seen below (F4).

1
1+exp (—mS=* (t—S5)

>+ (mVI=w, V1) = <1+exp (mlA* (t—A)_ 1)

Vip (t) = wVI+ (mVI — w, VI) = (
(F4)

It shows how the VI measure, VI,; develops as a function of time, t. w; VI represents the VI
value at the beginning of the season before it increases and w, VI the value at the end of the

season after its decrease. mV1 is the peak value of the timeseries. S is the inflection point at the
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increasing part of the curve i.e. the point where the function goes from being convex to concave
and 4 is the infliction point on the decreasing part. mS is the rate of increase at inflection point
S and mA the rate of decrease at point A. Compared to the formula presented in (Beck et al,,
2006) the part (mVI — w,VI) was added and multiplied to the second part of the formula to
allow the smoothing to flatten out at a different value at the end of the season than before. An

example of the two smoothing types can be seen on Figure 11.
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Figure 11: A comparison of the MWLR and DL smoothings (in this example the MWLR only has 6 of the 10 smoothings).

In GEE, first the peak value was found, which was then used to split the season in two, allowing us
to find the minimum values in either part and then using these as w,;VI and w,V1. The inflection
points were set on the date that the increase and decrease had reached 50 % of the amplitude. The
rates of changes were then found by taking the absolute slope of a linear regression of the
observations in a 16-day window around the inflection points. The slopes were multiplied by eight
to make the smoothing better fit the observations. The DL was applied on the 10t MWLR
smoothing to reduce the chance of the variables in the formula being affected by cloudy
observations. The DL was applied after adding observations for every day (see 6.2.3 Inserting a
value for every day), which reduces the potential error when selecting the inflection points (The

GEE script can be found in 11.11.2 For the DL smoothings: p. 131).

6.2.3 Inserting a value for every day
A modification to the timeseries was needed before defining the season and extracting the VI

variables.

There is only an observation every fifth day, so when using a VI value to determine the date of

the season boundaries, the time point related to the value will most likely fall somewhere in the
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five-day span between two observations. It will then set the boundary at the first date with a
value above that VI threshold. This result in a potential leap from the time point that is
requested to the time that is returned. The leap can in the worst case be almost five days. This
practical hurdle would not be evident if analytical integration was possible, but that would

require a function for the VI timeseries, which is not possible with our MWLR smoothing.

The implications of this is that a very small difference in the VI threshold value can determine
whether an observation is included or not and thus lead to a large difference when aggregating
the timeseries in the specific window to a VI variable. Two almost similar fields could for
example end up with quite different areas under the curve. This difference is especially evident
when extracting VI variables for the 3 phases, which are shorter and therefore include fewer
observations. To address this challenge, values were added to those days without an
observation, by assuming a simple linear development in the days between two original
observations. This modification minimises the size of the potential leap when determining
boundary dates and it is therefore expected to significantly improve the accuracy of the
variables. This step is done prior to the double logistic smoothing, so that also the date of the
inflection points can be more accurately determined. A graphical example of this can be found

in the appendix (11.1 Inserting a value every day p. 104).

In GEE, this modification was made by first making two duplicate timeseries, adding five days to
the time stamp for one and subtracting 5 days from the other. The three timeseries were then
joined, so that each observation now also included the observation 5 days later and 5 days prior.
Then four duplicate timeseries were made, adding one day to the first, two days to the second, and
subtracting one and two days from the third and fourth. A new VI measure was then calculated
for each, based on the two original observations it is located between. For the first, a fifth of the
difference between the two original observations it lay between was subtracted and two fifths for
the second, and so on and so forth. The five timeseries were then joined into one timeseries (see

11.11 GEE script: Data preparation and the temporal aggregation p. 118).

6.2.4 Defining the season
Before extracting VI variables it is necessary to first define the season. The season can either be
defined by specific predetermined dates or based on the VI values. If it is based on dates, it is

termed fixed seasonality as they will be identical for all fields. When it is based on the VI, the
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dates can differ between fields and is therefore termed dynamic seasonality. The majority of
the indices created in this study will be obtained through the dynamic method. Some indices

will however also be created with the fixed method to be able to compare the difference.

6.2.4.1 Dynamic seasonality
The dynamic seasonality will both be used to determine the whole season and to determine the

start and end of the three phases.

The start of season (SoS) will be determined as the date where the VI reaches 20% of the
increasing amplitude and end of season (EoS) as the date where the VI has decreased 80% from

the peak.

In GEE, the timeseries is first shortened with a fixed window, broad enough to contain the whole
growing season for all fields within the study site. Then a new timeseries is made, within a window
from the first day in the broad window to the day of VI peak. A similar window is made from the
peak date to the last day of the broad window. In these two series the date with the minimum VI
value is found. These are then used as the boundaries for the series used to find EoS and SoS (see

11.11 GEE script: Data preparation and the temporal aggregation p. 118).

6.2.4.1.1 Defining the crop phases

As described, paddy rice goes through different phenological stages through the growing
season. A hypothesis that is investigated in this project is that a higher correlation between the
VI variables and the yield can be achieved if the period covered by the variables are divided in
phases according to the crop phenology. To be able to define the boundaries of each stage, a few

steps were necessary.

The crop season was split into 3 phases according to the paddy rice phenology. The first was
the VS phase, which include the early, mid and late vegetation stage combined into one. The
second is FRS and the third is the RMS. Similar to the whole season, the phenological phases are
here dynamic, determined by the VI's instead of the date. This will allow for each field to have

different timings of the phases.

To estimate at what VI value, the crop changes phases, the smart phone pictures were utilised.

It has prior to our study been analysed manually (by Dvara) which stage is seen on each picture.
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The date of the image is also available®. For each picture, the VI value of the satellite images was
found, at the day the picture was taken, separated in whether it is before or after the peak date,
i.e. whether the VI is on the ascending or descending part of the growth cycle. This resulted in
1263 pictures with a VI value and a crop stage. The pictures were then grouped according to
their VI values. The groups were made by dividing the VI value range into equal intervals of 0.1
each. For each group of pictures, it was calculated how many percent of them that were of a
field with crop stage VS, FRS and RMS®. This was also done using relative VI values instead of
the absolute VI values, i.e. making the intervals based on how many percent of the season

amplitude that is increased or decreased at the time the picture was taken (Figure 12).
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Figure 12: For every VI value (x-axis) the figure shows how many percent of the fields in the smartphone pictures that are in the
different phases (y-axis). The x-axis is the VI values fraction of the amplitude divided into intervals. The fractions larger than one
are for the descending part of the VI curve. At the x-axis value 1.4 the graphs show the percentage distribution for pictures taken
the day, when the VI has declined 40% of the amplitude from the peak. As it is in intervals 40 covers VI values in the interval: [35%-
45%]. Of the pictures taken of fields with a VI value in this interval, over 80% were in the RMS phase.

The VS phase is dominant on the increasing part of the season. Around the peak, a switch occurs,
and the RMS phase becomes the most dominant. Less prominent is the FRS phase, which tops

around the VI peak and again when the VI has decreased to around 60 % of the amplitude. The

5 As many farmers have taken several consecutive pictures, the initial approach (inspired by Hufkens et al,, 2019)
was to look at which date the field on the pictures changes from one phase to the next and then see what the VI
value was at that date. However, not enough farmers had taken enough pictures for this to give robust results.
Another approach was therefore used.

6 The output of this could for example be: Of all the pictures with a VI value in the interval ]0.55:0.65], 90% were
classified as being in the VS phase.
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latter is disregarded as the FRS phase is known between the other two phases. Though the
result is not unambiguous, it does give an estimate of which intervals of the VI values or VI

percent of increase, that will most likely give a signal from the specific crop stages.

From the graphs, three windows were made with the aim of isolating the signal from that phase.
Different temporal aggregations could then be applied to gain variables for the length of the
crop phase, the average value and the sum (see 6.3.1 Temporal aggregation). A preliminary
analysis comparing the obtained measures with the farm yield showed that intervals based on
the fraction of NDVI had higher correlation with the farm level yield than absolute NDVI.
Similarly, broader windows appear to give better results than more narrow ones. These were
therefore used henceforth. A graphical representation of the identified windows and how they
relate to the crop stage and VI value can be seen on Figure 13 and Table 2 shows the exact

interval boundaries.
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Figure 13: Graphical representation of the phase-windows. The graphs in the top are identical to the previous figure. The boxes
represent the windows applied to isolate each phase. The black graph is a visual representation of the VI values and the plants
represents the development stage of the rice plant. The blue box represents the window to isolate the VS phase, and the grey and
green box the windows to isolate the FRS and RMS phase.
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Table 2: Overview of the used VI windows boundaries. They numbers are the fraction of the amplitude. Values
above one are on the decending part.

Phase VS FRS RMS
VI interval [0.4: 0.8] [0.8: 1.1] [1.3:1.7]

6.2.4.2 Fixed seasonality

The fixed seasonality is determined by specific boundary dates for the selected windows. These
window boundary dates were also found by utilising the smartphone pictures. By using the
crop stage classification accompanying each picture, the pictures were separated into the three

phases and the distribution of the picture dates for each phase was produced (Figure 14).
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Figure 14: Haryana: A boxplot showing for each phase the distribution of dates on which the smartphone picture was taken.
The boxplots show that the observations for each phase are spread across a long time period,
but that the middle 50 percent falls within much narrower windows, with the correct
chronological order of the phases. Similar to when determining the phases by the VI measure,
the FRS phase is more difficult to distinguish from the other two. The dates of the 25t and 75t

percentile were used as the boundaries of the phases for the variables with fixed seasonality.
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The 25t percentile of the VS phase and the 75% percentile of the RMS was used to create the

fixed window for the whole season. The specific dates can be seen in Table 3.

Table 3: The fixed boundary dates of the phases and the whole season.

Boundary dates
VS 15/08/2019 - 08/09/2019
FRS 28/08/2019 - 25/09/2019
RMS 19/09/2019 - 10/10/2019
WS 15/08/2019 - 10/10/2019

6.3 Aggregations — Creating the VI variables
Here the temporal and spatial aggregations are described. The former is used to transform a
timeseries into a single image, and the latter to transform that single image into one value for

each field with yield data.

6.3.1 Temporal aggregation
The smoothed timeseries were transformed into 88 single images for Haryana and 64 for
Odisha, see Table 6 and Table 7 in the appendix for an overview of the triggering measures used

for the temporal aggregation.

The series of VI values for each pixel were aggregated to a single value in several different ways,
both for the entire season and the three different crop stages. Each triggering measure used for
the aggregation is included because of its potential to reveal information about the growing
season and therefore the yield. The measures will be explained in the following and a graphical

overview can be found on Figure 15.
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Figure 15: Graphical overview of the triggering measures. The example here is for the whole season.

Peak value: The peak value is the highest value during the season. It is one of the simplest
seasonal measures to indicate how well the harvest has been. In studies similar to this one, this
measure is one of the most commonly used when estimating yield from timeseries of VI's
(Lobell et al., 2019; IFAD; 2017; Lambert et al., 2018; Azzari et al., 2017; Guan et al., 2018;
Lambert et al,, 2017, IFAD, 2017).

Integral: The integral is found by numeric integration (i.e. the sum of the daily values) and is
an estimate of the area under the curve. For our study, the area beneath 20 percent of the
amplitude was subtracted as this gave higher correlations with yield in a preliminary analysis.
[t thus resembles the area between two curves where the second is representing the constant
signal of the fields. The integral is used in several similar studies. It is expected to contain more
information about the season than the peak as it is composed of all the values of the season

(Flatnes et al., 2019; Lambert et al.,, 2017; Morel et al.,, 2014, IFAD, 2017).

Length: The length of the season and of the individual crop stages is the number of days in the
period. These measures could reveal different aspects of the season. The length of the FRS phase
could be related to how many seeds the plants will produce. The length of the RMS phase could
indicate how long the grains are ripening and thus be related to size of the grains. These could
therefore contribute to explaining the yield. The length of the season will add to the information

from the integral measure, if they are combined. A large integral value could both be due to a
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short season with high values or a long with lower values. This could be revealed if the

measures are combined.

SoS and EoS: The SoS and EoS determines the temporal boundaries of the season. For the
dynamic seasonality, the start of the season is the date that the VI value has increased 20 % of
the amplitude from the minimum to the peak and the end of the season is when it has decreased
80% of the amplitude. These measures will reveal information about the timing of the growth

season, which could be related to the yield.

SoFRS and EoFRS: The start and end date of the FRS phase. The FRS is an important phase for
the yield as it is here the plant develops the flowers which determines the number of rice grains.
If this period is timed poorly compared to the weather, it could have an influence on the yield.
Only the FRS date boundaries are included as the VS and RMS boundary dates would be similar
to FRS phase dates or SoS and EoS for the whole season. The phase date boundaries can

therefore be viewed as more generally informing about the timing of the crop phenology.

Mean: The mean value is only found for the three phases. Even with the modification described
earlier, inserting a value for each day, one day added or not when calculating the integral could
be a noteworthy percentage of these shorter periods. The mean value is less sensitive to this

and is therefore included’.

6.3.2 Spatial aggregation

The timeseries have now been reduced to single images with one value per pixel. A spatial
aggregation is then needed to get the VI measure for the individual fields (of which crop cut
yield data is available). Using the coordinate of the CCE, the yield data was uploaded as points
in GEE. Polygons were then manually drawn around the fields containing a yield data point,

using the very high spatial resolution background-image in GEE as reference (Figure 16).

" The mean could however also be affected, especially of the phases on the slopes of the timeseries, as one more
value in either the high or low end could change the mean in that direction.

42 of 136



Map data ©2020 Imagery ©2020 CNES / Airbus, Maxar Technologies

Figure 16: An example of the polygons manually drawn to fit the fields containing a yield data point.

Though the CCE was instructed to be undertaken 5 meters from the field edge (see Figure 54),
many of the points were quite close to the edge, which made it more challenging to identify the
associated field. The GPS accuracy might also have led to some complications. The polygons
were drawn for all fields but separated in to three categories based on the confidence in the
point laying in a field. In Haryana in the North, 262 points were clearly inside a field, 68 points
were more questionable laying either between fields or on parcels of land not visually
resembling paddy rice and 4 points were inside cities. Only the 262 points were used later for
the later analyses. In Odisha, 83 points were clearly inside a field, 33 were more questionable

and 11 were clearly not on a field. Again, only the 83 point were included in the further analyses.

To get one value per field, the median VI value of the pixels within the field was found. The fields
are relatively small compared to the size of the pixels. This increases the effect of edge pixels.
Natural vegetation or a human made structures located right next to the field might bias the
result if a pixel is not fully within the field. Taking the median value is expected to reduce the
impact of extreme values within the field but to further reduce the effect of noisy edge pixels, a
buffer of 5 meters was made inside the polygon and used as the field boundary instead (Figure

17).
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Figure 17: An example of the 5-meter internal buffers on the fields, created to reduce the effect of edge-pixels in the spatial
aggregation.

6.4 Preparing the supplementary data

Aside from the VI variables, different sources of data were used to supplement the analyses.

How these were prepared and why they were included will be explained in the following.

6.4.1 Bias correcting measures

The VI measures should be a result of the all the aspects influencing the crop. However, some
measures were identified that could potentially have affected the yield data without being
detected by the VIs. These will be referred to as bias creating variables and were included in
the analysis to assess whether the results could be improved, when taking these potential

biases into account.

6.4.1.1 Timing of the CCE

The timing of the CCE could bias the data. If assuming that the crops develop heterogeneously
among the fields, the time when they are at their optimal harvest point would differ. The timing
of the CCE date would thus have to be individualised to avoid potentially biasing the results.
This would however be very impractical in practise. It is therefore hypothesised that some
fields are harvested for the CCE at a suboptimal time which could lead to a lower yield. To take
this into account, a new variable was calculated as the number of days from the EoFRS to the

CCE.
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6.4.1.2 Rice variety

The relationship between the yield and the VIs differ between different types of crops. At both
study sites, several types of paddy rice varieties were farmed. The results from Guan et al.
(2018) indicates that even between different varieties of the same crop, there can be differences

in the relationship between VI and the yield.

In Haryana, 106 of the final 2118 fields had information about the rice variety, while all 73 of
the final fields in Odisha had the variety information. To be able to include this information in
the multiple regression and RF classification analyses, the varieties were ranked by the average
grain yield for that variety and numbered according to their rank, giving a value of one to the

variety with the lowest average grain yield and two to the second lowest and so on (Figure 50).

6.4.1.3 Soil type

The soil type is also included as a bias creating variable. If the yield is negatively affected by the
soil type it would be expected to affect the crop health and therefore be detectable by the Vls.
Itwas however included, as it was hypothesized that nutrient composition of the soil could have

an effect on the grain size, thereby affecting the yield without the being detected by the VlIs.

For both study sites, there were several different soil types. Similar to the rice variety, they

were ranked and numbered according to their average grain yield (Figure 51).

6.4.2 Input variables and ground data

Several other variables were also prepared. These are the input variables that will be used to
understand what affects the yield. They include two climatic variables; precipitation and
temperature and four ground variables from the yield dataset. All six variables are expected to

have an influence on the yield.

6.4.2.1 Temperature

To estimate the temperature, Modis Land Surface Temperature was used. The spatial resolution
of the data is 1 km and therefore limits the ability to see inter-field differences. The temperature
is however expected to be spatially homogeneous and the data was therefore deemed

satisfactory.

8 The 262 fields with harvest data were reduced to 211, as the remaining were either not located in the same satellite
image as the rest or removed because the value was an outlier.
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The temperature data have week-to-week variation and is affected by seasonality (Figure 18).
Like the Sentinel-2 data it is heavily affected by clouds, creating long periods without data. This
only allowed us to extract the mean temperature, and not measures such as numbers of days
with temperature above a certain threshold, as was initially intended. To find the mean
temperature, the data was smoothed with a MWLR smoothing with a window of 40 days (Figure
18).

Figure 18: Haryana: An example of the cloud affected LST data (blue) and the smoothed timeseries (red).

The mean temperature was found both for the whole season and the three phases, as defined
by the VI values. This was only done for Haryana case, and only with the phases defined by the
MWLR smoothing. As the timing of the crop development is unique for each field, the mean

temperature in the different phases will also be individualised.

6.4.2.2 Precipitation

The Chirps daily data is used to estimate the precipitation. Similar to the temperature, the
spatial scale is large (0.052 5 km at the study sites), so the inter-field variation primarily stems
from individualised phases in which the mean and sum of the precipitation was calculated.
Though the sum and the mean are expected to be quite similar, they could differ based on the
length of the periods. This was also only calculated for Haryana, and only in phases created by

VI variables with the MWLR smoothing.

6.4.2.3 Money spent
For each smartphone picture in the yield dataset, the farmer was also asked how much money
that were spent on the field since last image (on fertiliser, labour etc.). When summing this for

each field, it gives an indication of how much the farmer has spent during the season. The
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uncertainty of this measure is expected to be high, primarily due to the difference in number of

pictures taken.

6.4.2.4 Latitude and Longitude
Both the longitude and latitude of the fields were hypothesised to have an impact on the yield

and were therefore included.

6.4.2.5 Sowing date
The sowing date could also be a decisive variable for the yield and was therefore included in

the analyses.

6.5 Three statistical analyses

To test the created variables” ability to estimate yield, three statistical analyses were made: A
linear regression, testing the variables” ability to individually explain the yield variation. A
multiple regression, testing the ability of a combined group of variables, and lastly a RF
Classification, testing the ability of groups of variables to correctly classify the samples

according to their yield.

6.5.1 Linear Regression

Linear regression is used regularly in comparable studies to assess the ability of VI variables to
explain the variation in yield. The relation found in the regression would then serve as the basis
for estimating yield of a field with a known VI value but unknown yield (Lambert et al., 2017;

Lobell et al., 2019; Burke & Lobell, 2017; Guan et al., 2018; Jain et al., 2016).

The prepared VI variables, bias correcting variables and the input-based and ground data
variables were compared individually to the yield in a linear regression analysis to assess the
strength of the correlation. As the primary aim of this was to compare the measures against
each other, the linear regressions were made with the total yield as the dependent variable even
though it is the grain yield that is the essential parameter. The rationale for this was that the
strength of the correlations was expected to be higher than with the grain yield and that higher

correlations are more suitable for comparison, as difference are less likely to be by chance.

In linear regression, a straight line is fitted to the data points by minimising the sum of the
squared residuals. This line represents the best overall relationship between the dependent

and independent variables. The strength of the relationship is indicated by the coefficient of
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determination (R?), which can be interpreted as what fraction of the variation in the dependent

variable that can be explained by the independent variable (McGrew & Monroe, 2009).

The linear regression was first done for all variables in both Haryana and Odisha using all the
available samples (fields with VI value and yield data). To test if the bias correcting variables
could improve the strength of the relationship, the linear regression analysis was repeated

multiple times but each time only including a certain subset of the samples.

In Haryana it was repeated five times for all the variables, each time including only the fields
with: 1) The dominant rice variety “12”. 2) Soil type “Loam”. 3) Soil type “Sandy Loam”. 4)
Variety “12” & “Loam”. 5) Variety “12” & “Sandy Loam”.

In Odisha it was repeated five times, only including samples with: 1) The rice variety “Pusa
Basmati 1509”. 2) The variety “12”. 3) Soil type “Loam”. 4) Soil type “Sandy Loam”. 5) The rice
variety “Pusa Basmati 1509” & soil type “Sandy Loam”.

Lastly the linear regressions were done again comparing with the grain yield instead of the total
yield. This will be used later, when assessing how large a role the imperfect correlation between

total yield and grain yield plays in the analyses.

6.5.1.1 t-testand p-value

To assess whether the correlations are statistically significant, a t-test was made. This is
especially important when comparing the R* between two regression analysis with a different
number of observations, as datasets with fewer observations tend to have higher R?. The test

statistic used can be seen in the formula below (F5) (McGrew & Monroe, 2009).

(F5)

t is the test statistic. n is the number of observations. r is the correlation coefficient and R? is

the coefficient of determination.

From the test statistic and the number of observations a probability value or “p-value” can be
calculated. This value indicates the probability to get that exact test statistic (t) if the hypothesis

of no relation between the variables was true. If the p-value is very small, we can reject the

48 of 136



hypothesis that there is no relation as there is only a very small change that an error is made.
The level of significance i.e. the p-value threshold used in this study is a = 0.05. Linear
regression with a p-value below this will be considered statistically significant (McGrew &

Monroe, 2009).

6.5.2 Multiple Regression

The majority of the variables are not expected to explain the yield variation alone, but rather in
combination with other variables. Several multiple regression analyses were therefore made.
Multiple regression analysis is an extension of the linear regression analysis, where multiple
independent variables are included to explain the variation of the dependent variable. The
output coefficients of a multiple regression could then be used for yield estimation for fields

were the independent variables are known.

Multiple regression analyses were made in Excel for several different groups of variables. The

variables were divided into the following groups for both Haryana and Odisha®.

1. WS_VI: A group with only VI variables from the entire season i.e. no variables that
differentiated between crop stages.

2. WS_VI_Bias_Corrected: A group with the same WS_VI-variables and the three bias
correcting variables (rice variety, soil type and days-to-CCE).

3. ALL_Fixed: A group with the WS variables and the five VI variables found with fixed
season boundaries (integral of the three phases and WS, and the peak value). This one
was only done for Haryana.

4. All_Fixed_Bias_Corrected: A group with the same variables as ALL_fixed, but also
including the bias correcting variables.

5. Phases_VI: A group with VI variables from both the whole season, but also the three
phases.

6. Phases_VI_Bias_Corrected: A group with the same variables as Phases_VI and the three
bias correcting variables.

7. NO_VI: A group with the bias correcting variables, the input-based variables and the

ground data. For Odisha, neither precipitation nor temperature were included.

® Group 3 and 4 are not made for Odisha.

49 of 136



For each of the groups 1, 2, 5 and 6, four different groups were made, separating the variables
based on the vegetation index and smoothing type. Splitting the variables in groups will give

indications of:

- Which vegetation index and smoothing type is to be preferred.

- How much the variables from the phases improves the explanatory ability compared to
when only including variables of the entire season.

- Whether the dynamic seasonality is preferred over the fixed.

- Whether including the bias creating variables improves the correlation.

- Which ground and input variables that affect the yield.
Details of the groups can be found in the appendix (11.5 Overview of grouped variables p. 108).

In multiple regression analysis it is important that each variable contributes to the model. An
iterative process of running the analysis and then removing the variable with the highest p-
value was therefore done. The p-value for each variable in multiple regression indicates the
probability of that variable not contributing to the model. Variables were removed until only
variables with p-value below 0.05 remained. Another important aspect in multiple regression
is to eliminate multicollinearity i.e. not have independent variables with strong correlations
among them. Two of the triggering measures, the mean and the integral are very similar, and it
was therefore decided to prior to the multiple regression, remove that variable of the two with

the lowest individual correlation with the yield (McGrew & Monroe, 2009; ArcGIS Pro, 2020).

The output of the analyses is an R? value which has been adjusted to the number of variables
used (adjusted R?) and a significant F statistic indicating whether the model is statistically

significant.

6.5.3 Random forest classification and variable importance

To supplement the results of the multiple regression analysis and to gain further information
about the importance of each variable, several Random Forest Classifications (RF
Classifications) were performed. Having discretised the yield data into five categories, the
analysis will show to what extent the variables can be used to correctly categorise the yield

data. Additionally, it will show which of the input variables that contributes most to this
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categorisation. The RF Classification, trained on the samples, could then be used on an AOI to

classify each pixel to a yield category. It would thus give a yield estimate for all fields.

The RF classifier is an ensemble model classification method consisting of multiple

classification threes (Belgiu & Dragut, 2016).

A classification three can be interpreted as a ruleset or a set of binary questions through which
observations are divided into homogeneous subgroups. It much resembles a decision tree but
allocates qualitative data where a decision tree allocates quantitative data. Each binary
question splits the data in two subgroups, and this continuing process grows the classification
tree. The process is called recursively binary splitting, indicating that successive splits of
subgroups are dependent on the previous splits. Which input variable and which threshold that
is used to make each split is governed by what split of the observations that will create the most
homogeneous groups i.e. minimize the number of observations not belonging in the dominant
class of the subgroups. The homogeneity of the subgroup is referred to as the purity (James et

al,, 2013; Boehmke & Greewell, 2020).

For each tree in the RF Classification, only a randomly selected subset of the input variables is
considered as candidates for each split. This is done to reduce the amount of correlation
between the trees. Additionally, each classification three is trained on an individual subset of
the samples, found with a “bagging approach”. For each classification tree, the bagging
approach randomly selects samples from the dataset equivalent to around two thirds of the
data. A process that allows for samples to be used multiple times, thereby increasing the
number of different training samples available (James et al.,, 2013; Boehmke & Greewell, 2020;

Belgiu & Dragut, 2016).

In this study, 500 decision trees were used, a typical amount for a study like this. The
classification trees each assign all the samples to a yield class. This is aggregated into one
classification result for the entire random forest using a majority vote i.e. each sample will be
assigned to the class where most classification trees allocated it (James et al., 2013; Boehmke

& Greewell, 2020; Belgiu & Dragut, 2016).

The remaining third of the samples are used as validation samples (out-of-bag samples) to

estimate the performance of the classification. The output variable of this cross-validation
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method is the proportion of out-of-bag samples that are correctly classified by the random
forest classification, measured by the Cross-Validation Score (CVS) (James et al, 2013;

Boehmke & Greewell, 2020; Belgiu & Dragut, 2016).

Two essential measures for statistical learning methods, such as RF classification is the bias and
the variance. The bias refers to the ability of the model to fit to the dataset while the variance
refers to how much the accuracy changes, when using a different training dataset. These often
poses a trade-off, as very flexible models will have low bias but high variance (overfitting) and
vice versa. The advantages of using ensembles of decision trees and the bagging approach in
the random forest classification is that each decision tree can minimize the bias while the high
variance is reduced by averaging the results of the trees (James et al., 2013; Boehmke &

Greewell, 2020; Belgiu & Dragut, 2016).

The random forest classifications also produce an importance-measure for each variable. This
indicates how well the variable on average has been able to split the samples into pure
subgroups in the RF classification. For this study, the measure will be used as an indicator of
how suitable the VI variable is for use in index creation. This will be done by observing the
difference in appearance among the top 10 most important VI variables for each site, when the

RF classification is run with all VI variables.

For the multiple regression analysis, it is important to reduce multicollinearity, but as RF
Classification is less sensitive to this, the RF Classification was first run using all VI variables
and then on all VI variables and the bias correcting, the input-based and the supplementary
ground data. This was done for both Haryana and Odisha (Belgiu & Dragut, 2016; McGrew &
Monroe, 2009).

It was then run on the same groups of variables as presented above in the description of the
multiple regression analysis and with the same objectives. The analyses were made in the
software “Spyder” using 500 threes!0. The used script can be found in the appendix (11.13
Spyder script - RF Classification p. 136). The grain yield was discretised into five equal intervals
for both Haryana and Odisha though merging the highest and lowest to the adjacent interval to

avoid intervals with only very few observations (Table 4).

10 The default setting was chosen for the number of variables to select when randomly selecting a subset.
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Table 4: Grain yield intervals for the RF Classification.

Haryana Odisha
110: 17.5] 12.5: 7.5]
117.5: 22.5] 17.5: 12.5]
122.5: 27.5] ]12.5: 17.5]
127.5: 32.5] 117.5: 22.5]
132.5: 40] 122.5: 27.5]

Lastly, a RF classification will be run on the total yield using all variables for later comparison

of the effect of the mismatch between total yield and grain yield.

6.6 Uncertainty from choice of smoothing and VI

From the analyses above, it is already possible to compare the VIs, the smoothings, the effect of
bias creating measures and the effect of the imperfectly correlation between total and grain
yield. However, to elaborate on the uncertainty from the smoothings and choice of VI, an
uncertainty analysis was done to assess which aspects of the index-creating method that
creates the most uncertainty. This was done for the smoothing type by parring the previously
obtained VI variables, so that the only difference is the smoothing type. For each pair, the
coefficient of determination (R?) was then calculated with linear regression. The higher the R?
values obtained, the more similar the pairs are, and the less decisive is the choice of smoothing.
This was then done similarly for the two VIs and the two design options were then compared.
The results can be interpreted as an indication how much uncertainty is created from the choice

of VI and smoothing type.
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7 Results

In this section, the results of the analyses will be presented. The section will be structured
according to the research questions. For each question the results of all three statistical
analyses for both study sites will be included. Conclusions from the results will first be drawn

and discussed in the discussion section that follows immediately after the result section.

7.1 Factors influencing the yield
Here it will be presented which input-variables influence the yield according to our results and

how much of the yield variation can be explained by them (Research Question 1).

7.1.1 Linear Regression

In Haryana, the linear regression showed that of the ground- and bias correcting variables;
longitude, sowing date, rice variety and two of the four variables with “days to CCE”, had a
significant correlation with the total yield. Of the eight precipitation variables 3 were significant
and of the 8 temperature variables 2 were significant. Longitude had the highest R? (0.07),
while the rest could explain less than 5% of the total yield variation. See appendix for a full

overview of the results (11.9 Linear regression - No VI variables p. 116).

In Odisha, the date of the CCE, the rice variety, four of the four temperature variables and four
of the four “days to CCE” had a significant correlation with total yield. Six of these could explain

more than 15% of the yield variation (11.9 Linear regression - No VI variables p. 116).

7.1.2 Multiple Regression
When only using the climatic, the ground and the bias correcting variables (i.e. no VI variables)
the multiple regression show that 12% of the grain yield variation could be explained in

Haryana and 17% in Odisha.

7.1.3 REF Classification
When using no VI variables, the RF classification could correctly classify 46% of the samples in

Haryana, which is the highest CVS score in Haryana.

In Odisha 40% were correctly classified by the RF classification, which is among the lowest CVS

scores for Odisha.
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7.2 VIl variables” ability to explain yield variation
In this section the results showing the overall ability of the VI variables to estimate the field

level yield will be presented (Research Question 2).

7.2.1 Linear Regression
The key results of this comprehensive analysis will be presented here. A visual representation
of the full results of the analysis can be found in the appendix (11.6 Results of the individual

correlations p. 110).

In Haryana, 49% of the 70 produced VI variables had a statistically significant correlation with
the total yield, when using all available observation pairs (Figure 19). Much fewer variables
(16%) had a significant correlation with the grain yield. The mean R? of only the significant
variables was below 0.05 for both total yield and grain yield. This indicates that the VI variables
on average can explain less than five percent of the variation in the farm level yield in Haryana.
The variable with the highest R?, could explain 15% of the total yield variation and 5% of the

grain yield variation.

In Odisha more variables had a significant correlation with the grain yield (46% of the 61 VI
variables) than with the total yield (23%). Even though the total yield and grain yield were
more similar in Odisha, this result was unexpected and might be an indication that caution
should be taken when comparing results of correlations with low R2 The significant VI
variables in Odisha could on average explain 9% of the variation in total and grain yield, while

the best could explain 15% and 20 % respectively (Figure 19).

O Odisha - Grain Yield (n=73) B Odisha - Total Yield (n=73)

O Haryana - Grain Yield (n=204) W Haryana - Total yield (n=204)

Mean R2 of significant variables

]
Fraction of significant variables =

0.00 005 010 015 020 025 030 035 040 045 050

Figure 19: Overview of the linear regression results.
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7.2.2 Multiple Regression

In Haryana, 19 multiple regressions were made on groups of variables and grain yield. 16 of
them resulted in significant models. These significant models could on average explain 10 % of
the grain yield variation and the best model could explain 24 % (Figure 20). In Odisha only 1 of
the 17 multiple regression results were not significant, and the significant variables could on
average explain 26 % of the variation in yield. The best model in Odisha could explain 53% of
the variation in grain yield (Figure 20). A table with all the results of the multiple regression
analysis can be found in the appendix (11.7 Full result of the multiple regression analyses p.

112).

W Haryana - Grain Yield M Odisha - Grain Yield
1.00
0.80
0.60
0.40
0.20 ‘
0.00

Fraction of models Mean R2 Highest R2
with significant R2

Figure 20: Overview of the multiple regression results.

7.2.3 RF Classification

The result of the RF Classification run with all VI variables showed that they could correctly
classify around 38 % of the samples into the correct grain yield class in Haryana and around 50
% in Odisha (Figure 21). The output graphs also show that the additional gain in classification
accuracy from including more 15-20 variables is limited and even worsening in the Haryana
example. A result that justify the limited number of variables in the different groups on which

the RF Classification was run subsequently.
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Figure 21: CVS as a function of Number of features selected in the RF Classification with all VI variables for Haryana (Left) and
Odisha (Right).

Two groups of variables in Haryana and one in Odisha did not return any results. The results of
the remaining runs using the different groups of variables show that on average 34% were
correctly classified for Haryana and 41% for Odisha and that the best group could correctly
classify 46% and 47% in Haryana and Odisha respectively (Figure 22). Tables with the full
results of the RF classification analyses can be found in the appendix (11.8 Full results of the RF

classification p. 114).
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Figure 22: Overview of the RF Classification results (excluding the runs with all variables).

7.3 Suitability of the design options
The results of the analyses will here be extracted to compare the different design options
(Research Question 3). The comparisons based on the linear regressions will be against the

total yield to use the highest R* values. For the multiple regressions and RF classifications the
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comparison will be based on the ability to estimate grain yield. The design options to be
assessed are the VI (EVI or NDVI), the smoothing type (MWLR or DL), the triggering
measurement (peak, integral, mean, length, SoS or EoS), the period (phenologically tailored
phases or the whole season) and the seasonality (dynamic or fixed seasonality). It is important
to note that there is a high degree of uncertainty when comparing very low R? which are

evident in especially the linear regression results.

7.3.1 Vegetation index: EVI and NDVI

As described previously, the EVI should have less tendency to saturate and might therefore be
better at distinguishing between the high VI values found in the study areas (Son et al., 2013).
However, the EVI timeseries were more complicated to smooth due to its two-sided respond to
cloud and cloud shadow disturbances. This might also have played a role in the following

results.

7.3.1.1 Linear Regression

For Haryana, 21 of the 37 NDVI-based variables were significant, while only 15 of the 37 EVI-
based were. Additionally, the significant NDVI-variables could explain more of the total yield
variation (5% for NDVI and 3% for EVI) (Figure 23 - Left). In Odisha, both NDVI and EVI only
had 9 significant variables of the 32, but they could on average explain 10% for NDVI and 9%
for EVI (Figure 23 - Right).
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Fraction of significant ~ Mean R2 (of significant) Fraction of significant Mean R2 (only significant)
variables variables

Figure 23: Comparison of the linear regression results between EVI and NDVI for Haryana (Left) and Odisha (Right).

For both study sites the difference between NDVI and EVI thus appear quite small. When
looking more closely at the significant variables, the difference between EVI and NDVI is still

negligible for Odisha, but it becomes clearer for Haryana as the NDVI variables are almost
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consistently higher and have several variables with around double the R* compared to EVI

(Figure 24).
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Figure 24: Comparison of the linear regression results for each comparable variable between EVI and NDVI for Haryana (Left) and

Odisha (Right).

7.3.1.2 Multiple Regression

For Haryana, all three groups that did not yield a significant result were EVI groups, but the one

insignificant group for Odisha was an NDVI group. When comparing the groups against each

other with only the VI as difference, the results for Haryana is not very clear. On average the

NDVI groups are slightly better, but three of the four categories with R? above 0.1 are based on

EVI (Figure 25 - Left). The results for Odisha consistently show higher R* for the EVI groups

and have a more than 50% higher mean value compared to the NDVI groups (Figure 25 - Right).
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Figure 25: Comparison of the multiple regression results between NDVI and EVI for Haryana (Left) and Odisha (Right).

7.3.1.3 RF Classification

The RF classifications showed only very little difference in accuracy between the classifications
from the EVI and NDVI groups, with slightly higher average CVS for EVI in Haryana and slightly
lower CVS for EVI in Odisha (Figure 26).
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Figure 26: Comparison of the RF classification results between NDVI and EVI for Haryana (Left) and Odisha (Right).
The variable importance measure from the RF classification also can reveal information about
which VI performs better. To assess this, the 10 most important variables in Haryana and 10

most important variables in Odisha for when the RF classification is run with all VI variables, is

observed. Of these 20 variables, 8 were with NDVI and 12 with EVI (Figure 33).

7.3.2 Smoothing: MWLR and DL
Two different types of smoothing were used to reduce the effect of cloud and cloud shadows in

the timeseries. The aim of the MWLR was to fit it as closely to the data as possible allowing for
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subtle inter-field differences. In contrast, the DL smoothing was expected to be less sensitive to

the individual datapoints but more secure, due to its predefined shape.

7.3.2.1 Linear Regression
More of the DL-based variables were significant compared to the MWLR for both Haryana and
Odisha and the average R? of the significant variables were higher. The differences are however

negligible (Figure 27).
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Figure 27: Comparison of the linear regression results between MWLR and DL for Haryana (Left) and Odisha (Right).

7.3.2.2 Multiple Regression

For Haryana, the groups based on the MWLR returned the highest R? in the multiple regression
analysis. In Odisha it was opposite, as the DL-based groups consistently showed higher R?

(Figure 28).
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Figure 28: Comparison of the multiple regression results between MWLR and DL for Haryana (Left) and Odisha (Right).
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7.3.2.3 RF Classification
The RF classification did not show any clear differences between the groups with MWLR-based

variables and DL-based variables in neither Haryana nor Odisha (Figure 29).
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Figure 29: Comparison of the RF classification results between MWLR and DL for Haryana (Left) and Odisha (Right).

Of the 20 most important variables, 9 were with the MWLR smoothing and 11 were with the DL

smoothing (Figure 33).

7.3.3 Triggering measure: peak, integral, mean, length, SoS or EoS

The triggering measures” influence on the results will here be compared. The “peak” and the
“integral” are the most commonly used in similar studies and are therefore expected to yield
the highest results. The other measures could however also contribute with valuable
information of the crop season and might therefore be more important in the multiple
regression and RF classification. The triggering measures are more difficult to directly compare,
as not all measures were used in all design combinations. There are for example no “peak”
variables for the phases. The mean result is therefore also be affected by whether the triggering

measure is included more frequently with other design options that performs well.

7.3.3.1 Linear Regression

In Haryana, the two highest correlations were with “length” as the trigger measurement and
the two second highest were with “integral”. The remaining variables were all considerably
lower (Figure 30 - Left). Looking more closely at these (Figure 30 - Right), it becomes apparent
that the “integral”, “length” and “mean” on average have the highest values, though with a very

high variance. The variables with the lowest R? are the EoS and SoS. The peak is on average in
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the middle, but with much less variance. This might however also be due to it being used in

fewer variables.
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Figure 30: For Haryana: Comparison of correlation with total yield between variables with different triggering measurements,
first for the individual variables (left) and then summarised in boxplots (Right). The four highest R? from the left are not included

in the boxplots to the right.
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In Odisha, the highest R* were from variables with “length” and the “integral”, while the EoS
variables had the highest mean R? and SoS the lowest. The peak variables were the second

lowest on average and with a higher variance than in Haryana (Figure 31).
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Figure 31: For Odisha: Comparison of correlation with total yield between variables with different triggering measurements, first
for the individual variables (left) and then summarised in boxplots (Right).

7.3.3.2 Multiple Regression
The results of both the multiple regression and the RF classification does not directly allow for

comparison of the different triggering measurements, as they are in groups with each other.
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As an alternative, it was assessed how many times a variable with the specific triggering
measurement was included as a significantly contributor in the multiple regression analysis. Of
the 32 multiple regression analysis!}, all triggering measurements were included regularly. VI

variables with “length” and “integral” were however used more often (Figure 32).

m Mean w=lLength mIntegral mPeak mSoS mEoS

Figure 32: Number of times a variable with the specific triggering measure was used in the 32 multiple regression analyses for
Haryana and Odisha
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7.3.3.3 RF Classification

The variable importance output from the RF classification can also reveal information about
the suitability of the different triggering measures. Of the 10 most important variables for
Haryana and 10 most important variables for Odisha, six had “integral” as the triggering
measure, six had “mean”, another six had “length” and two had the “peak”. Neither “SoS” nor

“EoS” featured in the top 20 most important variables from the two RF classifications using all

VlI-variables (Figure 33).

118 for WS and 8 for Phases for both Haryana and Odisha.
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Figure 33: Top 10 most important variables in the RF classification with all VI variables for Haryana (Left) and Odisha (Right).

The bars are color coded according to the triggering measure.

7.3.4 Period: Whole season and phases

Here it will be assessed whether including variables derived from phenologically tailored

phases can increase the accuracy of the yield estimations compared to only including variables

for the whole season.

7.3.4.1 Linear Regression

For the individual correlations with the total yield, the VI variables derived from the FRS phase

have the highest R? for both Haryana and Odisha, followed by the variables from WS (Figure

34).
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Figure 34: Comparison between the whole season and the phases of the R? found in the linear regression with total yield for
Haryana (left) and Odisha (Right).

7.3.4.2 Multiple Regression

On average, the adjusted-R? of the multiple regression increased when including the variables
from the three phases, especially in Odisha where it improved around 50%. The phase-group
that could explain most of the grain yield variation, could explain 24% in Haryana and 53% in

Odisha, while the best WS-groups could only explain 18% and 42% (Figure 35).

67 of 136



E===————on1 Whole Season BN Phases +Whole Season [ m—T [ Phases+WS
[R2] Whole Season - Mean R2 = Phases + Whole Season - Mean R2 (R2] WS - Mean R2 e Phases+WS - Mean R2
0.25 0.60

0.50

0.40
0.15
0.30 I_.
0.10 I I
&

Iy

g | —
-all oid =, 1l

» > v & C© v v ™ & ™
4\9 e 4\9 S Q',\Q’% X Q,\’Z’(’ 5 4\9 K v A\? @*A & & %@5 ‘3’81
S * < < s p; y p; o < »: o5 : N
N % % Qv & Qv & D W N7 Q N Q N
N S S N
S < R @Q\ & N S < & & &7 &
eo S < £/ A3 Q7 S\d
N < 9

Figure 35: Comparison between the whole season and the phases of the R? found in the multiple regressions with grain yield for
Haryana (left) and Odisha (Right).

7.3.4.3 RF Classification

In Haryana, the mean CVS increased when including the phase-variables, but only very little.
For Odisha, including the phase-variables also improved the groups” ability to correctly classify
the samples into the correct grain yield category, with a mean CVS around 15% higher than

when only including WS-variables (Figure 36).
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Figure 36: Comparison between the whole season and the phases of the CVS found in the RF Classifications with grain yield for
Haryana (left) and Odisha (Right).

The variable importance measure from the RF classification with all VI variables also reveal the
importance of the phases (Figure 33). Of the 10 most important variables for each study site,

only three were for the whole season, placed 9t Haryana and 9% and 10t in Odisha.
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7.3.5 Seasonality: Dynamic and fixed

The last design option to be assessed is whether a dynamic seasonality based on the VI value or
a fixed seasonality based on specific dates will result in the variables best able to estimate grain
yield. The dynamic seasonality is capable of individualising the timing for when the variables
are extracted and is therefore expected to be better able to identify differences in farm level
yield. The fixed variables were only done for Haryana with NDVI and the MWLR smoothing,
resulting in eight variables (integral and mean for the three phases, and integral and peak for

the whole season).

7.3.5.1 Linear Regression

The linear regression did not show any clear differences between the dynamic and fixed
seasonality. Of the eight fixed-season variables, only three had a significant correlation with
total yield. So had the dynamic seasonality for the corresponding variables. Neither could

explain more than 5% of the yield variation (Figure 37).
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Figure 37: Haryana: Comparison between the dynamic and fixed seasonality of the R? found in the linear regression with total
yield.

7.3.5.2 Multiple Regression

The results of the multiple regression analysis showed that for the two groups without bias
correcting variables, the R* was around 70% higher for the group with dynamic seasonality.
For the two groups with bias correcting variables, the group with dynamic variables had a 16%

higher R? (Figure 38).
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Figure 38: Haryana: Comparison between the dynamic and fixed seasonality of the R? found in the multiple regression with grain
yield.

7.3.5.3 Rf Classification
The group with dynamic seasonality was only slightly better at correctly categorising the
samples in the RF classification (Figure 39). Had the design option been compared over more

examples, the results would likely have been more clear.
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Figure 39: Haryana: Comparison between the dynamic and fixed seasonality of the CVS found in the RF classification of the grain
yield. One of the dynamic runs did not return a result.

7.4 Sources of uncertainty in the index creation process
In this section, results will be presented to assess the magnitude of uncertainty from different
sources. The aim of this is to give an indication of what should be focussed on in succeeding

studies (Research Question 4).
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7.4.1 Uncertainty from VI and smoothing

For both VI type and choice of smoothing, the correlation between matching variables was
found. These R? values for the different variables were presented as boxplots in the graphs
below for both Haryana and Odisha (Figure 40). For both design options and both study sites,
there was a variance in the R? values. The correlations between MWLR and DL variables were
on average around 0.53 for Haryana and 0.58 for Odisha. Significantly lower were the
correlations between NDVI and EVI variables, with an average of 0.29 in Haryana and 0.33 in
Odisha. This indicates that the choice of VI is the most decisive of the two.
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Figure 40: Comparison between the R? distribution of vegetation index and smoothing type for a linear regression of matching
variables, for Haryana (Left) and Odisha (Right).

7.4.2 Effect of bias correcting variables
Several bias correcting variables were identified. It will here be assessed whether including

these could improve the results.

7.4.2.1 Linear Regression

The linear regression analysis was also done on certain subsets of the samples, split according
to rice variety and soil type. See appendix for the full result (11.6 Results of the individual
correlations p. 110). An important thing to note is that the number of samples in each group

varies and is significantly lower than when including all the samples.
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For Haryana, more VI variables had a significant correlation with the total yield, when including
all samples. For grain yield it did however increase the fraction of significant VI variables when
running the regression with only samples with rice variety “12” and when running with
samples with the soil type “Loam” (Figure 41 - Left). In Odisha, isolating the samples with rice
variety “12” increased the fraction of VI variables with a significant correlation with the total
yield and only slightly decreases it for grain. The other isolated sample groups reduced the

fraction considerably for both total yield and grain yield (Figure 41 - Right).
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Figure 41: Fraction of variables with a significant correlation with yield for the different sample groups for Haryana (Left) and
Odisha (Right).

The mean R? of these isolated groups of the samples can be seen below on Figure 42. In both
Haryana and Odisha, the mean R? of the groups are higher for all the groups compared to
including the full sample. For both study sites the highest R? are found on the groups with the
fewest samples and there appears to be a consistently lower R? the more samples are included

(Figure 42 & Figure 43).

In Haryana, the significant VI variables can on average explain more than 25% of the variation
in total yield and grain yield of the field samples with “Sandy Loam” & “12” (Figure 42). As seen
on Figure 41 it is however only a very little fraction of the variables that are significant, which

challenge the robustness of the result.
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Figure 42: Haryana: Comparison between the different groups of samples of the R? from a linear regression with total yield (Left)
and grain yield (Right).

In Odisha, the highest mean R* was found when isolating the samples with rice variety “12”
(Figure 43). The VI variables could on average explain 45% of the total yield variation and 65%
of the grain yield variation, when isolating this specific variety. The best VI variables could with
this sample subset explain around 86% (Figure 43 & Figure 44) of the grain yield variation and
15 VI variables could explain more than 60%. The consistently high R* across multiple VI
variables, also seen on the large fraction of significant variables (Figure 41), increase the
robustness of the results and suggest that the R* can be improved if analysing the rice varieties
separately. Had the high R? only been due to the small sample size, it would also have been
expected to find some significant correlations when isolating the 15 samples with variety “Pusa

Basmati 1509” & soil type “Sandy Loam”, but none were found.
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Figure 43: Odisha: Comparison between the different groups of samples of the R? from a linear regression with total yield (Left)
and grain yield (Right).

A scatterplot of the best correlation for Odisha found with a subset of the samples (variety “12”)

can be seen on Figure 44.
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Figure 44: Odisha: A scatterplot of the best correlation with grain yield. The variable is: EVI. MWLR DY _RMS_MEAN and it is with
the sample subset: rice variety “12”".
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7.4.2.2 Multiple Regression

For the multiple regressions, the potential bias in the yield data was accommodated by
including three variables. One with the rice variety ranked and numbered according to the
mean yield for that variety. One with soil type, similarly ranked and numbered by the mean
yield, and lastly one with the number of days to the CCE from either EoFRS (for phase variables)
or SoS (for WS variables).

For both Haryana and Odisha, more groups of variables became significant when including the
bias correcting variables, and the mean adjusted-R? of the significant groups increased with
169% and 117% respectively. Including the bias correcting variables thus dramatically
improved how much of the variation in grain yield that could be explained by the different

groups of VI variables (Figure 45).
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Figure 45: Comparison between groups with and without bias correcting variables of R? from multiple regressions with grain yield
for Haryana (Left) and Odisha (Right).

7.4.2.3 RF Classification
The effect of including the bias correcting variables in the groups for the RF classification was
less clear. In Haryana, the mean CVS increased 14% when included, while there was almost no

difference in Odisha (2%) when including the bias correcting variables (Figure 46).
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Figure 46: Comparison between groups with and without bias correcting variables of CVS from RF classifications of grain yield for
Haryana (Left) and Odisha (Right).

7.4.3 Effect of the imperfect relation between total and grain yield

As established earlier (in 6.1 Yield data preparation p. 27), the grain yield does not perfectly
correlate with the total yield. The total yield is the closest to what the satellite observes and the
imperfect correlation with grain yield therefore poses a challenge for the efforts to estimate

grain yield.

7.4.3.1 Linear Regression
The correlation with the individual variables found in the linear regression showed that a
considerable higher fraction of the VI variables had a statistically significant relation with total

yield compared to grain yield. This was however opposite for Odisha (Figure 19).

7.4.3.2 Multiple Regression
When running the multiple regressions for the four bias corrected phase-groups using total
yield as the dependent variable instead of grain yield, they could on average explain 38% more

of the yield variation in Haryana, while it had no effect in Odisha (Figure 47).
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7.4.3.3 RF Classification

An RF Classification was run again with all VI variables (no ground variables etc.) and with
discretized total yield as the categories (same number of categories as for grain yield). For
Haryana the ability of the groups to correctly classify the samples was 0.41, an 8% increase,

while it was 0.45 in Odisha, a decrease of 10% compared to the CVS for the grain yield classes

(Figure 48).

Figure 48: Comparison of CVS between RF classifications of grain yield or total yield.
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8 Discussion

In this section, the methods and results of the study will be discussed. The discussion will be
structures as follows: First the uncertainties in the method of creating the variables will be
discussed, followed by a discussion of the three statistical tests. Then it will be discussed how
the results answer the research questions. This will be followed by a discussion of what could
have improved the results. It will then be discussed how our findings contribute to the research

field, which will be followed by a discussion of recommended further research.

8.1 Discussion of uncertainties in the methods
Before assessing how the results of the study answered the research questions, the
uncertainties in the method of creating the variables and assessing them in the three statistical

tests will first be discussed to create a basis for the following discussions.

8.1.1 Creating the variables
In the processes of creating the variables used in the three statistical analyses, several sources

of uncertainty occurred.

81.1.1 TheVlis

NDVI is among the most used VIs for vegetation assessment and is considered reliable in its
ability to estimate the biomass accumulation. The EVI is a modified version of the NDVI and is
also widely used. The EVI is less affected by the soil background and less prone to saturation,
which the low inter-field NDVI variation indicated might be a problem for the NDVI (Lillesand
etal, 2015; Son etal., 2013; Lambertetal,, 2017; Lobell etal., 2019; Burke & Lobell, 2017; Guan
et al., 2018). Many other indices are included in similar studies for example GCVI, MTCI, LAI,
NDVI705, NDVI740 (Lobell et al,, 2019; Guan et al.,, 2018; Lambert et al., 2017; Lobell et al.,
2018; Burke & Lobell, 2017). These could also have been included in this study. This would
however have dramatically increased the number of variables and thus not given us the
possibility to also differ between the other design options. The NDVI and EVI were generally
considered reliable and supplemented each other well and was therefore deemed a good choice

for this study.

One challenge of the chosen VIs is that they react differently to clouds and cloud shadows. An

extra processing step was therefore needed for EVI to adjust for this. This however reduces the
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ability to directly compare the two indices, as it cannot be assessed to what degree the
differences between NDVI and EVI is because one VI is better at estimating the yield and what
is because the efforts to remove the effect of positive cloud outliers in the EVI data was

insufficient.

The process of removing positive outliers in the EVI timeseries was complicated due to the
heavy influence by clouds. Though developing a method that took the variation of the
neighbouring observations into account, this processing step still contributed with an amount
of uncertainty, as correct observations sometimes appeared as positive outliers because the
previous and succeeding observations all was similarly reduced by clouds. It is therefore

recommended that future research develop this processing step further.

8.1.1.2 The smoothings

The timeseries were heavily affected by clouds and cloud shadow, which complicated the
process of creating smoothed timeseries. This is problematic as the objective of the study is to
be able to differentiate between individual fields which might only have subtle differences in
the shape of the VI timeseries. The iterative MWLR smoothing appeared through visual
inspection to be a good way to remove the effect of the clouds without cancelling out the inter-
field differences. Smoothing to the upper envelope have prior to this study been observed to
lead to overestimations of the VI in the start and end of the season as smoothed values can be
dragged up by the high values of the previous and succeeding seasons (Kong et al.,, 2019). The

short window is however expected to limit the effect of this in this study.

The number of iterative smoothings was set at 10, as in Lobell et al. (2019). To assess whether
10 was enough to approximate the upper envelope a test was done, comparing the correlation
between a VI with 6 smoothings and 10 smoothings. The high R? revealed that more than six
smoothings only added very limited to the upper-envelope fitting. The test did however not
directly indicate if the 10t smoothing is in fact at the upper envelope. Additionally, the test

could have been performed more systematically to find the optimal number of smoothings

The DL smoothing is widely used and appeared to have a good fit with the visually inspected
examples (Eklundh & Jonsson, 2017). It was much less dependent on the individual
observations and its generic form was a good supplement to the MWLR as a smoothing type in

the other end of the spectra. The implementation of the DL smoothing in GEE also created some
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uncertainty as parameters, such as the inflection points and rate of increase and decrease are
influenced by individual observations. This is however limited by the inserted daily values and

the preceding MWLR smoothing.

8.1.1.3 Creating the phase-windows

The process of determining the phase windows based on the VIs is also associated with a degree
of uncertainty. The smartphone pictures, taken a date where the VI is on the increasing part,
were dominantly of crops in the VS stage and similarly for of the RMS stage in the decreasing
part. Less dominant was the FRS around the peak of the VI timeseries. At best, only around 30%
of the pictures, taken a date where the field had reached the peak of the VI timeseries, were
classified as being in the FRS stage. This result also entails that if inspecting the crops around
the time that the VI peaks, only 30% will be in the FRS phase. Whether it is possible to extract
the variables with information for that phase alone is therefore questionable. However, there
was expected to be a lot of noise in the picture data and the manual classification hereof and
the ability to isolate the FRS phase will therefore likely be higher than what the 30% indicates.
It is for example unlikely that many fields should be in the FRS phase after the VI timeseries has
decreased 60%. The clear signal of the VS and RMS phase alone increases the confidence that
the FRS phase is located in between them, around the peak of the VI timeseries. Efforts could
be done in further research to find the optimal VI boundaries for each phase though it is not

expected to have a large impact on the results.

8.1.1.4 The supplementary data

There are large sources of uncertainties related to the supplementary data.

Both temperature and precipitation had a low spatial resolution thus only allowing to
differentiate between fields by the differing time windows created by the dynamic seasonality.

In addition, the temperature data was heavily influenced by clouds.

The “money-spent” variable was only an estimate as described previously and the information

was not available for all fields.

The rice variety and soil type were also not available for all fields and could only be included in
the linear regression by isolating samples with certain varieties or soil types, often leading to

only few included samples, and thus less reliable results. To include them in the multiple
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regression analyses and RF classification they were ranked and numbered according to their
average yield. This does however only reflect which variety or soil type that on average have a

higher yield but not how much higher it was.

8.1.1.5 Thetemporal aggregation

In the temporal aggregations were also several potential sources of uncertainty, especially
related to the temporal resolution of the satellite data. A timeseries with an observation every
fiftth day naturally lacks information on the days in between. The direct effect of this in this
study is however expected to be limited due to the relatively slow development of the crops. A
potential indirect bias from the five-day span between observations was however identified.
This related to the potential jump when going from a VI boundary value to a date boundary.
Inserting a value for each day by assuming a linear development of the VI between the
observations is expected to have eliminated most of this uncertainty. It is however not able to
remove the uncertainty from the numerical integration as an approximation of the area beneath
the VI curve. If comparing two smoothings with known functions, analytical integration could

have been applied and the uncertainty thereby reduced.

8.1.1.6 The spatial aggregation
The fields were on average 45m x 45m in Haryana and 22m x 22m in Odisha. This is small
relative to the size of the pixels. Some fields would only be covered by a few pixels and have a

high risk of being affected by edge-pixels.

Several measures were taken to reduce the uncertainty from the spatial aggregation. All the
fields were drawn in manually with very high-resolution imagery as reference and the
datapoints not connected to an obvious field was excluded. The effect of the edge pixels was
reduced by creating a five-meter inner buffer and by taking the median value of the pixels. An
inner buffer of 10 meters, as used in Lambert et al. (2017), would have had a greater effect, but

was rejected as too many fields would have been erased due to the very small field.

8.1.2 The three statistical analyses
Three statistical analyses were made to assess the ability of the created variables to explain the
inter-field yield variation. Each analysis does however contain certain limitations in doing so,

which will be discussed in the following.
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The methodological triangulation has led to more ambiguous results and therefore more
conservative conclusions. This is however also considered a strength as the results are expected

to be more reliable when assessed in multiple ways.

8.1.2.1 Linear Regression

All variables could individually only explain a minor part of the yield variation. Such low R?
values does not create a good foundation for comparing the different design options, as the
differences in correlations can be heavily influenced by randomness. As the comparisons of the
design options are done across multiple variables the uncertainty is expected to be reduced. It

will however still be acknowledged in the following discussion of the results.

An assumption of the linear regression is that the relationship between the variables is linear,
which is often not the case. Upon visual inspection of several scatterplots of yields and VI
variables, the low R? did not appear to be due to non-linear relationship, but merely because of
weak association between the variables i.e. there did not appeared to be systematic biases in
the residuals. The relation between yield and the VI variable could still be non-linear, but the
uncertainty from this appears to be cancelled out by the low covariance (McGrew & Monroe,

2009).

8.1.2.2 Multiple Regression
Similar to the linear regression, multiple regression also assumes a linear relationship between

the variables, which again might not be the case in reality.

To improve the models, efforts were done to only include variables that contributed to the
model, by iteratively removing the variable with the highest p-value and running the analysis
again until only significant variables remained. Additionally, multicollinearity was reduced by
not including both “mean” and “integral” variables. There are however more steps that could
have been taken to improve the reliability of the multiple regression models. The remaining
variables could have been tested for redundancy and the residuals could have been tested for

biases, including spatial biases (ArcGIS Pro, 2020).

8.1.2.3 RF Classification
Random forest is a powerful tool with high predictive accuracy. Compared to the other two

tests, it allows for non-linear relations between the variables and is less sensitive to
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multicollinearity. In this study it was used on discretised yield data. With a slight
methodological alteration the RF Classification can also function on continuous data which
might have been a better fit for this study, as the aim is to estimate the exact yield, which the
five categories does not fully allow!? (James et al.,, 2013; Boehmke & Greewell, 2020; Belgiu &
Dragut, 2016).

Though the rationale behind the outcome of a single classification tree can be easily understood,
the reasoning behind the outcome of the RF Classification cannot be intuitively interpreted. For
both the linear and multiple regression analysis the relationship between the dependent
variable and each independent variable can be assessed. This grants the possibility to check if
the relations are scientifically sound i.e. whether the dependent and independent variables
have the expected relationship. A check that is not possible with the RF Classification (Boehmke
& Greewell, 2020).

A method that has been proposed to increase the accuracy of the RF classification, is to
iteratively remove the least contributing features, much similar to the process in the multiple
regression analysis. This might have increased the accuracy of the classifications, especially of

those groups with many variables (Belgiu & Dragut, 2016).

An important point to note, is that the CVS does not consider, that in a random classification,
some samples would also be correctly classified. This is referred to as the expected accuracy.
With the relatively few categories used in this study, the correctly classified samples in a
random classification would be a significant amount of the CVS. The Cohen’s Kappa Coefficient
is a measure similar to the accuracy but adjusted for the expected accuracy and would therefore
have been a beneficial measure to use in this study. In absence of this, it will in the following
discussion be assumed that the actual accuracy is somewhat lower than the CVS (Lee et al.,

2019).

8.2 Discussion of the results
In this part, it will be discussed how the results of the analyses answer the research questions.

The question regarding the overall ability of the VI variables to explain the yield will be saved

12 Though it’s a slight methodological alteration to go from RF classification to RF regression, the practical implications
can be large, which is why the RF Classification was used in this study.
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for last and will include a comparison to similar studies and a discussion of the implications of

the results for the research field and in relation to the aim of the study.

8.2.1 Input variables influencing the yield

The aim of this analysis was to get an understanding of what factors affected the yield, as this
could be useful when afterwards estimating the yield (Research Question 1). From the results
it however became apparent that a more thorough analysis would be necessary to explain the

yield variation with input variables.

In the linear regression many of the chosen variables did not have a significant correlation with
the yield and each variable could only explain very little of the two study sites” yield variation.
Similarly, the multiple regression could only explain 12% of the variation in Haryana and 17%
in Odisha. The RF Classification was able to correctly classify 46% in Haryana and 40% in
Odisha. This should however also be considered an optimistic score as the actual accuracy will

be lower.

The generally low results are likely due to several aspects: Some input variables essential to the
yield have likely not been included in this analysis. The uncertainties of the used data might
have reduced the variables” ability to explain the yield variation. And lastly, the variables should
likely have been more specifically tailored to better estimate the yield. It could for example be
the case, that it is not the mean temperature but rather the number of very warm days that is
decisive, or that the very heavy rainfalls should have been omitted from the precipitation data

etc.

8.2.2 Design options

An important aim of the study was to compare different design options to see which are
preferable and to get an indication of the importance of choosing the best suited design options
for the specific case (Research Question 3). The comparison was done across multiple variables
and with three different tests. Though this might lead to less unambiguous results, it will

increase the overall robustness of the results.

82.2.1 TheVls
In Haryana, the linear regression showed that more NDVI-based variables had a significant R?

and that the significant variables on average had a higher R% The low R? did however not
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provide a good basis for comparison. A more indicative result was that four NDVI variables
could explain more than 10% while there was only one EVI variable that could explain more
than 5%. In the multiple regressions, the mean R? of the significant groups was higher for NDVI,
but the group with the highest R? had EVI-based variables. The RF classification also only had
small differences, with slightly higher CVS for the EVI-based groups.

In Odisha, the linear regression showed almost no difference between NDVI and EVI variables.
The multiple regression did however clearly show that the groups with EVI variables
performed better. Less clear was the results of the RF classification, which showed a minor

advantage to the NDVI.

When assessing the variable importance from the RF classification with all VIs for both study
sites, the EVI-based variables had a slightly higher representation in the top 20 of most

important variables.

Overall, no clear conclusions can be drawn on whether the NDVI or EVI is to be preferred. The
clearest results were from the multiple regression in Odisha, were EVI was considerable higher.
While it cannot be concluded from this result alone that EVI is to be preferred, the result does
show that the choice of VI can lead to large differences and it can thus be concluded that it is

important to assess several different VIs when estimating yield.

8.2.2.2 The choice of smoothing

In both Haryana and Odisha, the differences between the two smoothings were small for all
three statistical tests and not consistently in favour of either. In Haryana the three groups with
the highest R? in the multiple regression were all with MWLR smoothed variables, but the two
groups with the highest CVS in the RF classification were DL smoothed groups. The remaining
results for Haryana and the results of all three statistical test in Odisha were all less indicative.
This either indicates that whether the smoothing closely follows the datapoints as the MWLR
or has a more generic form as the DL does not have a decisive impact on the results, or that
general results were not strong enough to detect the differences from the smoothings. As larger

differences could be observed comparing other design options, it indicates the former.
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82.2.3 The triggering measures
In both Haryana and Odisha, the variables with the highest R? in the linear regression were
“length” and “integral”. In Haryana the variables with these triggering measures on average also

had the highest R?, while they were surpassed by the EOS-variables in Odisha.

In the multiple regressions the “length” and “integral” were also contributing more often to the
models, almost twice as often as the other variables. In the RF classifications using all VI
variables, the 6 of the 20 most important variables had “integral” as triggering measure and 6

had “length”. Another 6 of the most important variables had “mean” as triggering measure.

Overall, the results clearly showed differences between the triggering measures, with “integral”
and “length” as the most suitable options. They did however also show that all triggering
measures were used in a considerable part of the multiple regressions, indicating that they do

provide useful, supplementary information of the crop season.

The “peak”, which is most commonly used in similar studies, was generally less suitable to
estimate yield according to results of this study, though not the worst performing triggering
measure. This implies that if only using the “peak” as measure, some explanatory power might

be lost (Lambert et al., 2017; Lobell et al,, 2019; Guan et al., 2018).

8.2.2.4 The time period

The variables with the highest R? in the linear correlations were from the FRS phase for
Haryana and the WS for Odisha. For both study sites the average R? of significant variables was
higher for the variables from the FRS phase. This is however not a very robust result, due to the
low R?. The advantages of focussing on the phases were also primarily expected to be evident
when used in combination with each other. The multiple regression reinforced this hypothesis,
as the groups including the phase variables on average had 18% and 42% higher adjusted R*
for Haryana and Odisha respectively. The RF classification also supported this, with a 15%
higher CVS in Odisha though only slightly higher in Haryana. Additionally, the 16 most
important variables in the RF classification with all VI variables were from one of the phases,
while the WS had only 3 in top 20. The result is considered robust due to the consistency in the
results and it clearly indicates that valuable information of the crop season can be obtained

when taking the phenology of the crop into consideration when creating the VI variables. The

86 of 136



results also indicate that separating the phases using the relative a VI value did to at least some

extent enable isolation of the specific crop phases.

82.2.5 The seasonality
Only a limited number of variables were calculated with the fixed seasonality, and only in
Haryana. This decreases the reliability of the results compared to the other design options that

were compared across more variables.

The linear regression did not result in any clear differences between the dynamic and fixed
variables. The multiple regression showed 70% (non-biased corrected group) and 16% (bias
corrected group) higher R? for the dynamic seasonality. Similarly, the RF classification showed
slightly higher CVS for the group with variables determined with dynamic seasonality. The
result indicates that the dynamic seasonality is a better design option when estimating inter-
field yield variation. The differences were however not as clear as expected. Had the design

option been compared over more VI variables, the differences might have been clearer.

8.2.3 Uncertainties and biases
Efforts were also done to assess the sources of uncertainty and bias in the study (Research

Question 4). The results of these efforts will be discussed in the following.

8.2.3.1 Smoothing type or VI type

It was assessed how much agreement there were between variables which only differed from
the type of smoothing, and afterwards for the choice of VI. For both Haryana and Odisha there
was a markedly higher agreement between variables with differing smoothing type than
between variables with variables with differing VI. This is even though the smoothings were
chosen purposely to be on either end of the spectrum regarding how closely they follow the
initial observations. The results thus indicate that the choice of VI is more decisive for the
output and including more VIs in succeeding research would therefore be recommendable over
including more different smoothings types. This is also supported by the results described
previously, where only minor differences were found when comparing the three statistical test
results of MWLR and DL variables. If the EVI variables consistently performed poorly in the
three statistical tests, the results of the bias test could have been due to an inadequate removal
of positive outliers in the extra processing step of the EVI. Had that been the case, it could not

have been concluded that the VI generally is more decisive.
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There is however the reservation that only two smoothing types and two VIs were used in this

analysis. Had more been included the results would have been more robust.

8.2.3.2 Bias creating variables

The linear regression of isolated groups of samples revealed that considerable higher R? of
significant variables could be achieved when differentiating between different rice varieties
and soil types. The results for the majority of these groups were however not very robust, as
only few of the VI variables returned significant correlations. In Odisha, isolating the samples
with rice variety “12” drastically increased the R? of many of the VI variables, achieving R? up
to 0.65 for total yield and 0.86 for grain yield. The consistent increase in the R? across multiple

variables strongly indicates that the rice variety have a large influence on the results.

The multiple regressions where the rice variety, soil type and days to CCE had been included,
consistently resulted in adjusted R? much higher than when not included. On average the R?
increased 169% in Haryana and 117% in Odisha. For the RF classification the results were less
clear but pointed in the same direction. It should be noted that these results are from including
the ranked and numbered rice varieties and soil type, which are not perfect representations of

the variables. Even better results might be achieved using more representative variables.

Overall, the results clearly indicate that correcting for biases in the yield data and differing

between rice variety and soil type in the analyses can drastically improve the results.

From the result it can also be deducted that if other types of biases exist in the yield data it could

be limiting the ability of the variables to explain the yield variation.

8.2.3.3 Mismatch between grain yield and total yield

The last source of uncertainty assessed in this study was a result of the mismatch between the
total yield observed by the satellite and the grain yield that was to be estimated. This was
especially evident in Haryana where the R? for the correlation between total yield and grain

yield was only 0.22. In Odisha there was a much higher agreement, with an R? of 0.74.

On average across the three statistical tests, the VI variables in Haryana were considerably
more able to explain the variation in total yield than grain yield. This was opposite for Odisha
but with less consistent across the three statistical tests. Between the two study sites, the

analyses from Odisha consistently showed higher results.
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The results thus support that the mismatch can have a significant influence on the results and
that the size of this challenge appears to be directly related to the agreement between the total
yield and grain yield. It is therefore recommended for future studies that the correlation is

tested prior to the analyses and that effort are taken to understand and reduce the mismatch.

8.2.4 How well the VI variables explain the yield variation

Here the overall results of how well the VI variables are able to explain yield variation will be
discussed (Research Question 2). The results will be compared to similar studies, taking
difference in approaches into account. Lastly, the results will be discussed in relation to the

chosen school of research.

8.2.4.1 The results compared to similar studies

The linear regression of all the field samples showed that less than half the created VI variables
had a significant correlation with the yield and that these significant VI variables could on
average only explain a minor part of the yield variation (<5% for Haryana and <10% for
Odisha). The best VI variables could explain 15% of the variation in total yield in both Haryana
and Odisha, while the highest correlations with grain yield could explain 5% in Haryana and

20% in Odisha.

Compared to similar studies that estimate yield on field level, the results of this study are
generally somewhat lower (Table 5). Though they all use linear regression to assess the
variables, a direct comparison is difficult as there are multiple differences in analysis design,
including both different crop types, satellite data, continents and VIs. The comparison should

however give some indication of quality of this study’s results.
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Table 5: Overview of comparable studies.

~R? Crop Notes VI Reference
0.6-0.8 Cotton & Only able to obtain the high values when NDVI & LAI Lambertetal. (2017)
Millet using a subset of the most homogeneous
0.2-0.6 Maize & fields as samples (n<10)
Sorghum
0.25 Sorghum NDVI & GCVI Lobell et al. (2019)
0.3-0.4 (2014) Maize NDVI & GCVI Burke & Lobell (2017)
0.15-0.2 (2015)
0.27-0.33 Wheat LAI & GCVI Jain et al. (2016)
0.4 Rice Only use 71 of the 255 available fields as NDVI, EVI & Guanetal. (2018)
they removed fields that might be GCVI
influenced by nearby landcovers types.
0.06 When including all samples
0.69 When isolating rice varieties

When isolating the samples with a certain rice variety or soil type in this study, the mean R? of
the significant variables considerably improved for almost all sample groups. The isolated
group of samples which gave the highest correlation with grain yield, returned an average R?
of over 0.25 for the significant variables in Haryana and around 0.65 in Odisha, with the best
being 0.35 in Haryana and 0.86 in Odisha. These are in the high end compared to similar studies.
It should however be noted that the sample size of these is quite small and the result therefore
less reliable. This was however also the case for several of the studies, especially Lambert et al.
(2017) and Guan et al. (2018) when isolating the rice varieties. The consistently high
correlations with grain yield across different types of VI variables when isolating the dominant

rice variety in Odisha (variety “12”) does however indicate that it is a more reliable result.

The multiple regression and RF classification allows for the variables to supplement each other.
The majority of the groups of variables returned a significant result for both tests. Through the
multiple regressions, the significant groups could on average explain 20% of the grain yield
variation in Haryana and 26% in Odisha, while the best groups could explain 24% in Haryana
and 53% in Odisha. The RF classification, which also allow for non-linear relationships between
dependent and independent variables could for the best groups of variables correctly classify

just less than half the samples, though without adjusting for the expected accuracy.
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These results are less comparable to the similar studies but implies that the variables can

supplement each other and thereby better estimate the yield.

8.2.4.2 The results and the school of research

The results of this study indicate that there is still some work to be done before the methods
can be used for index insurance. If indices were created on the basis of the correlations found
in this study the mean error would be too high and the insurance thus be too unreliable to
benefit the farmers. The results do however also indicate that there are still substantial

improvements to be gained and that the objective might therefore not be unachievable.

The alternative source of farm level yield data will in many cases be retrospective farm yield
surveys which have been shown to very inaccurate. Considering this, the accuracy of the yield
estimations found in this study suggests that the approach used here can be an effective and
scalable way to identify yield gaps and assess the impacts of policy interventions. Measures that
are both relevant for accelerating rural development (Lambert et al., 2017; Burke & Lobell,

2017; Lambert et al., 2018; Lobell et al. 2018).

8.2.5 Limiting factors
In this section, it will be discussed which aspects, aside from the already discussed uncertainties
in the methods, that are limiting the ability of the VI variables to explain yield variation and

what measures could have been done to improve them.

8.2.5.1 Thedata used

One of the clearest results of the study is that adjusting the yield data for biases considerably
improves the accuracy of the yield estimates. It is likely that there are other biases, which were
not corrected for. This has likely been a limiting factor for the yield estimates. Given the
improvement from adjusting to the identified biases, there might be potential to improve the

results considerably, if the yield data can be further corrected for biases.

The other main source of data used in the study, the Sentinel-2 satellite data, might also have
been a limiting factor. Though the spatial resolution of 10 meters is considered high, the very
small field sizes in especially Odisha, meant that only few pixels could have covered each field
and that the effect of edge pixels potentially could have been large. Though measures were

taken to reduce the effect of this, it could have influenced the VI signal from the fields. It would
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however not necessarily be beneficial for the analysis to trade off the temporal, radiometric or
spectral resolution for a higher spatial resolution. A lower temporal resolution could amplify
the challenges of removing the effect of clouds from the data, and as the VI values between fields
were observed to be relatively close, a reduction in the sensitivity of the satellite could also
degrade the results. It could however be worth analysing if the very high spatial resolution

Planet data could achieve better results.

8.2.5.2 Field size

Beside the challenge of the spatial resolution of the satellite images, the small field size might
also be limiting in other ways. The GPS accuracy of the yield data points, and the geolocation
uncertainty of the satellite data do create some uncertainty in the analyses. The risk of a
mismatch between which field the CCE is done for and where the satellite measures, is
increased the smaller the size of the fields (Guan et al., 2018; ESA, 2020). The effect of the field
size was not assessed in this study. The fields were generally smaller in Odisha were the results
were better, but this is more likely to be attributed to stronger correlation between total yield

and grain yield.

8.2.5.3 The clouds

The satellite data in the study areas was heavily influenced by clouds and cloud shadows, which
created challenges for the data processing. The implications of this on the results is difficult to
assess. Active sensors are not affected by clouds in the same way and might therefore seem a
viable alternative. Guan et al. (2018) did however find that radar data did not improve their
yield estimations. The similarities between the two smoothings used in this study also indicate

that the effect of the clouds was not the most decisive factor.

82.5.4 Fertilizer

Differences in rates of fertilizer application might also complicate the yield estimations, as
sufficient access to essential nutrients might increase the grain yield without proportionally
increasing the VI signal observed by the satellite (Lambert et al., 2017). For a subset of the fields
in Haryana, the yield dataset included information on whether fertilizer was applied. This
showed that fertilizer had been applied to 81% of the fields. The limited amount of data did
however not allow for the inclusion of this aspect in analyses. The fertilizer data was

unfortunately not available for Odisha. The lower per capita income in Odisha might result in
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lower fertilizer application rates and could thus be an explanation for why the total yield and
grain yield had a stronger correlation in Odisha compared to Haryana. In future studies the
effect of fertiliser application would be an interesting aspect to include, as the superior results
from the study site in Odisha indicate that considerably gains in index accuracy can be achieved

if the mismatch between grain yield and total yield can be reduced.

8.2.5.5 The causes of crop damage

A subset of the yield data also had information about the cause of crop damage, either self-
reported by the farmer or classified based on the smartphone-images. The data reveals a
diverse range of damage causes, including rain, wind, heat, fire and pest as the most frequently
occurring causes. Several of these causes might be difficult to detect with the VI variables and
might thus have been a limiting factor in this study. If the plants have been overturned by strong
winds, it could destroy the grains, while the satellite still detects very green vegetation. It is
therefore recommended that efforts are made to understand the effect of these damages on the

VI values and to develop ways that can specifically detect damages from these sources.

8.2.5.6 Including more years
The analyses in this study were only done for 2019. As seen in the differing results between
years in Burke & Lobell (2017) there can be interannual differences. Analyses with more years

are thus another way to increase the robustness of the results.

8.2.5.7 Localised estimations

The differences between the two study sites indicate that though the crop might be the same, it
is important that yield estimations are done on the basis of localised relations between yield
and VI variables. The results also indicate that the most suitable design options might differ

between locations.
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8.3 Further research

The main recommendations for further research are summarised here.

- Thevery high spatial resolution and temporal coverage of the Planet data might improve
the yield estimations on very small fields. A similar assessment as this, but with the use

of Planet data is therefore recommended.

- The results indicated that analysing different rice varieties individually could improve
the accuracy of the yield estimations considerably. It is recommended to consider this
in further research and to verify this result on a larger dataset to get a more robust

result.

- Based on the results, it is more important to include more VIs than to try more different

smoothings, which is therefore recommended for succeeding studies.

- It is recommended that efforts to assess and understand the mismatch between grain
yield and total yield are done prior to the analyses, as these most likely have a substantial
impact on the results. Assessing the effect of fertilizer application rates is recommended

as a starting point for these efforts.

- Isolating the season in phases according to the crop phenology does improve the results,
and it is therefore recommended that further studies incorporate this and try to find

methods to more accurately isolate the crop phases.
- Itisalso recommended that more effort is done to estimate the response of the VI values
to specific types of damages, so that the yield estimates can be better tailored to the

diverse causes of crop damage.

- Lastly itis recommended that yield estimates are done on localised conditions and that

the analyses are done across more years to increase the robustness of the results.
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9 Conclusions

The aim of the study has been to assess the ability of Sentinel-2 derived vegetation indices to
explain inter-field yield variation in paddy rice and to systematically compare the suitability of
selected design options. This has been done by creating VI variables for almost all the different
combinations of the selected design options and assessing them through linear regression,

multiple regression and RF Classification.

The preliminary analyses of input variables show that the selected variables can only explain a
minor part of the yield variation. This can either be due to uncertainty in the data sources and
applied methods, a need of more specifically tailored variables or because some important

variables were not included.

The VI variables can generally only explain a small part of the variation in farm level yield, less
than comparable studies. If only including a subset of the samples according to rice variety or
soil type, the results significantly improve and are in the high end compared to similar studies.
The few samples included and the inconsistency across the different variables does however
reduce the robustness of the result. Isolating the dominant rice variety (“12”) in Odisha does

however result in consistently higher R? with the highest being 0.86.

The multiple regression and RF Classification have revealed the benefits of combining multiple
variables and the best groups of variables can explain 24% of the grain yield variation in
Haryana and 53% in Odisha and they can correctly classify 46% of the samples in Haryana and

47% in Odisha.

The assessment of the design options shows only small differences between the two smoothing
types and not consistently in favour of either. The choice of VI creates larger differences, but
the results are inconclusive on whether NDVI or EVI was more suitable. The assessment of the
triggering measures suggests that the “integral” and “length” are better able to capture the
inter-field yield variation, but that all triggering measures can contribute with information in
the multiple regression analyses and RF Classifications. The variables from the phenologically
tailored phases did contribute significantly to the explanatory ability of the multiple
regressions and RF Classifications. Though less robust, the assessment also indicates that the

dynamic seasonality is to be preferred over the fixed.
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When assessing the sources of uncertainty in the results, the choice of VI is considerably more
decisive than the smoothing type. The results also suggest that including the bias correcting
variables significantly improves the results and that the mismatch between total yield and grain

yield are decisive for the results.

The study generally finds that the VI variables obtained through the used methods cannot
sufficiently capture the inter-field yield variation to use the approach for index insurance of
individual paddy rice fields. The study does however identify and recommend several ways to
potentially achieve significant gains in accuracy and therefore concludes that the objective
might not be unachievable. Lastly, the result of this analyses indicate that the used methods can
pose an effective and scalable way to identify yield gaps and specifically target and evaluate

rural development efforts.
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11 Appendix

11.1 Inserting a value every day

Example of the modification, inserting a value every day
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Figure 49: Example of an unsmoothed NDVI timeseries were a value has been inserted for every day.
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11.2 Rice variety

O Mean grain yield ® Number of fields MMean grain yield - BNumber of fields
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Figure 50: The bar charts shows the number of fields with the different rice varieties (left) and the average grain yield for each
variety (right), for both Haryana (top) and Odisha (bottom).

11.3 Soil type
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Figure 51: The bar charts shows the number of fields with the different soil types (left) and the average grain yield for soil type
(right), for both Haryana (top) and Odisha (bottom).
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11.4 Overview of the triggering measures

Table 6: Overview of created variables in Haryana.

Haryana

WS VS FRS RMS

NDVI

MWLR DL MWLR DL MWLR DL MWLR DL
Peak value Peak Sum Sum Sum Sum Sum Sum
Sum ofvalues ~ Sum Preci-mean  Length Preci-mean  Length Preci-mean  Length
Length Hos Preci_sum Mean Preci_sum Mean Preci_sum Mean
SoS Sos Temp_mean Temp_mean  Eos Temp_mean

EoS Length Length Length Sos Length

Precip mean Mean Mean Mean

Precip sum Mean_fix Eos Mean_fix

Temp mean Sum_fix Sos Sum_fix

Peak_fix Mean_fix

Sum_fix Sum_fix

EVI

MWLR DL MWLR DL MWLR DL MWLR DL
Peak value Peak Sum Sum Sum Sum Sum Sum
Sum of values Sum Temp_mean Length Temp_mean  Length Temp_mean Length
Length Fos Length Mean Length Mean Length Mean
SoS Sos Mean Mean Eos Mean

EoS Length Eos Sos

Temp mean Sos
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Table 7: Overview of created variables in Odisha

Odisha

WS VS FRS RMS

NDVI

MWLR DL MWLR DL MWLR DL MWLR DL
Peak value Peak Sum Sum Sum Sum Sum Sum
Sum ofvalues ~ Sum Length Length Length Length Length Length
Length Hos Mean Mean Mean Mean Mean Mean
SoS Sos Eos Eos

EoS Length Sos Sos

EVI

MWLR DL MWLR DL MWLR DL MWLR DL
Peak value Peak Sum Sum Sum Sum Sum Sum
Sum ofvalues ~ Sum Length Length Length Length Length Length
Length Fos Mean Mean Mean Mean Mean Mean
SoS Sos Eos Eos

EoS Length Sos Sos
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11.5 Overview of grouped variables
Table 8: Overview of the grouped variables in Haryana and Odisha.

HARYANA

NDVI_DL

NDVI_ MWLR

EVI_DL

EVI. MWLR

WS_VI

NDVI_DL_DY_WS_INTEGRAL
NDVI_DL_DY_WS_LENGTH
NDVI_DL_DY_WS_PEAK
NDVI_DL_DY_WS_SOWS

NDVI_MWLR_DY_WS_EOSWS
NDVI_MWLR_DY_WS_INTEGRAL
NDVI_MWLR_DY_WS_LENGTH
NDVI_MWLR_DY_WS_PEAK
NDVI_MWLR_DY_WS_SOWS

EVI_DL_DY_WS_INTEGRAL
EVI_DL_DY_WS_LENGTH
EVI_DL_DY_WS_PEAK
EVI_DL_DY_WS_SOWS

EVI_MWLR_DY_WS_EOSWS
EVI_MWLR_DY_WS_INTEGRAL
EVI_.MWLR_DY_WS_LENGTH
EVI_MWLR_DY_WS_PEAK
EVI_MWLR_DY_WS_SOWS

WS_VI_BiasC

Variety_number

Soil Type_number
NDVI_DL_DY_WS_EOWS
NDVI_DL_DY_WS_INTEGRAL
NDVI_DL_DY_WS_LENGTH
NDVI_DL_DY_WS_PEAK
NDVI_DL_DY_WS_SOWS
Days_to CCE_fromSoWs

Variety_number

Soil Type_number
Days_to_CCE_from_SoWS
NDVI_MWLR_DY_WS_EOSWS
NDVI_MWLR_DY_WS_INTEGRAL
NDVI_MWLR_DY_WS_LENGTH
NDVI_MWLR_DY_WS_PEAK
NDVI_MWLR_DY_WS_SOWS

Variety_number
SoilType_number
Days_to_CCE_from_SoWS
EVI_DL_DY_WS_INTEGRAL
EVI_DL_DY_WS_LENGTH
EVI_DL_DY_WS_PEAK
EVI_DL_DY_WS_SOWS

Variety_number
SoilType_number
Days_to_CCE_from_SoWS
EVI_.MWLR_DY_WS_EOSWS
EVI_LMWLR_DY_WS_INTEGRAL
EVI_MWLR_DY_WS_LENGTH
EVI_MWLR_DY_WS_PEAK
EVI_MWLR_DY_WS_SOWS

Fixed

NDVI_MWLR_FI_FRS_INTEGRAL
NDVI_MWLR_FI_RMS_INTEGRAL
NDVI_MWLR_FI_VS_INTEGRAL
NDVI_MWLR_FI_WS_INTEGRAL
NDVI_MWLR_FI_WS_PEAK

Fixed_BiasC

Variety_number, SoilType_number
DOY of CCE
NDVI_MWLR_FI_FRS_INTEGRAL
NDVI_MWLR_FI_RMS_INTEGRAL
NDVI_MWLR_FI_VS_INTEGRAL
NDVI_MWLR_FI_WS_INTEGRAL
NDVI_MWLR_FI_WS_PEAK

Phases_VI

NDVI_DL_DY_FRS_EOFRS
NDVI_DL_DY_FRS_INTEGRAL
NDVI_DL_DY_FRS_LENGTH
NDVI_DL_DY_FRS_SOFRS
NDVI_DL_DY_RMS_LENGTH
NDVI_DL_DY_RMS_MEAN
NDVI_DL_DY_VS_LENGTH
NDVI_DL_DY_VS_MEAN
NDVI_DL_DY_WS_INTEGRAL
NDVI_DL_DY_WS_LENGTH
NDVI_DL_DY_WS_PEAK
NDVI_DL_DY_WS_SOWS

NDVI_MWLR_DY_FRS_EOFRS
NDVI_MWLR_DY_FRS_INTEGRAL
NDVI_MWLR_DY_FRS_LENGTH
NDVI_MWLR_DY_FRS_SOFRS
NDVI_MWLR_DY_RMS_LENGTH
NDVI_MWLR_DY_RMS_MEAN
NDVI_MWLR_DY_VS_LENGTH
NDVI_MWLR_DY_VS_MEAN
NDVI_MWLR_DY_WS_EOSWS
NDVI_MWLR_DY_WS_INTEGRAL
NDVI_MWLR_DY_WS_LENGTH
NDVI_MWLR_DY_WS_PEAK
NDVI_MWLR_DY_WS_SOWS

EVI_DL_DY_FRS_EOFRS
EVI_DL_DY_FRS_INTEGRAL
EVI_DL_DY_FRS_LENGTH
EVI_DL_DY_FRS_SOFRS
EVI_DL_DY_RMS_LENGTH
EVI_DL_DY_RMS_MEAN
EVI_DL_DY_VS_LENGTH
EVI_DL_DY_VS_MEAN
EVI_DL_DY_WS_INTEGRAL
EVI_DL_DY_WS_LENGTH
EVI_DL_DY_WS_PEAK
EVI_DL_DY_WS_SOWS

EVI_MWLR_DY_FRS_EOFRS
EVI_MWLR_DY_FRS_LENGTH
EVI_MWLR_DY_FRS_MEAN
EVI_.MWLR_DY_FRS_SOFRS
EVI_.MWLR_DY_RMS_INTEGRAL
EVI_.MWLR_DY_RMS_LENGTH
EVI_.MWLR_DY_VS_LENGTH
EVI_.MWLR_DY_VS_MEAN
EVI_.MWLR_DY_WS_EOSWS
EVI_.MWLR_DY_WS_INTEGRAL
EVI_.MWLR_DY_WS_LENGTH
EVI_.MWLR_DY_WS_PEAK
EVI_.MWLR_DY_WS_SOWS

Phases_VI_BiasC.

Variety_number
SoilType_number
Days_to_CCE_FROM_NDVI_DL_DY_FRS_
EOFRS
NDVI_DL_DY_FRS_EOFRS
NDVI_DL_DY_FRS_INTEGRAL
NDVI_DL_DY_FRS_LENGTH
NDVI_DL_DY_FRS_SOFRS
NDVI_DL_DY_RMS_LENGTH
NDVI_DL_DY_RMS_MEAN
NDVI_DL_DY_VS_LENGTH
NDVI_DL_DY_VS_MEAN
NDVI_DL_DY_WS_INTEGRAL
NDVI_DL_DY_WS_LENGTH
NDVI_DL_DY_WS_PEAK
NDVI_DL_DY_WS_SOWS

Variety_number
SoilType_number
Days_to_CCE_FROM_NDVI_MWLR_DY_FRS_E
OFRS
NDVI_MWLR_DY_FRS_EOFRS
NDVI_MWLR_DY_FRS_INTEGRAL
NDVI_MWLR_DY_FRS_LENGTH
NDVI_MWLR_DY_FRS_SOFRS
NDVI_MWLR_DY_RMS_LENGTH
NDVI_MWLR_DY_RMS_MEAN
NDVI_MWLR_DY_VS_LENGTH
NDVI_MWLR_DY_VS_MEAN
NDVI_MWLR_DY_WS_EOSWS
NDVI_MWLR_DY_WS_INTEGRAL
NDVI_MWLR_DY_WS_LENGTH
NDVI_MWLR_DY_WS_PEAK
NDVI_MWLR_DY_WS_SOWS

Variety_number

Soil Type_number
Days_to_CCE_FROM_EVI_DL_DY_F
RS_EOFRS
EVI_DL_DY_FRS_EOFRS
EVI_DL_DY_FRS_INTEGRAL
EVI_DL_DY_FRS_LENGTH
EVI_DL_DY_FRS_SOFRS
EVI_DL_DY_RMS_LENGTH
EVI_DL_DY_RMS_MEAN
EVI_DL_DY_VS_LENGTH
EVI_DL_DY_VS_MEAN
EVI_DL_DY_WS_INTEGRAL
EVI_DL_DY_WS_LENGTH
EVI_DL_DY_WS_PEAK
EVI_DL_DY_WS_SOWS

Variety_number
SoilType_number
Days_to_CCE_FROM_EVI_MWLR_DY_FRS_
EOFRS
EVI_.MWLR_DY_FRS_EOFRS
EVI_MWLR_DY_FRS_LENGTH
EVI_MWLR_DY_FRS_MEAN
EVI_MWLR_DY_FRS_SOFRS
EVI_.MWLR_DY_RMS_INTEGRAL
EVI_MWLR_DY_RMS_LENGTH
EVI_.MWLR_DY_VS_LENGTH
EVI_.MWLR_DY_VS_MEAN
EVI_.MWLR_DY_WS_EOSWS
EVI_.MWLR_DY_WS_INTEGRAL
EVI_.MWLR_DY_WS_LENGTH
EVI_.MWLR_DY_WS_PEAK
EVI_.MWLR_DY_WS_SOWS

No_VI

Latitude CCE, Longitude CCE

Date of the CCE, DOY of CCE
Amount spent (in Rs), SowingDate
Variety_number, SoilType_number
NDVI_MWLR_DY_FRS_TEMP_MEAN
NDVI_MWLR_DY_RMS_TEMP_MEAN
NDVI_MWLR_DY_VS_TEMP_MEAN
NDVI_MWLR_DY_WS_TEMP_MEAN
NDVI_MWLR_DY_FRS_PRECIP_SUM
NDVI_MWLR_DY_RMS_PRECIP_SUM
NDVI_MWLR_DY_VS_PRECIP_MEAN
NDVI_MWLR_DY_WS_PRECIP_MEAN
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Odisha

NDVI_DL

NDVI_ MWLR

EVI_DL

EVI. MWLR

WS_VI

NDVI_DL_DY_WS_SOWS
NDVI_DL_DY_WS_LENGTH
NDVI_DL_DY_WS_PEAK
NDVI_DL_DY_WS_INTEGRAL

NDVI_MWLR_DY_WS_INTEGRAL
NDVI_MWLR_DY_WS_EOWS
NDVI_MWLR_DY_WS_LENGTH
NDVI_MWLR_DY_WS_PEAK
NDVI_MWLR_DY_WS_SOWS

EVI_DL_DY_WS_SOSWS
EVI_DL_DY_WS_LENGTH
EVI_DL_DY_WS_PEAK
EVI_DL_DY_WS_INTEGRAL

EVI_.MWLR_DY_WS_INTEGRAL
EVI_.MWLR_DY_WS_EOSWS
EVI_MWLR_DY_WS_LENGTH
EVI_MWLR_DY_WS_PEAK
EVI_MWLR_DY_WS_SOSWS

WS_VI _BiasC.

Variety_number_ny

Soiltype_NY
NDVI_DL_DY_WS_SOWS
NDVI_DL_DY_WS_LENGTH
NDVI_DL_DY_WS_PEAK
NDVI_DL_DY_WS_INTEGRAL
DAYS_TO_CCE_FROM_NDV_DL_SO
ws

Variety_number_ny

Soiltype_NY
NDVI_MWLR_DY_WS_INTEGRAL
NDVI_MWLR_DY_WS_EOWS
NDVI_MWLR_DY_WS_LENGTH
NDVI_MWLR_DY_WS_PEAK
NDVI_MWLR_DY_WS_SOWS
DAYS_TO_CCE_FROM_NDVI_MWLR_SOWS

Variety_number_ny

Soiltype_NY
EVI_DL_DY_WS_SOSWS
EVI_DL_DY_WS_LENGTH
EVI_DL_DY_WS_PEAK
EVI_DL_DY_WS_INTEGRAL
Days_to_CCE_from_EVI_DL_SOWS

Variety_number_ny

Soiltype_NY

EVI_MWLR_DY_WS_INTEGRAL
EVI_MWLR_DY_WS_EOSWS
EVI_MWLR_DY_WS_LENGTH
EVI_MWLR_DY_WS_PEAK
EVI_.MWLR_DY_WS_SOSWS
Days_to_CCE_from_EVI_MWLR_SOWS6.191096
41552169E-07

Phases_VI

NDVI_DL_DY_FRS_EOFRS
NDVI_DL_DY_FRS_SOFRS
NDVI_DL_DY_FRS_LENGTH
NDVI_DL_DY_FRS_INTEGRAL
NDVI_DL_DY_RMS_LENGTH
NDVI_DL_DY_RMS_MEAN
NDVI_DL_DY_VS_LENGTH
NDVI_DL_DY_VS_MEAN
NDVI_DL_DY_WS_SOWS
NDVI_DL_DY_WS_LENGTH
NDVI_DL_DY_WS_PEAK
NDVI_DL_DY_WS_INTEGRAL

NDVI_MWLR_DY_FRS_INTEGRAL
NDVI_MWLR_DY_FRS_EOFRS
NDVI_MWLR_DY_FRS_SOFRS
NDVI_MWLR_DY_FRS_LENGTH
NDVI_MWLR_DY_RMS_INTEGRAL
NDVI_MWLR_DY_RMS_LENGTH
NDVI_MWLR_DY_VS_LENGTH
NDVI_MWLR_DY_VS_MEAN
NDVI_MWLR_DY_WS_INTEGRAL
NDVI_MWLR_DY_WS_EOWS
NDVI_MWLR_DY_WS_LENGTH
NDVI_MWLR_DY_WS_PEAK
NDVI_MWLR_DY_WS_SOWS

EVI_DL_DY_FRS_INTEGRAL
EVI_DL_DY_FRS_EOSFRS
EVI_DL_DY_FRS_SOSFRS
EVI_DL_DY_FRS_LENGTH
EVI_DL_DY_RMS_LENGTH
EVI_DL_DY_RMS_MEAN
EVI_DL_DY_VS_INTEGRAL
EVI_DL_DY_VS_LENGTH
EVI_DL_DY_WS_SOSWS
EVI_DL_DY_WS_LENGTH
EVI_DL_DY_WS_PEAK
EVI_DL_DY_WS_INTEGRAL

EVI_.MWLR_DY_FRS_INTEGRAL
EVI_MWLR_DY_FRS_EOSFRS
EVI_MWLR_DY_FRS_SOSFRS
EVI_MWLR_DY_FRS_LENGTH
EVI_MWLR_DY_RMS_LENGTH
EVI_.MWLR_DY_RMS_MEAN
EVI_.MWLR_DY_VS_LENGTH
EVI_.MWLR_DY_VS_MEAN
EVI_.MWLR_DY_WS_INTEGRAL
EVI_.MWLR_DY_WS_EOSWS
EVI_.MWLR_DY_WS_LENGTH
EVI_MWLR_DY_WS_PEAK
EVI_.MWLR_DY_WS_SOSWS

Phases_VI BiasC

Variety_number_ny
Soiltype_NY
DAYS_TO_CCE_FROM_NDVI_DL_DY
_FRS_EOFRS
NDVI_DL_DY_FRS_EOFRS
NDVI_DL_DY_FRS_SOFRS
NDVI_DL_DY_FRS_LENGTH
NDVI_DL_DY_FRS_INTEGRAL
NDVI_DL_DY_RMS_LENGTH
NDVI_DL_DY_RMS_MEAN
NDVI_DL_DY_VS_LENGTH
NDVI_DL_DY_VS_MEAN
NDVI_DL_DY_WS_SOWS
NDVI_DL_DY_WS_LENGTH
NDVI_DL_DY_WS_PEAK
NDVI_DL_DY_WS_INTEGRAL

Variety_number_ny

Soiltype_NY
DAYS_TO_CCE_FROM_NDVI_MWLR_DY_FRS_
EOFRS
NDVI_MWLR_DY_FRS_INTEGRAL
NDVI_MWLR_DY_FRS_EOFRS
NDVI_MWLR_DY_FRS_SOFRS
NDVI_MWLR_DY_FRS_LENGTH
NDVI_MWLR_DY_RMS_INTEGRAL
NDVI_MWLR_DY_RMS_LENGTH
NDVI_MWLR_DY_VS_LENGTH
NDVI_MWLR_DY_VS_MEAN
NDVI_MWLR_DY_WS_INTEGRAL
NDVI_MWLR_DY_WS_EOWS
NDVI_MWLR_DY_WS_LENGTH
NDVI_MWLR_DY_WS_PEAK
NDVI_MWLR_DY_WS_SOWS

Variety_number_ny
Soiltype_NY
DAYS_TO_CCE_FROM_EVI_DL_DY_FRS_E
OSFRS
EVI_DL_DY_FRS_INTEGRAL
EVI_DL_DY_FRS_EOSFRS
EVI_DL_DY_FRS_SOSFRS
EVI_DL_DY_FRS_LENGTH
EVI_DL_DY_RMS_LENGTH
EVI_DL_DY_RMS_MEAN
EVI_DL_DY_VS_INTEGRAL
EVI_DL_DY_VS_LENGTH
EVI_DL_DY_WS_SOSWS
EVI_DL_DY_WS_LENGTH
EVI_DL_DY_WS_PEAK
EVI_DL_DY_WS_INTEGRAL

Variety_number_ny
Soiltype_NY
DAYS_TO_CCE_FROM_EVI_MWLR_DY_FRS_EOS
FRS
EVI_MWLR_DY_FRS_INTEGRAL
EVI_MWLR_DY_FRS_EOSFRS
EVI_MWLR_DY_FRS_SOSFRS
EVI_MWLR_DY_FRS_LENGTH
EVI_MWLR_DY_RMS_LENGTH
EVI_MWLR_DY_RMS_MEAN
EVI_.MWLR_DY_VS_LENGTH
EVI_.MWLR_DY_VS_MEAN
EVI_MWLR_DY_WS_INTEGRAL
EVI_.MWLR_DY_WS_EOSWS
EVI_.MWLR_DY_WS_LENGTH
EVI_.MWLR_DY_WS_PEAK
EVI_MWLR_DY_WS_SOSWS

No_VI

Latitude CCE
Longitude CCE
Date of the CCE
DOY of CCE
SowingDate
Variety_number_ny

Soiltype_NY
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11.6 Results of the individual correlations

11.6.1 Haryana

Haryana - Total Yield and VI meaures [R2]
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Haryana - Grain yleld and Vi measures (R2)
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11.6.2 Odisha

Qdisha - Total Yield and Vis [R2]
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11.7 Full result of the multiple regression analyses

11.7.1 Haryana
Table 9: Results of the multiple regressions for Haryana. If more than one end variables are used, the R? is the adjusted R

Haryana NDVI_DL NDVI_ MWLR EVI DL EVI MWLR
WS_VI

Start variables 4 5 4 5

R? 0.04 0.08 0.02 0.01
End variables 1 4 1 1
Significant 0.01 0.001 0.08 0.18

WS_VI_BiasC.

Start variables 8 8 7 8
R2 0.11 0.18 0.15 0.07
End variables 2 3 2 1
Significant 2.00E-03 1.00E-05 1.80E-04 0.01

Phases_VI

Start variables 12 13 12 13
R? 0.05 0.08 0.02 0.04
End variables 1 2 1 4
Significant 2.06E-03 2.40E-04 0.06 0.02

Phases_VI_BiasC

Start variables 15 16 15 16

R? 0.13 0.17 0.16 0.24
End variables 2 6 2 6
Significant 7.80E-04 8.60E-04 1.10E-04 1.76E-05

No_VI

Start variables 16

R? 0.12
End variables 2
Significant 1.33E-03

All VI Fixed

Start variables 5

R? 0.05
End variables 1
Significant 3.20E-05

All VI Fixed_BiasC

Start variables 8

R? 0.15

End variables 3

Significant 1.36E-04
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11.7.2 Odisha

Table 10: Results of the multiple regressions for Odisha. If more than one end variables are used, the R? is the adjusted R

Odisha NDVI_DL NDVI_ MWLR EVI DL EVI MWLR
WS_VI
Start variables 4 5 4 5
R? 0.08 0.06 0.24 0.14
End variables 1 1 3 2
Significant 0.02 0.04 5.80E-05 2.20E-03
WS_VI_BiasC.
Start variables 7 8 7 8
R? 0.29 0.27 0.42 0.37
End variables 4 4 6 5
Significant 1.46E-05 3.59E-05 1.54E-07 6.19E-07
Phases_VI
Start variables 12 13 12 13
R? 0.14 0.17 0.24 0.31
End variables 1 7 3 5
Significant 0.14 0.01 8.23E-05 1.22E-05
Phases_VI_BiasC
Start variables 15 16 15 16
R? 0.39 0.30 0.53 0.49
End variables 4 4 9 8
Significant 2.34E-07 1.19E-05 4.05E-09 1.23E-08
No_VI - - -
Start variables 7
R? 0.17
End variables 3
Significant 9.98E-04
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11.8 Full results of the RF classification

11.8.1 Haryana

Table 11: Haryana: Full results of the RF Classifications for the different groups of variables.

Haryana NDVI_DL NDVI_ MWLR EVI_ DL EVI MWLR
WS_VI
OFS 1 4 2 2
CVs 0.25 0.31 0.26 0.33
WS_VI_BiasC.
OFS 8 4 2 2
cvs 0.37 0.31 0.26 0.33
Phases_VI
OFS 8 3
Ccvs 0.32 0.43
Phases_VI_BiasC
OFS 9 10 8 16
Ccvs 0.32 0.35 0.33 0.37
No_VI
OFS 8
CcVs 0.46
AlLVI Fixed
OFS 5
CcVs 0.25
AlLVI Fixed_BiasC
OFS 6
cvs 0.32
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11.8.2 Odisha

Table 12: Odisha: Full results of the RF Classifications for the different groups of variables.

Odisha NDVI_DL NDVI_ MWLR EVI DL EVI MWLR
WS_vI

OFS 3 2 3 4

CVs 0.42 0.4 0.38 0.36
WS_VI_BiasC.

OFS 3 4 3 5

cvS 0.44 0.41 0.37 0.34
Phases_VI

OFS 5 12 4

CcVs 0.39 0.46 0.47
Phases_VI_BiasC

OFS 14 14 5 7

Ccvs 0.45 0.47 0.46 0.44
No_VI

OFS 2

cvs 0.40
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11.9 Linear regression — No VI variables

Haryana - No_VI (Total Yield)
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Figure 52: Results of the linear regression between the Non-VI-variables and total yield for Haryana.
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Figure 53: Results of the linear regression between the Non-VI-variables and total yield for Odisha.
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11.10 CCE method
Crop cut method. IFPRI, 2019 - Protocol for Crop Cutting Experiments: Gp-Level Yield

Estimation Through Smartphone Based Near-Surface Sensing Approach

D C
d C Field
Sm | 7.071 Sm
r
a Sm b
||‘£||
A RP &= B

Figure 1: Randomly demarcating the CCE plot

Figure 54: Instructions for the CCEs.
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11.11 GEE script: Data preparation and the temporal aggregation

The script is generally similar for all the different variables with MWLR. However, the step

when finding SOS and EOS will be different if the variables is to be found for a phase. Similarly,

the triggering measure will differ. In the end will be shown examples of how the DL smoothing,

precipitation, temperature and fixed seasons differ.

- Imports (4 entries) B
»var SentZa: ImageCollectilon "Sentinel-2 MSI: MultiSpectral Instrument, Level-2A"
rvar AOI: Polygon, 4 vertices
» var ROI: Point_ (76.64, 38.17)
»yar table: Table users/n-b-p/Berber/CCE_luget_export
AT T Ty F i T i r i v i i i iyl
FAfF7ffFrom timeseries to 1mage/ s /i fAFEFEEEET
FEEEEEEEER IS ETET R R RS E T A FERiqiies

var sZa = Sentia

.filterBounds (ROI)

.filterDate('2019-05-15", '2013-12-01');
9  Map.addLayer(table);
10 Map.addLayer(s2a);
11
12 wvar timeField = 'system:time start';
13
14
15 //f7/ Adds NDVI band
16
17 // function to add NDVI and time bands to image collection
18~ var addDataBands = function(image) {
19 var ndvi = image.normzlizedbifference(['B3", 'B4']).rename( NOVI');
20 return image.addBands (ndvi)
21 .addBands (image.metadatal 'system: time_start').divide(1l218).rename('tims'));
22 n
23
24  var data = s2a
25 .map (addDataBands ) ;
26
27
28
29 J/f7f clips the timeseries to the region of interest
30~ function klipper (image){
31 return image.clip(A0I);
32 ¥
33 wvar data = data.map(klipper);
34
35
36
37 J//f7f First smoothing of the timeseries
38~ function smootherit){
39
48~  function applyFit(img){
41 return img.select('time"').multiply(fit.select( 'scale']).add{fit.select( offset'))
42 set{'system:time_start',img.get('system:time_start')}.rename( 'NDVI'):
43 ¥
44 t = ee.Date(t);
45
45 var window = data.filterDate(t.advance(-windowSize, 'day'),t.advance{windowSize, 'day'));
47
43 var fit = window.select({[ time', 'NDVI'])
45 .reduce(ee.Reducer.linearfit(});
5@
51 return window.map(applyFit).tolList(5]);
52 }
53
54
55~ function reduceFits(t){
56 t = ee.Date(t);

1
2
3
3
5 J/f77 Filtering the imagecollection
[
7
8

57 return fitIC.filterDate(t.advance(-windowSize, "day').t.advance(windowSize, 'day'))
58 .mean () .set('system:time_start’,t.millis()).rename{ ' NDVIsmoothl');
59}

68
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61

62 war dates = ee.Listldata.aggregate_array( system:time_start'});

63

64 war windowSize = 6; //days on either side

685

66 wvar TitIC = ee.Imagelollection(dates.map(smoother).flatten()];

a7

68 wvar smoothed = ee.ImageCollection(dates.map(reduceFits));

69

78

71

72 /7444 Juins the smoothed timeseries to the original

73

74~ var filter = ee.Filter.egualsi{

75 leftField: 'system:time_start',

76 rightField: 'system:time_start

771

78

79 // Create the join.

80 war simpleloin = e=.Join.inner();

81

82 /7 Inner join

83 wvar innerJoin = ee.ImageCollection(simpleloin.apply(data, smoothed, filter)}:

84

85~ wvar data = innerJoin.map(function(feature) {

36 return ee.Image.cat(feature.get( 'primary'), feature.get('secondary’});

87 1)

88

89

98 ///f Prepares for second smoothing

91

92 /// creates variable (sneak). that contains the highest value of the original or smoothed timeseries
L

94~ wvar ferstel = function(image) {
a5 var diff = image.select( 'NDVIsmoothl
=153 return image.addBands (d1ff);

).subtract(image.select ('NDVI'}).rename( 'diff');

97 T

93

99

188~ var andenl = function(image) {

101 var absdiff = image.select('diff').abs().rename( zbsdiff');
182 return image.addBands (absdiff):

183 I

la4

185

106~ wvar tredjel = function(image) {
107 var sneak = image.select('NDVI').add(image.select( 'absdiff').add(image.select( 'diff }).divide(2)).rename( sneak');
108 return image.addBands (sneak);
189 T

118

111 var data = data

112 .mapifarstel)

113 .map (andenl)

114 .map(tredjel);
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115
116
117
118
115
128
121
122~
123
124~
125
126
127
128
125
138
130
132
133
134
135
136
137
138
135
146~
141
142
143
144
145
145
147

145
158
151
152
153
154
155
156
157
158
155
la@ -
1561
152
163
la4d
165
la6
1a7

B et ] |

A4 Then do the second smoothing on the variable "sneak".

/f Function to smooth time series
/f stacks windows of linear regression results
/f requires that a variable 'data’ ewists with NDVI and time bands
function smootherZ(t){

/f helper function to apply linear regression equation

function applyFit{img){

return img.select( time').multiply(fit.select('scale’}).addi{fit.select{ ' offset"'))
setl'system:time_start',img.get('system:time_start')).rename( 'NDVIZ');

T
t = ee.Date(t);
var window = data.filterDate(t.advance(-windowSize, 'day’').t.advance (windowsize, ‘day'));

var fit = window.selecti{['time', 'sneak']}
.reducei{=e.Reducer.linearFit(}};

return window.map(applyFit).tolist({5);
T

S function to reduce time stacked limear regression results
S reguires that a variable 'fitIC' exists from the smooter function
function reduceFits2(t){
t = ee.Date(t);
return fitICl.filterDate(t.advance(-windowSize, "day').t.advance(windowsize, 'day'))
.mean().set('system:time_start'.t.millis(}).renama( 'NDVIsmooth2");

var dates? = ee.list({data.aggregate_array('system:time start'});

var fitICl = ee.ImageCollection (dates2 . mapismoother?) . flatten()):

var smoothed2 = ee.ImageCollection{dates2.map(reduceF1ts2));
fAAf4 Joins the new smoothing to the original

Af Inner join
var innerloinZ = ee,ImageCollection(simpleloin.apply(data, smoothedz, filter));

var data = innerJoin? .map(function(featurs) {
return e=.Image.cat (feature.get( 'primary'), feature.get('secondary’));

T

Afff7 Repeated until 18 smoothings
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886 ///// Inserting a value every day/////

888 /// add day of year
589~ wvar addDate_ny = function(image){

598 var doy = image.date().getRelative('day', ‘year'):

91 var doyBand = =e.Image.constant(doy).float().rename( doy');
ga2

893 return image.set('doy', doyBand):

394 I

895

896 /////velger et bdnd og snzvrer tiden. og tilfejer doy som property, sa den kan bruges til at joine med

898 wvar smoothedndvi = data.select{'NDVIsmoothl®').map(addDate_ny);

]

oS08

801 ///shifts ndvismoothl® with 5 days back and forward,and thenm merge
902 //Back

903~ function gs_dummy back f [image) {

S04 var time_start = ee.Number({image.get{'system:time_start'}};

905 var time_start? = time_start.subtract(5*36400000);

906 var NDVIsmoothl® = image.select('NDVIsmoothl@®).rename('NDVIsmoothlO_back');
907 return image.set('system:time_start', time_start2).addBands (NDVIsmoothld);
se8 }

918 wvar gs_dummy_back = smoothedndvi.select('NDVIsmoothl®®).map{gs_dummy back_f).map{addDate_ny);

913 //forward
914~ function gs_dummy_ forward_f (image) {

215 var time_start = ee.Number(image.get{'system:time_start')}});

916 var time_start2 = time_start.add{5*86400000);

917 var NDVIsmoothl® = image.select('NDVIsmoothl®®).rename('NDVIsmoothld _forward'):
913 return image.set('system:time start', time_start2).addBands (NDVIsmoothl);

919  }

5za

921 war gs_dummy_forward = smoothedndvi.select{ 'NDVIsmoothl®').map(gs_dummy_ forward_f).map({addDate_ny);
922 print('gs_dummy_forward'. gs_dummy_forward);

925 ///Joining to one timeseries

927~ var filter_ny = =e.Filter.equals({
G928 leftField: 'doy',

929 rightField: ‘'doy’

930 1)

932 // Inner join
933 wvar innerloin_nyl = ee.ImageCollection(simpleloin.apply(smoothedndvi, gs_dummy back, filter_ny)):;

935~ var smoothedndvi merged 1 = innerJoin_nyl.map(function(feature) {

936 return ee.Image.cat(feature.get('primary'), feature.get{'secondary’));

937 1)

938 wvar innerloin_ny2 = ee.ImageCollection(simpleloin.apply(smoothedndvi merged 1, gs_dummy forward, filter_ny));

940~ var smoothedndvi merged = innerJein_ny2.map(function|feature) {

941 return ee.Image.cat(feature.get('primary'), feature.get{'secondary’));
242 1)

943
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F/F/fThen need to insert the daily value. two on rither side.
Sifirst two to the left

function timeturnerl (imags) 1
var time_start = ee.Nurber(image.get('system:time_start'});
var time_start? = time_start.subtract(86400808);
var NDVIsmoothl® = image.select( NDVIsmoothle').subtract(((image.select( NOVIsmoothl')
.subtract(image.select('NDVIsmoothl®_forward')}) .divide(S)).multiply(1)).rename( 'NDVIsmoothld®);
return image.set('system:time start', time start2).addBands (MDVIsmoothld);

¥
var dummyl = smoothedndvi_merged.map(timeturnerl):
function namechange [(image) {

var NDVIsmoothl® = image.select('NDVIsmoothlE _3').rename( 'NDVIsmoothl@®);
return image.addBands (NDVIsmoothla);

¥

var dummyl = dummyl.select('NDVIsmoothle_3');
var dummyl = dummyl.map{namachangs);

var dummyl = dummyl.select('NDVIsmoothla');
print('dummyl’, dummyl);

/! fanother

function timeturnerZ (imags) 1
var time_start = ee.Nurber(image.get('system:time_start'}};
var time_start2 = time_start.subtract(2%*55400000);
var NDVIzsmoothle = image.select( NDVIzmoothle').subtract(((image.select( NOVIsmoothle')

.subtract(image.select('NDVIsmoothld_forward')}).divide(S)).multiply(2)]).rename( 'NDVIsmoothlo®);
return image.set('system:time start', time start2).addBands (NDVIsmoothlo);

¥

var dummy2 = smoothedndvi_merged.map(timeturner2);

var dummyZ2
var dummy?2
var dummyZ2

dummy2.select{'NDVIsmoothla_3');
dummy?2 .map {(namechange) ;
dummy?2.select ('NDVIsmoothla'):

J/f/fthen two to the right

function timeturner? (imags) 1
var time_start = ee.Nurber(image.get('system:time_start'}};
var time_start2 = time_start.add(26400000);
var NDVIzsmoothle = image.select( NDVIzmoothle').subtract(((image.select( NOVIsmoothle')
.subtract(image.select('NDVIsmoothl®_back'})).divide(5)) .multiply(1}). rename{ 'NDVIsmoothld")
return image.set('system:time start', time start2).addBands (NDVIsmoothlo);

¥
var dummy3 = smoothedndvi_merged.map(timeturner3);
function namechange [(image) {

var NDVIsmoothl® = image.select('NDVIsmoothlE _3').rename( 'NDVIsmoothl@®);
return image.addBands (NDVIsmoothla);

¥
var dummy3 = dummy3.select('NDVIsmoothle_3');
var dummy3 = dummy3.map{namachangs);

var dummy3 = dummy3.select('N0VIsmoothl®');
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1885 f/fanother

1005 - function timeturnerd (image) {

1087 var time_start = ee.Number({image.get{'system:time_start'}};

laesg var time_start? = time_start.add(2%26400080);

1805 var NDWIsmoothld = image.select('NDVIsmoothl®').subtract(((image.select( ' NOVIsmoothld"')

1018 subtract(image.select( 'MDVIsmoothl0_back'})).divide(5)).multiply{2}).rename( 'NDVIsmoothld');
1811 return image.set('system:time_start', time_start2).addBands (NDVIsmoothl@);

1812 1}

1813

1814 wvar dummy4 = smoothedndvi_merged.map(timeturnerd);

1815

1016

1817 wvar dummyd
1818 wvar dummyd
1912 wvar dummyd
1820

1821

1822 war merged
1623

124

1825 war smocthedndvi_time = merged.filterDate('281%-85-81°, '2819-12-15');
1826

1827 J/f/ 5/ fshortening the season from min til min// /07 78578 f

1628

1928 - var addDate = function(image){

1030 var doy = i1mage.date().getRelative('day', 'year');

1831 var doyBand = ese.Image.constantidoy).float{). rename( ' doy'};

1832

1033 return image.addBands (doyBand) ;

1834 ;

1835

1836 var data = smoothedndvi_time.select('NDVIsmoothl@').map (addDate);

1837

1838 war maxndvi = data.select('NDVIsmoothl®').max().rename( maxndvi');
1039 /J/finding date for peak

1848 F//function that removes all values less than max

1041~ function for_max_date (image) {

1042 var smoorth = image.select('NDVIsmoothl@');

]

dummy4,select('MDVIsmocothld 3');
dummy4d . map {namechange) ;
dummy4, select ('MDVIsmoothl0');

dummy 1. merge {smoothedndvi) .merge (dummy2) .merge (dummy3) . merge (dummyd)

1043 return image
1844 JupdateMask({smoorth, gte{maxndvi.select("'maxndvi*)));
1845 ¥

1046 /// get maxdoy
1847 wvar maxndvi_date = data.map(for_max_date).select( doy’).max();

1848

1049 - function for_forstedel (image) {

1958 var smoorth = image.select('doy');

1051 return image

1052 .updateMask(smoorth. lte(maxndvi_date.select('doy')});
1853 T

1854

1955 war forste_del = data.map{for_forstedel);

Tnre
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1857
1a58
1855
laca
1061
laez
1863
lae4
1965
1066
1067
1868
1065
la7a
1871
la72
1973
1a74
1875
1876
1977
1878
1879
1aga
1o81
las2
10883
lag4
1085
1056
1087
1288
1085
1a5a
1891
lasz
1093
1a94
18595
1856
1997
1898
1a59
1168
1181
1182
1183

fifinding date for min

var forste_del_min = forste_del.select{'NDVIsmcothl2').min();

function for_forste_de
var smoorth = image.
return image
updateMask (smoorth.

T

[fdette skal 53 vare s

var forste_del_min_dat

print{'forste_del min_dato', forste_del min_dato);

fifinding for second h
function for_andendel

var smoorth = imags.
return image

¥

.updateMask (smoorth.gte(maxndvi_date.select{'doy')}};

var anden_del = data.m

Fifinding min for seco

var anden_del_min = anden_del.select{ ' NDVIsmoothlo').min()

print({'anden_del min',

function for_anden_del
var smoorth = image.
return image
updateMask (smoorth.

i

var anden_del_min_dato
//iThen make the windo

function for_wvindus (1
var smoorth = image.
return image
updateMask (smoorth.
.updateMask (smoorth.

H

var smocthedndvi_time

in first half

1_min_dato (image) {
select('NDVIsmoothla');

lte(forste_del min));

tart

o = forste del.map({for forste del min_dato).select{'doy').min{};

alf

[image) 1
select('doy');

apifor_andendel);

nd half of the season

anden_del_min};

_min_dato (image) {
select('NDOVIsmoothld');

lte{anden_del min));

= anden_del.map{for_anden_del min_dato).select('doy’}.min(}:

W

mage) 1
select('doy');

gte{forste_del_min_datol)
lte{anden_del min_dato));

= data.map(for_vindue);
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1166
1187
1188
1183
1118
1111
1112
1113
1114
1115
1116
1117
1118
1119
1128
1121
1122
1123
1124
1125
1126
1127
1128
1129
1138
1131
1132
1133
1134
1135
1136
1137
1138
1139
1148
1141
1142
1143
1144
1145
1145
1147
1148
1143
1158
1151
1152
1153
1154
1155
1156
1157
1158
1159
1168
1161
1162
1163
1164
1165
1166
1167
1168
1163

?ffff!fdetermining 505 and EOS based om when the VI walue reaches a certain percentage of the increase or decrease

var maxndvi = smoothedndvi_time.select('NDVIsmoothl2').max().rename( maxndvi');
var minndvi = smoothedndvi_time.select('NDVIsmoothl2').min().rename( minndvi');

var addDate = functioniimage){
var doy = image.date().getRelative('day', 'year'):
var doyBand = ee.Image.constant(doy).float(). renams( 'doy');

return image.addBands (doyBand)

var smocthedndvi_time = smocthedndvi time.map({addDate);

f744 505 1s when reaching 20% of the increase

var 505_threshold = ((maxndvi.subtract(minndvi)).multiply({®.2)}.add{minndvi); ///for the phases the specific values will be used

var E0S_threshold = ((maxndvi.subtract(minndvi)}.multiply(0.2)}.add(minndvi)

/f/function that removes all walues less than S0S

function for_S05_date (image) {
var smoorth = image.select('NDVIsmoothlo');
return image
+updateMask({smoorth.gte(505_threshold.select('maxndvi®)));

¥
//¢ get 50Sdoy
var 505date = smoothedndvi_time.mapifor_S0S_date).select('doy

".mind);
Jf/function that removes all valuess less than EOS
function for EO0S_date (image) {

var smoorth = image.select('NDVIsmoothld');

return image

.updateMask(smoorth.gte(E0S_threshold.select( 'maxndvi®))):

¥
f7¢ get 505doy
var EOSdate = smoothedndvi_time.map(for_EOS_date).select('doy'}.max();

/ffffunction that removes values before S0S and after EOS
function filter_S05_EO0S (image) {
var doyselect = image.select('doy');
return image
.updateMask(doyselect.gte(505date)) ///remove obs. before 505
.updateMask (doyselect.lte(E0Sdate) )
i

var growing_season = smoothedndvi time.map(filter_S0S_E0S).select('NDVIsmoothle');

L
//Integral triggering measure
var accndvi = growing_season.sum().subtract({({maxndvi.subtract{minndvi})

Jmultiply(@.2)).add{minndvi)}).multiply{(growing_season.count(}}); ////for other triggering measures this will differ

Export.image.todsset({
image: accndvi,
descripticn: 'Whole_Season
assetId: '08_06/Edday_ndvilOs_nordl w6 _midtmaj-dec_usky_s_fraction WS_082_inds',
scale: 14,
region: AOI,
pyramidingPolicy: {'.default': 'sample'}
I
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11111 For EVI
- - - - |
- Imports (4 entries) @
»var SentZa: ImageCollection "Sentinel-Z MSI: MultiSpectral Instrument, Lewel-2A"
»var AQL: Pﬂlygon, 4 vertices
»var ROI: Point_(76.684, 30.17)
»var table: Table users/n-b-p/Berber/CCE_luget export

I SfAFFEF i fiirdidsffidriry

2 fIALS O BNL SSATERTATERTETS

3 SASSIETEFEEA AT i iriiy

4

5 J/fffffiltering the timeseries

6 war s2a = Sentia

7 .filterBounds (ROI)

8 .filterDatel'2019-05-15", '2019-12-01'):
9 J/ .sort('CLOUD _COVER'):
18
11
12  wvar timeField = 'system:time_start':
13
14 war simpleloin = =e.Join.inner()
15

16 J// Adds EVI band to the timeseries (calls 1t NDVI so 1t matches with the rest of the script)

12 - var addDataBands = function(image) {

19 var evi = image.sxpressioni

20 - 2.5 % ((NIR - RED) / [MIR + & *= RED - 7.5 #* BLUE + 1)), {
21 '"MIR': image.select('BE').divid={108aa},

22 '"RED': image.select('B4').divid={108a8a},

23 '"BLUE" : image.select('B2").divide(l888a)

24 Yl.renamel‘evi');

25 return image.sddEands(evi)

26 .addBands (image.metadata('system: time_start').divide(1218). renams{ " tim="]));
27

28

29~ wvar addDatzBands2 = function(image) {

30~  war evil = image.sxpressicn( 'l - evil', {

31 evil': image.sslect(evi’)}) . renamel 'evil’);

3z return image.addBands (evil);

33 I:

34

35

36 - var addDataBands3 = function(image) {

37 var ndvi = images.sxpressicon(

38 - ((abs + (1 - evi)) / (1 - evi)) * evi J 2", {
39 abz': image.select('svil').abs(),

40 evi': image.select('svi')

41 t).rename( 'NDVI_a');

a4z return image.addBands (ndvi);

43

44

45 7/ /Make all values less than @ to @.
45~ function addDataBandsd (image) {

47 var ndviabs = image.select('NDVI_a').abs():

43 var ndvi = ndviabs.add({image.select{'NDVI_a')).divide(2). rename( 'MDVI"};
49 return image.addEands (ndvi);

50

L~ |
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55
56~ wvar a_addDate_ny = function(imagel{

57 var doy = image.date().getRelative( 'day', 'year'):
53 var doyBand = =e.Image.constant(doy).float (). rename( doy'};
59

a] return image.s=t('doy', doyBand);

61 I;

62

63 wvar data = s2a

64 .map (addDataBands )

65 .map (add0ataBands2 )

a5 .map (addDataBands3)

a7 .map [addDataBands4)

68 .map (a_sddDate_ny);

69

78

T iy

12

73 /fffvalues of @ are made an average between the two neighbours
74 //Back 5 days

75~ fumction z_gs_dummy back f (image) {

76 var time_start = ee.Murber{image.get({'system:time_start'});

77 var time_start2 = time_start.subtract(5*36400000);

78 var NDVIsmoothS = image.select('NDVI').rename( 'MOVI_back z');:

79 return image.setl'system:time_start', time_start2).addBands (NDVIsmooth5):
8 I

81

82 war z_gs_dummy_back = data.select('NDVI').map(z_gs_dummy back f).map({a_addDate_ny);

84 //Back 10 days
85~ function bz_gs_dummy back f (image) {
a6 var time_start = ee.Murber{image.get{'system:time_start'}});

87 var time_start2 = time_start.subtract(10*E6400000);

g8 var NDVIsmoothS = image.select('NOVI').rename('MOVI_back_10z'}):

89 return image.setl'system:time_start', time_start2).addBands (NDVIsmoothS):
98 i

a1

92 wvar bz_gs_dummy _back = data.select{'NOVI').map({bz_gs_dummy_back f).map(a_addDate nyl:

94 J/forward 5 days

95+ function z_gs_dummy_ forward_f (image) {

a5 var time_start = ee.Murber({image.get{'system:time_start'});

97 var time_start2? = time_start.add{5*26408080);

98 var NDVIsmoothS = image.select('NOVI').renamz( 'MOVI_forward z'):

ag return image.setl'system:time start', time_start2).addBands (NDVIsmooths);
lae T

182 war z_gs_dummy_forward = data.select{'NOVI').map(z_gs_dummy_forward_f).mapla_addDate_ny):

184 /fforward 10 days

1895~ function bz_gs_dummy forward f (image) {

1a6 var time_start = ee.Mumber(image.get{'system:tims_start'}};

1a7 var time_start2 = time_start.add{10*35400800);

188 var NDVIsmoothS = image.select('NOVI').rename( 'MOVI_forward _18z');

189 return image.setl'system:time_start', time_start2).addBands (NDVIsmooths):
118 }

111

112  wvar bz_gs_dummy_forward = data.select('NDVI').map(bz_gs_dummy_ forward_f).map({a_addDate_ny):
112
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115

116 ///7///joiner

117- wvar filter_ny = ee.Filter.equals({

118 leftField: ‘doy'.

119 rightField: 'day’

120 });

121

122 /7 Inner join

123 //gs and backs

124  war innerloin_zl = ee.ImageCollection(simpleloin.spply(data, z_gs_dummy_back, filter_nyl);
125

126- wvar growing_season_merged lz = innerJoin_zl.map(function(feature) {

127 return e=.Image.cat(feature.get('primary'), feature.get{'secondary’});
128 1)

129

138

131 //and forwards

132 war innerloin_z2 = ee.ImageCollection(simpleloin.apply(growing_season_merged_lz, z_gs_dummy_forward, filter_nyl):
133

134- wvar growing_season_merged_2z = innerJoin_z2.map(function (feature] {

135 return e=.Image.cat(feature.get('primary'), feature.get{'secondary’});
136 1)

137

138 //and forwardle

139 wvar innerloin_z3 = ee.ImageCollection(simpleloin.zpplyigrowing season_merged 2z, bz _gs_dummy_ forward, filter_ny)):
148

141~ wvar growing_season_merged 3z = innerloin_z3.map(function (feature) {

142 return e=.Image.cat(feature.get('primary'), feature.get{'secondary’});
143 1)

144

145 //and back 18

145 wvar innerloin_z4 = ee.ImageCollection(simpleloin.apply (growing_season_merged_3z, bz_gs_dummy_back, filter nyl):
147

148~ wvar growing_season_merged_4z = innerJoin_z4.mzp(function (feature) {

149 return ee.Image.cat(feature.get({ 'primary'}, feature.get('secondary’));
158 1)

151

152

153

154  JfA0008

155- function forevi_z (image) {

156 var ndvi = image.select( 'NIVI');
157 var verdi_hvis nul = (image.select('NDVI_back z').add{image.select{'NDVI_forward z'))
158 .add(image.select (' NDVI_forward_10z')}).add(image.select{'NDVI_back_18z'})).divide(4). rename( ' verdi_hvis_nul_z'};

159 var ny_ndvi = ({{{ndvi.subtract(0.00081) .multiply(-1}).add({ndvi.subtract(a.

168 .ebs () ). multiply(1/0.00882)) ) .multiply (verdi_hvis_nul).add(ndvi}).rename('Ny_| z'):
161 return image.addBands (ny_ndvi);

162 }

163

164 wvar data = growing_season_merged dz.map(forevi_z);

165

166
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FREir)

167 ffAfA808e!
168 //////5hift new timeseries back and forth 5 and 18 days

169 //back

I

171- function a_gs_dummy_back_f (image)} {

172 var time_start = ee.Mumber{image.get('system:time_start'});

173 var time_start2 = time_start.subtract(5*36400000);

174 var NDVIsmoothS = image.select('Ny_NDVI_z').rename( NDVI_back');

175 return image.set('system:time_start', time_start2).asddBands (NDVIsmoothS);

176 }

177

178 war a_gs_dummy_back = data.select('Ny _NOVI_z').mapla_gs_dummy_back_f).map({a_addDate_ny):
179

158 //18
181~ function b_gs_dummy_back_f (image)} {
132 var time_start = ee.Mumber{image.get('system:time_start'});

183 var time_start2 = time_start.subtractilo*zedoo000);

134 var NDVIsmoothS = image.select('Ny_NDVI_z').rename( NDVI_back_18'});:

185 return image.set('system:time_start', time_start2).zddBands (NDVIsmoothS);
186 }

157

188 war b_gs_dummy_back = data.select('Ny _NOVI_z').map(b_gs_dummy_back_f).map({a_addDate_ny):
1589

198 //print{'b_gs_dummy back', b_gs_dummy_back)

190

192 //forward 5

193~ function a_gs_dummy_forward_f (image) {

194 var time_start = ee.Mumber{image.get('system:time_start'});

195 var time_start2 = time_start.add{5*264000080);

196 var NDVIsmoothS = image.select('Ny_NDVI_z').rename( NDVI_forward'):

197 return image.set('system:time_start', time_start2).addBands (NDVIsmoothS):
198 |

199

288  war a_gs_dummy_forward = data.select{"Ny_NDVI_z').map(a_gs_dummy_forward_f).map(a_addDate_ny);
201

202

203

2804 //forward 18

285~ function b_gs_dummy_forward_f (image) {

206 var time_start = ee.Mumber(image.get('system:time_start')):

2a7 var time_start2 = time_start.add{10*36400000);

208 var NDVIsmoothS = image.select('Ny_NDVI_z').rename( NDVI_forward_18');
209 return image.set('system:time_start', time_start2).addBands (NDVIsmoothS):
218}

211

212 war b_gs_dummy_forward = data.select{"Ny_NDVI_z').map(b_gs_dummy_forward_f).map(a_asddDate_ny);
213
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214 ///Joins

215

216~ var filter_ny = ee.Filter.equals({

217 leftField: 'doy’,

216 rightField: 'doy’

219}

220

221  // Inner join

222  /fgs and back

223  war innerJoin_nyl = ee.ImageCollection{simpleJoin.apply(data, a_gs_dummy_back, filter_ny}):
224

225- war growing_season_merged_1 = innerJoin_nyl.mzp(function(feature) {

226 return ee.Image.cat(feature.get( 'primary'), feature.get{'secondary'});

227 1)

228

229 //and forward

238  war innerloin_ny2 = ee.ImageCollection{simpleloin.apply(growing season_merged 1, a_gs_dummy_forward, filter nyl):
231

232~ wvar growing_season_merged = innerJoin_ny2.map(function(feature) {

233 return ee. Image.cat(feature.get( 'primary'), feature.get('secondary'));

234 1)

235

236

237 /fand 18 back

238 war b_innerloin_nyl = ee.ImageCollection{simpleJoin.apply{growing_seascn_merged, b_gs_dummy_back, filter_ny)}):
239

240~ wvar growing_season_merged = b_innerJoin_nyl.map(function(feature) {

241 return ee,Image.cat(feature.get( 'primary'), feature.get('secondary'});

242 1)

243

244  /fand 18 forward

245 war b_innerloin_ny2 = ee.ImageCollection(simpleJoin.apply (growing_season_merged, b_gs_dummy_forward, filter_ny)});
245

247 - wvar growing_season_merged = b_innerJoin_ny2.map(function(feature) {

248 return ee,Image.cat({feature.get('primary'), feature.get('secondary'});

249}

258

251
252 J//40f4fFfffcaledlates and apply the EVI outlier removal measure
253

254~ function forevi (image) {
255 var middel_uden = {image.select( ND\
258 var varians_uden = {(image. se'lect( !

| 10°)))) .divide(a);

257 .add({image select( NDVI sard_19").subtract(middel_uden]).pow(2)).add({image.select{ ND J.subtract{middel_uden}).pow(2)}.rename( varians_uden®);
258 var middel_med = (image ') add(image “select( NDVI_back')).sdd(image.select( “forward')}) .add{image select( 'NDVI_back_18")
259 .add(image.select (' ND d_18")

back').subtract (middel_med)).pow(2})

268 var varians_med = ((imsge seleET _|
').subtract(middel_med)).powi2))

261 «add({image.select( 'NDVI

262 .add({image.select( 'NDV k_10').subtra t(mlddel med ). powtz 1. renumel varia

263 var ndvi_middel_sbs = (image. se'lect( Ny z'}.subtract(middel _uden)).abs(); ///h\'ls abs() er p3 tager den ogsd hvis negle vardier er for lave

264 var cutoff = 1;  //includes only those with negative measure larger than this.

265 var measure = (({(varians_uden.subtract(varians _med)).divide(varians_uden)).multi plytnduﬁmiddeliabs.divide(m:iddelfuden))J.add(cuto‘ff)‘rename[ Measure'};

268 var ger_nul = ({{measure. add(measure absi)}}.divide(2)).multiply({image.select( Ny NDVI z'}}).divi de{(measure.add(measure‘abs{:']:'.di\'idE(ZJ:'.'EnanE('Nu'l_\D'u‘I );
267 var verdi_hvis_nul I_back ) add(lmage se'lect(“DuI forward' })”add (Image.select('NOVI_forward_18'))

268 .add{image .select [ . = 17

269 var ny_ndvi = (({{{gar_s nul sul:'tract{" . i ddl(gar nul.subtract(9.00001)).abs{)) .multiply(1/0.00882)))

278 .multiply (vardi_hvis_nul).addiger_nul} .

271 flvar ny2 ndvi = Hgar nul.multiply(-1). add(vardj. thS n 1 ) }.add((ger_nul.multiply(-1).add{vardi_hvis_nul)}.abs(}]}.divide(2).add(gar_nul).rename('Ny2_NDVI'})
272 return image.addBands (measure) . addBands (ger_nul). uddBands{vardJ hvis_nul).add8ands (ny_ndvi}. addgands (varians, _med) . addBands (varians_uden);//. addEands(nyz ndvi):
273}

274

275

276 var growing_season_merged = growing_season_merged.map(forevi);

2717

278 var data = growing_season_merged.select(['NDVI','My_NDVI_z', 'Nul _NODVI®, 'My_NDVI', 'Measure', ‘varians_med', 'varians_uden']):

279

288

This process is then repeated once more.
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11.11.2 For the DL smoothings:

This code is inserted after the 10 MWLR smoothings and shortening of the season, and before

finding the SOS and EOS.

FEFf 4 /Double logistic

var fitty_op = ((s@son.select('ND
var fitty_ned = ((s@son.select('N

(8.5).add(forste_del_min);
VIsmoothle').max()).subtract{anden_del_min)).multiply(@.5).add{anden_del_min};

function for_s [(image) {
var smoorth = image.select( ' NDVIsmoothld');
return image
.updateMask(smoorth.gte(fitty_op));

r

function for_a (image) {
var smoorth = image.select( ' NDVIsmoothld');
return image
.updateMask(smoorth.gte(fitty ned));

r

var s = sason.map(for_s).select( doy').min();

var a = sason.map(for_a).select('doy').max(});

ffff4ffinding slopes

/{Increaing part

function for_stigning (image) {
var smoorth = image.s=lect({'doy'):
return image
.updateMask (smoorth.gte(s.subtract(&)))
.updateMask (smoorth.ltel(s.add(8)));
¥

var stigning = s@son.msp(for_stigning);
var linearfit_stigning = stigning.select(['doy', 'NDVIsmoothl®']).reduce(es. Reducer.linearFiti)):
//decreasing part
function for_fald (image) {
var smoorth = image.s=lect({'doy'):
return image
.updateMask (smoorth.gte(a.subtract(8)))
.updateMask (smoorth.ltela.add(8)));
¥

var fald = szson.map(for_fald);

var linearfit_fald = fald.select(['doy', 'NDVIsmoothl@']). reduce(ee.Reducer.linearFiti});
fff the actual DL smoething

function for_dl (image] {

var wndvil = forste_del_min.select( NDVIsmoothl@');
var wndvi2 = anden_del_min.select('NDVIsmoothld'):
var en = ee.Image(1);
var minus_ms = linearfit_stigning.select{’scale').multiply(-8);
var ma = linearfit_fald.select('scale’).multiply(-8);
var doy = image.select('doy');
var dl = wndvil.add(maxndvi.subtract (wndvil) ). multiply{({en.divide(en.add{(minus_ms.multiply(doy.subtract(s)}).exp(}}}))
.add{ (maxndvi.subtract (wndvi2) ) .multiplyien.divide (en.addi(ma.multiply (doy.subtract(a))).exp())) subtractien))).rename( dl"');
return image.addSandsidl);
F
var smoothedndvi_time = smson.map(for_dl);

11.11.3 For fixed:

Instead of using the VI value to find SOS and EOS, the fixed dates are used:

1895

-

var smoothedndvi_time = merged.filterDate('2019-08-15", '2019-10-18');
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11.11.4 For precipitation:

12049

1218 /7774 7FF/8dds precip in the shortened window////78iifs
1211 war precip = Chirps.filterBounds (ROI);

1212 wvar precip = precip.map(addDate) .map({for_vindue);
1213

Finds the EOS and SOS though the VI values as normal but uses the boundary dates as window

for the precipitation. And also use triggering measure on precipitation

1282 //var growing_season = smocthedndvi time.map(filter S05 EOS).select('NDVIsmoothla“);
1283

1284 jffr7ffff/fiShortems Precip with the found EQS and SOS///777ifiiis

1285 wvar growing_season = precip.map{filter 505 E0S).select{'precipitation');

1286

1287

1288

1289 /74047

1298 //then aggregate

1291 wvar accndvi = growing seasen.mean(); ///triggering measure 1s here the mean

1292

1293~ Export.image.tobssetid

1294 image: accndvi,

1295 description: 'Whole Season_precip_mean',

1296 assetId: '08 06/Edday  nordl we midtma)-dec_usky s fraction WS 02 inds Precip _mean',
1297 scale: 18,

12958 region: 4&0I,

1299 pyramidingPolicy: {'.default': 'sample'}

1308 I);
1301 Map.addLayeritable);
1302
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11.11.5 For temperature:

Temperature is inserted after the smoothings. And it is smoothed once.

1210 ////77/F/hdds temperature and adds the doy as band /777700 i7is
1211 war dota = Temp.filterBounds(ROI).f1ilterDate('2015-01-01", '2019-12-31');
1212 var dota = dota.map(addDate):

1213

1214

1215 //////then smoothingen

1216 var timeField = ‘system:time start';

1217 // function to add NDVI and time bands to image collection

1218~ var addDataBands = function(image) {

1219 return image.addBands (image.metadatal('system:time_start').divide(1lel8).rename('time’));
1228 I

1221 wvar dota = dota.mapladdDataBands);

1222 - function osmoother(t){

1223 /# helper function to apply linear regression eguation

1224~ function capplyFit({img){

1225 return img.select('time’'}.multiply(ofit.select('scale')).add(ofit.select( offset'))
1226 set('system:time_start',img.get('system:time_start')).rename('T');

1227 ¥

1228 t = ee.Date(t);

1229

1238 var window = dota.filterDatelt.advance(-windowSize, 'day').t.advance(windowSize, 'day'});
1231

1232 var ofit = window.select{['time", 'LST_Day_lkm']}

1233 . reduce({ee.Reducer.linearFit(}};

1234

1235 return window.map{capplyFit).tolList(s);

1236 }

1237

1238 // functionm to reduce time stacked linear regression results

1239 // requires that a variable 'fitIC' exists from the smooter function
1240~ function oreducefits(t){

1241 t = ee.Date(t);

1242 return ofitIC.filterDate(t.advance|-windowSize, 'day'),t.advance({windowSize, day'))
1243 .mean(}.set('system:time_start',t.millis(}).rename('T_smooth'};
1244 }

1245

1246

1247 wvar dates = ee.List(dota.sggregate_array( 'system:time_start'));

1245

1245 wvar windowSize = 20; //days on either side

1258

1251 wvar ofitIC = ee.ImageCollectionidates.mzplosmoother).flatteni)):

1252

1253  wvar osmoothed = ee.Imagelollection(dates.map(oreduceFits)):

1254

1255 //// then joining
1256~ wvar filter = ee.Fi
1257 leftField: 's
1258 rightField:
1259 I);

Tlter.equals({
em:time_start',
ystem:time_start'

1261 // Create the join.
1262 war simpleloin = ee.Join.inner();

1264 // Inner join
1265 wvar innerloin = ee.ImageCollection({simpleJoin.apply(dota, csmoothed, filterl):

1266

1267 - var dota = innerJoin.mzp(function(feature) {

1268 return e=.Image.cat(feature.get('primary'), feature.get('secondary']):
1269 I);

1278

After the EOS and SOS is found by the VI values, they are used to shorten the temperature

timeseries and the triggering measure is applied for temporal aggregation:

1354 S/ /7007 7 /Shortens temp with the found EOS and SOS/////F 77707
1355 war growing_season = dota.map(filter_S05_E0S).select('T_smooth');
1356

1357 ///triggering measure

1358 war accndvi = growing_season.mean();

1359

1360+ Export.image.taodsset({

1361 image: accndwi,

1362 description: 'Whole_Season_t_mean',

_nordl_

1363 assetId: '03_0
1364 scale:
1365 region: AQI,

1366 pyramidingPolicy: {'.default': 'sample'}
1367 1):

1368

1369

¢6_midtmaj -dec_usky_s_fraction_WS_02_inds_Temp_mean',
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11.12

GEE script: Spatial aggregation

Script showing how the created images were turned into variables.

=
W 0O = O L L GO RO et

B0 L LALLM LT AT e e e e e e A LA WL W G SRR M N N e e e e
B N S e i e ] R b €3 L0 G = G0 LN fa 00 RO bt 63 A0 00 S G LA s L0 KD e 3 A0 00 sl Y LN s L0 Bd e

- Imports (7 entries) B

var
var
var
var
var
var
var

table: Table users/n-b-p/Berber/CCE_luget export

god: FeatureCollection (262 elements)

middel: FeatureCollection (48 elements)

tvivlsom: FeatureCollection (4 elements) C

52: ImageCollection "Sentinel-2 MSI: MultiSpectral Instrument, Level-2A"
ROI: Polnt {(76.95, 29.96)

image: Image users/n-b-p/21_085_20/Edday_accndvil®smooth_nord_1_w6_midtmaj-dec_u_:

var samlet = god;

f/f/first sptial aggregation (not used, only for comparison)
var reduced = image
.reduceRegions ({

collection:samlet

reducer:ee.Reducer.mean(),

scale: 8.1

I

fAff joins to yield datapoint

=~ var joined = table.map(function(feat){
feat = ee.Feature(feat);
var grain_yield = feat.get('Grain_yiel'};
var biomass_yield = feat.get('Biomass_yi');
var total_yield = feat.get('Total_yiel');:
=~ var Filter = reduced.filterBounds(feat.geometry()).map(function(reduced){
return ee.Feature(reduced)
.set('Grain Yield', grain_yield)
.set{'Biomass Yield', biomass_yield)
.set{'Total Yield', total yield);
i3
return Filter;
1. flatten();

FAF87 Adds the internal buffer
= var addbuffer = function(feature) {
return festure.buffer(-5)%};

var buffer = samlet.map(addbuffer):

i/ fSpatial aggregation inside buffer
var reduced_small = image
.reduceRegions ({
collection:buffer,
reducer:es.Reducer.median(),
scale: 8.1

i3k

[fffjoiner the two feature collections (all field and internal buffer
=~ var joined? = joined.map(function(feat){
feat = ee.Feature(feat);
var grain_yield = feat.get('Grain Yield');
var biomass_yield = feat.get('Biomass Yield'):
var total_yield = feat.get('Total Yield');
var mean_poly = feat.get('mean'); /////////det er verdien inden buffer
- var Filter = reduced small.filterBounds(feat.geometry()).map(function{reduced small}{
return ee.Feature(reduced_small)
.set{'mean_poly’, mean_poly)
.set('Grain Yield', grain_yield)
.set{'Biomass Yield', biomass_yield)
.set('Total Yield', total_yield);
i3
return Filter;
1. flatten();
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#F/F/ creating the scatterplots with yield and VI value

Jffor total yield
var chart_t = vi.Chart.feature.byFeature ({
features: joinedz,
sProperty: 'Total vield',
yProperties: ['median'] /////mean er verdien med buffer
rl
.setChartTypel ‘ScatterChart')
setOptions({
title: 'Correlation in buffer®,
hixis: { title: "Total Yield'},
vhxis: { title: °VI measure' ¥,
lineWidth: 1,
pointSize: 3,
trendlines: { 8: {showR2: true, visiblelInLegsnd: true}, 1: {showR2: true, visibleInLzgend: true}}
P

print{chart_t};

/f for grain yield
var Bornhold = ui.Chart.feature.byFeature ({
features: joinedZ,
*Property: 'Grain Yield',
yProperties: ['medizn'] /////mean er vardien med buffer
rl
.setChartType('ScatterChart')
.setlptions ({
title: 'Correlation in bhuffer’,
hixis: { title: *Grain vield'},
vixiz: { title: "VI measure' 7},
linewidth: 1,
pointSize: 3,
trendlines: { @: {showR2: true, visibleInlLegend: true}, 1: {showR2: true, visibleInlLegend: true}}
i

print{Bornholm)
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11.13 Spyder script — RF Classification

learn.ensemble import RandomForestClassifier

matplotlib.pyplot plt
sklearn.model_selection i t StratifiedKFold
sklearn.feature_selection ~t REECM

input = \ \ewilL\Desk \ ALL total 5k

dataTrain = np.loadtxt(input, dtype='str’, delimiter="

labels = dataTrain[
x = dataTrain[1:, :
y = dataTrain[1:, -1]

classifier = RandomForestClassifier(n_estimators=58@, random_state=1, bootstrap=True)

rfe REECM (estimator=classifier, step=1, StratifiedKFold(n_splits=10, shuffle=True, random_state=1), scoring="
rfec

open(r“C: a L total C L Routput | .csy”, 'w', newline=
thewriter = ariter(f)
iterow(["
iterow(lal
iterow([ "Pc
iterow(rf
thewriter.writerow([])
thewriter.writerow([ "Opt
label collector = []
element in
if str(rfecv.support_.tolist()[element])=="True":
collector.append(labels.tolist()[element])
thewriter.writerow(label collector)

thewriter.writerow(rf .estimator_.feature_importances_.tolist())

figure()

.xlabel("N

.ylabel(” 3

.plot(range(l, len(rfecv.grid_scores_) +1), rfecv.grid_scores
.show()
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