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Spatial-Temporal Trends of Rainfall, Maximum and
Minimum Temperatures Over West Africa

Francis Muthoni

Abstract—This article investigates the magnitude and signifi-
cance of spatial-temporal trends of 37 years’ time series of the
gridded data for rainfall, maximum (Tmax) and minimum (Tmin)
temperature for West Africa. A modified Mann-Kendall test and
Theil-Sen’s slope estimator were utilized to test the significance and
the magnitude of trends, respectively. The magnitude of significant
trends for three variables between six agroecological zones (AEZs)
was compared. Gridded climate data represented gauge data with
high accuracy and, therefore, can reliably complement the sparse
observation network in West Africa. The three variables showed
significant positive and negative trends of varying magnitude and
spatial extent. June to September rainfall showed a positive in-
crease (0.1–5 mm/month/year) that mostly occurred north of 11°
latitude. October rainfall showed a positive trend across the re-
gion, but the magnitude was higher south of the same latitude.
A widespread significant warming trend was observed across all
AEZs and months. However, a localized cooling in August and
September over the Sahel and Sudan Savanna was an exception.
The cooling over the two AEZs coincided with a positive trend
of rainfall. The zonal analysis revealed that the magnitude of the
positive trend of June, September, and October rain increased
following a North–South gradient from the Sahel to humid forest
AEZs. Results provide spatial evidence of climate change in a
limited data environment to guide the targeting of appropriate
adaptation measures. The information generated from this article
helps the design of early warning systems against droughts and
floods.

Index Terms—Agroecological zones (AEZs), climate hazards
group infrared precipitation with stations (CHIRPS), CHIRTS-
max, satellite time series, spatial-temporal trends, TerraClimate
(TC).

I. INTRODUCTION

C LIMATE change and variability have significant positive
or negative impacts on the productivity and resilience

of agroecosystems across different regions [1]–[3]. These im-
pacts are more severe in predominantly rain-fed agricultural
systems in Africa, where they confound with extreme poverty
and rapid population growth [4]. The fifth assessment report of
the United Nations Intergovernmental Panel on Climate Change
(IPCC) estimated increased warming and wet season rainfall
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over Africa’s landmass [5]. Trend analysis using time series of
coarse resolution remote sensing data over tropical Africa shows
an annual mean temperature increase at a rate of 0.15 °C per
decade from 1979 to 2010 [6]. Predictions for rainfall are most
uncertain primarily due to limited understanding of tropical rain
forming processes.

The magnitude of climate change and variability is heteroge-
neous over space and time. Mapping spatial-temporal trends of
climate variables in Africa is challenging due to a sparse gauge
network and declining measurements from the existing stations
[7], [8]. The prevalent heterogeneous climatic gradients further
complicate the scarcity of the gauge network. The density of
gauge stations in Africa is 1 per 26 000 km2, which is eight times
lower than minimum recommendations by the World Meteoro-
logical Organization [9]. Gaps in gauge stations measurements
in Africa have increased by over 50% since 1900. Climate
analysis using data from a few sentinel gauge stations are used
to draw conclusions over vast spatial extents. Recent studies
have examined climatic trends in West Africa using only gauge
station data, for example [10], [11]. However, the information
generated from such studies can reliably support agro-advisories
for a short radius surrounding the stations, given the inherent het-
erogeneity in topography, which introduces sharp gradients such
as rain-shadow effect. Trends for climatic variables in Africa
have been investigated using coarse resolution remote sensing
or reanalysis data; for example, Collins [6] analyzed gridded data
with 2.5° × 2.5° spatial resolution. Coarse-resolution data mask
out important climatic details that can misinform policymaking.
Therefore, discerning the spatial distribution of change and vari-
ability, especially for rainfall and extremes temperatures, using
fine-resolution data is necessary to facilitate better targeting of
appropriate adaptive measures.

Improved availability and accuracy of long time series of
gridded climate data obtained from remote sensing satellites
and reanalysis systems can complement the limitation of a sparse
gauge network in Africa. The relatively new open access sources
of high resolution gridded climate data sets include the climate
hazards group infrared precipitation with stations (CHIRPS-v2
[12], climate hazards center infrared temperature with stations
(CHIRTSmax) [13] and TerraClimate surfaces (TC) [14]. How-
ever, these new gridded layers need rigorous evaluation against
existing ground gauge observations to ascertain their accuracy
and inform resource managers on which datasets could be appro-
priate for specific applications or locations. Several studies have
attempted to validate gridded time series data for rainfall in West
Africa at the catchment [15] or (sub)-national [16] and regional
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Fig. 1. Location of the study area. The 66 gauge stations used to evaluate the accuracy of gridded climatic data are superimposed on six AEZs over six countries
in the West Africa region.

[17] scales. These evaluations revealed significant disparities in
the skill of the satellite rainfall estimates. There is no single
best product as their accuracy is dependent on rainfall char-
acteristics considered (e.g., amount, intensity, and frequency)
[18], the timescale of observation [7], [19], [20], and elevation
gradients [21].

There are fewer meteorological stations that record tem-
perature variables, and existing observations are much shorter
compared to rainfall [22], [23]. Moreover, there is limited
knowledge on spatial-temporal trends of temperature extremes
despite heat stress being one of the critical factors limiting
agricultural productivity. Furthermore, several studies examined
annual trends of climatic variables, hence masking intra-annual
dynamics that are important in regulating seasonal calendars.
Rainfall, minimum (Tmin) and maximum (Tmax) temperature
are the most critical climatic variables that significantly limit
crop yields. Monitoring the long-term spatial-temporal trends
of the three climatic variables is vital for generating knowledge
that would support evidence-based design or scaling out of
best-bet climate-smart agriculture strategies. Mapping climatic
trends can help to identify areas that agriculture is vulnerable to
extreme weather events such as frequent droughts, flooding, and
frost.

This article evaluates the accuracy of recently released
satellite-based, and reanalysis gridded climatic variables (rain-
fall, Tmin, and Tmax) obtained from Climate Hazards Group
(CHG) and TerraClimate (TC) databases respectively against
observations recorded by ground stations at monthly tempo-
ral resolution. It further investigates the significance and the
magnitude of monthly trends for three climatic variables for the
last 37 years (1981–2017) over six countries in West Africa.
Moreover, it compares climatic trends over six agroecological
zones (AEZs).

II. MATERIAL AND METHODS

A. Study Area

The study area covers approximately 2.2 million km2 over six
countries in the West Africa region. However, it excludes part of
Mali territory located in the desert AEZ, where there is minimal
agricultural cultivation (see Fig.1). The altitude ranges from 0
to 1300 m above sea level.

Annual rainfall ranges from 200 to 2400 mm and is char-
acterized by high interannual variability. Rains are primarily
influenced by the migration of the intertropical discontinuity
(ITD) that regulates the West African Monsoon by oscillating
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Fig. 2. Climatological cycle of the mean annual rainfall for the six agroclimatic zones over the study region. The codes for AEZs are 2 (Sahel), 3 (Sudan Savanna),
4 (Northern Guinea Savanna), 5 (Southern Guinea Savanna), 6 (Derived Savanna), and 7 (humid forest). Rainfall data obtained from the CHIRPS-v2 database.

south to north and back [24]. Areas located south of the ITD
are regulated by moisture-laden south-westerly winds that blow
moist air from the Gulf of Guinea onto the hinterland [16].
The region located north of ITD is regulated by north-easterly
Harmattan winds that bring dry and dusty winds from the Sahara
desert between November and March. The Sahel and the four
immediate Savannah agroecologies (see Fig. 1) experience uni-
modal rainfall between April and October that is regulated by
the migration of ITD to its northernmost boundary (see Fig. 2).
The humid forest agroecology experience two wet seasons: the
major wet season from March to July and the minor wet season
from September to November (see Fig. 2).

Agriculture is the main economic activity in the region with
diverse crops depending on agroecology. Crops grown in the
Sahel and four consequent savannas agroecologies (see Fig. 1)
include Pearl millet (Pennisetum glaucum), sorghum (Sorghum
bicolor), maize (Zea mays), and lowland rice (Oryza spp). Live-
stock keeping is practiced mainly in a transhumance system,
where it is a significant source of livelihood.

B. Climatic Variables

Gridded monthly total rainfall data were obtained from TC
[14] and CHIRPS-v2 [12] databases. Gridded monthly mean
maximum temperatures (Tmax) data were obtained from TC and
CHIRTSmax [13] databases. Gridded monthly mean minimum
temperatures (Tmin) were only available from the TC database.
The TC database provides monthly climate data with a 4-km
spatial resolution covering the global terrestrial surface from
1958 to 2018. The primary weather variables available in the
TC database are Tmin, Tmax, total rainfall, vapor pressure,
downward surface shortwave radiation, and wind-speed. The
TC gridded layers are generated using a climatically aided
interpolation that combines high-resolution climatological fields
from WorldClim database [25] with coarser resolution temporal
anomalies from Climate Research Unit time series data version
4 (CRU Ts4.0) [26] and the Japanese 55-year Reanalysis [27].

CHIRPS-v2 and CHIRTSmax products are produced by the
US Geological Survey and the Climate Hazard Group at the
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University of California, Santa Barbara. CHIRPS-v2 algorithm
blends data from three main sources.

1) The CHG precipitation climatology with 0.05° spatial
resolution, which is estimated monthly from station data,
average satellite observations, elevation, latitude, and lon-
gitude.

2) The CHG thermal infrared-based satellite precipitation
estimate (CHIRP).

3) The in situ rain gauge measurements [12].
CHIRPS-v2 data are available from 1981 to-date at daily, pen-

tad (5 days), and monthly temporal scales at approximately 5.5-
km spatial resolution with quasi-global land coverage (50°S–
50°N). Like CHIRPS-v2 data, CHIRTSmax is estimated from
three main inputs.

1) A high-resolution 0.05° monthly climatology capturing
spatial variability.

2) GeoSat Infrared data that capture the temporal variability.
3) Available ground observations of Tmax [13].
However, the algorithm for CHIRTSmax uses a moving

window regression instead of interpolation that is applied to
estimate CHIRPS-v2 data. For each month and location, the
thermal infrared and the interpolated station components were
blended, based on weights derived from an empirical spatial
covariogram and the distance to the nearest station. Grid cells
near stations favor the interpolated station data, while values
far from stations primarily depend on the satellite temperature
fields. These blended anomaly fields were added to the Tmax
climatology to produce the CHIRTSmax surface. The dataset is
available from 1983 to 2016 at ∼5.5-km spatial resolution at the
Equator and near-global extent (70°N–60°S).

The accuracy of two different monthly gridded rainfall and
Tmax products was compared since the datasets are relatively
new. Comparing the accuracy of new products is logical to de-
termine which is accurate at different locations and biophysical
conditions. To the best of the author’s knowledge, the accuracy
of TC and CHIRTSmax products have not been evaluated in the
study area. However, recent studies have evaluated the accuracy
of CHIRPS-v2 rainfall at different spatial extents over the West
Africa region [18], [28]. The monthly temporal scale was se-
lected because the TC grid layers are only available at that inter-
val. Moreover, recent evaluations of gridded rainfall products in
the West Africa region revealed that their agreement with gauge
observations is significantly better at monthly compared to daily
and decadal temporal scales [18], [28]. Assessing climatic trends
from annually aggregated data could mask out significant intra-
and interannual variations considering that different locations
can experience similar total annual rainfall but with a contrasting
temporal distribution. Therefore, monthly climatic data better
represent the differences in cropping calendar activities at dif-
ferent locations compared to annual trends. Each input grid
comprised of a 37 years monthly time series (1981–2017; n
= 444 layers), except CHIRTSmax that was available between
1983 and 2016. The year 1981 was selected as the start date of
analysis based on the availability of most gridded climate layers.

Daily and monthly rainfall, Tmin and Tmax data for 66
ground weather gauge stations (see Fig. 1, Appendix A) were
obtained from national meteorological services and the global

summary of the month (GSOM) database [29]. The GSOM
database contains quality controlled monthly summaries of more
than 50 weather variables computed from stations in the Global
Historical Climatology Network Daily database [30]. The daily
gauge records were aggregated to monthly total rainfall and
monthly mean for Tmin and Tmax before merging with the
monthly dataset obtained from GSOM.

A map of AEZs with six distinct classes across the study area
was used to define climatic zonation (see Fig 1). The AEZ map
was produced after modifications of the agro-climatic zonation
map produced by [31] after integrating information on the length
of the growing season from [32]. These AEZs are here-after
referred to zones 2 (Sahel), 3 (Sudan Savanna), 4 (Northern
Guinea Savanna), 5 (Southern Guinea Savanna), 6 (Derived
Savanna), and 7 (humid forest).

C. Data Analysis

1) Validation of Climatic Variables With Gauge Data: A
point to pixel validation approach was used, whereby values
of grid cells were extracted and matched with those recorded at
colocated gauge stations. The agreement between monthly grid-
ded data and gauge station data was evaluated using a modified
Kling–Gupta efficiency (KGE) [33]. The KGE was decomposed
into the three individual elements, i.e., Pearson product-moment
correlation coefficient (r), bias (β), and variability (γ). The
goodness of fit statistics was generated using “HydroGOF” R
package [34]. The r measures the linear correlation between the
time series of observed gauge data and satellite rainfall estimates
(temporal dynamics). The β measures the average tendency of
the satellite values to be larger (β > 1, overestimation) or smaller
(β < 1, underestimation) than gauge data (bias). The γ shows
whether the dispersion of satellite estimates is higher or lower
compared to gauge observations (variability).

Moreover, the agreement was evaluated using the root-mean-
square error (RMSE) that is the standard deviation of the
difference between gridded estimates and gauge observations.
High RMSE indicates a considerable difference between gridded
estimates and gauge measurements and vice versa. Among the
pairs of rainfall and Tmax gridded products, the one that showed
high agreement with gauge stations was selected as input for
trend analysis.

2) Mapping Variability of Climatic Variables

A modified Mann–Kendall statistic [35] was used to test the
significance (p < 0.1) of monotonic trends for each of the input
variable. A modified Mann–Kendall statistic was selected to
cater for serial autocorrelation in the monthly time series data.
The magnitude of the trend was quantified using the Theil-Sen’s
median slope estimator [36]. Trend analysis was accomplished
using the “eco.theilsen-2” function of “EcoGenetics” R package
[37]. For every monthly time-series data, this function produced
two grid rasters’ representing the p-values from Mann–Kendall
significant test and the Theil-Sen’s slope estimator. Theil-Sen’s
slope for areas with p< 0.1 were regarded as significant whereas
areas with p < 0.1 were considered as nonsignificant. Theil-
Sen’s slope for the three variables was presented in maps using
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Fig. 3. Comparison between gauge station observations with (a) gridded CHIRPS-v2 rainfall, (b) TC rainfall, (c) CHIRTSmax, (d) TC-Tmax, and (e) minimum
temperatures (TC-Tmin) over six countries in West Africa region. The dashed blue line is 1:1 line and the continuous red line is the linear regression line. The units
for RMSE are the same as those shown in the y-axis.

raster [38] and rasterVis [39] R packages. Areas showing a
significant trend (p < 0.1) were highlighted on the maps with
hatched lines using cartography [40] R package.

Moreover, the differences in climatic trends between the six
AEZs in the study area (see Fig. 1) was investigated by com-
paring the significant monthly Theil-Sen’s slope (magnitude of
trend) for the three climatic variables. Boxplots were generated
to visualize the differences in climatic trends between AEZs for
each month. For grid cells where an overlapping significant trend
was observed for all the three variables, a correlation analysis
was conducted to examine their relationship. The Kendall tau
correlation was used to examine the relationship between the
trend of rainfall and the two extreme temperature variables at

a nominal significance level of p = 0.05. A grouping factor
was added as input in the correlation analysis to represent a
combination of months and AEZs.

III. RESULTS

A. Evaluating Gridded Climatic Variables Against
Gauge Data

All gridded monthly climate products except TC-rainfall es-
timated the gauge station observations with very high accuracy
(KGE ≥ 0.84; Fig. 3). The gridded CHIRPS-v2 rainfall product
showed higher accuracy [KGE > 0.84, Fig. 3(a)] compared
to TC-rainfall product [KGE > 0.67, Fig. 3(b)]. For both
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Fig. 4. Spatial–temporal trends of monthly CHIRPS-v2 rainfall (mm/month/year) over six West African countries for 37 years period (1981–2017). The blue
and yellow-red tones represent grid cells with positive and negative trends, respectively. The black hachures superimposed over the raster layer shows the area with
significant Theil-Sen’s slope (p < 0.1).

CHIRPS-v2 and TC rainfall products, the underestimation bias
of rainfall values above 100 mm was higher and more prevalent
compared to the overestimation bias of low values (below 100
mm). However, the TC-rainfall [see Fig. 3(b)) showed higher un-
derestimation bias compared to CHIRPS-v2 data [see Fig. 3(a)].
The gridded CHIRPS-v2 time series was subsequently selected
to quantify long-term trends of rainfall (see Section III-B),
given its higher accuracy compared to TC rainfall data. The TC
Tmax showed slightly higher overall accuracy (KGE = 0.95)
compared to CHIRTSmax (KGE = 0.92), therefore, the former
was selected as input for trend analysis. The gridded monthly
Tmin data showed high agreement with gauge records [KGE
> 0.85, Fig. 3(e)], although estimates below 20 °C were more
uncertain. This estimation bias reduced with increasing Tmin
values.

B. Spatial–Temporal Trends of Climatic Variables

CHIRPS-v2 rainfall showed a significant (p < 0.1) positive
trend ranging from 0.1 to 5 mm/month/year from June to October
with a peak in August [see Fig. 4(c)–(g)] but with varying spatial
distribution over West Africa. The positive trend of June to

September rainfall mainly occurred north of 11° latitude within
the AEZs 2, 3, and, 4 [Sahel, Sudan, and northern Guinea
savanna; Fig. 4(c)–(f)]. In contrast, rainfall in October showed a
significant (p < 0.1) positive trend (0.1–3 mm/month/year) over
75% of the region, but the magnitude of increase was higher in
the region South of 11° latitude [see Fig. 4(g)]. April rainfall
showed a significant decline (−0.1 to −2 mm/month/year) over
western Ivory Coast and Southern Mali. A significant decline
of May rainfall occurred along the trans-boundary region be-
tween Ivory Coast and Ghana and in the Volta Basin in west-
central Ghana. December and January rainfall showed signifi-
cant (p < 0.1) negative and positive trends but of low magnitude
(<1 mm/month/year), although the positive trend covered a
larger area. Rainfall trends for dry season months (November,
February, and March) were not calculated since these time
series were characterized by deficient rainfall and with many
data gaps.

TC Tmax and Tmin variables showed significantly (p < 0.1)
warming trends (0.005–0.067 °C/month/year) in all months but
with different spatial distribution across the region (see Figs. 5
and 6). However, a localized significant (p < 0.1) cooling was
observed between August [see Fig. 5(e)–(g)] and September
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Fig. 5. Spatial-temporal trend of monthly TC-Tmax (°C/month/year) over six West African countries for 37 years period (1981–2017). The blue and yellow-red
tones represent areas with cooling and warming trends, respectively. The black hachures superimposed over the raster layer show the area with significant Theil-Sen’s
slope (p < 0.1).

[Fig. 6(e)–(g)] in Southern Mali and Northern Burkina Faso, an
area that also experienced a significant increase in rainfall in the
same period [see Fig. 4(e)–(f)]. The range of change of Tmin was
narrower (−0.033 to 0.047 °C/month/year) compared to Tmax
(−0.045 to 0.067 °C/month/year). The TC Tmax during October
was mostly insignificant [see Fig. 5(g)], but Tmin showed signif-
icant warming in over 50% of the region [see Fig. 6(g)]. The most
severe and widespread warming trend of Tmax was recorded in
March compared to October and November for Tmin.

C. Magnitude of Climatic Trends Between AEZs

Zonal analysis of the magnitude of significant trends of the
three monthly climatic variables revealed varied patterns across

the six AEZs. CHIRPS-v2 rainfall for April showed a negative
trend in AEZs 6 and 7 [median = −0.74 mm/month/year,
Fig. 7(a)], while the rest of AEZs had a marginal trend. May
rainfall showed a marginally significant increase in AEZ 2 and
3 (0.14–0.28 mm/month/year) but declined in all the other AEZs
[−0.42 to −1.18 mm/month/year, Fig. 7(b)]. June, Septem-
ber, and October rainfall showed a positive trend in all AEZs
(median = 0.19–1.83 mm/month/year), and the magnitude of
the trend increased in a consistent pattern moving from AEZ
2 to 7 [see Fig. 7(c), (f), and (g); Appendix B). July rainfall
showed a negative trend in AEZs 5 and 6 but increased in
all the other zones. August rainfall had a positive trend in all
AEZs (median = 1.06–2.01 mm/month/year) except a decline
in AEZ 7 (median = −0.95 mm/month/year). December and
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Fig. 6. Spatial–temporal trends of monthly TC minimum temperature (Tmin) expressed in °C/month/year over six West African countries for 37 years period
(1981–2017). The blue and yellow–red tones represent areas with cooling and warming trends, respectively. The black hachures superimposed over the raster layer
show the area with significant Theil-Sen’s slope (p < 0.1).

January rainfall showed a remarkable positive trend only in AEZ
7 (0.23–0.64 mm/month/year).

Tmax and Tmin showed consistent warming trend across
all AEZs and months except July–October when a significant
cooling was observed in one or both parameters in AEZ 2 and
3 (see Figs. 8 and 9). The positive trend of Tmax and Tmin
from November to May was in most instances highest at AEZ
2 and lowest at AEZ 7 [see Figs. 8(b)–(h) and 9(b)–(h)]. The
highest positive trend of Tmax was observed during March
at AEZ 2 (0.055 °C/month/year), followed by AEZ 3 (0.051
°C/month/year). The observed cooling trend for both Tmax [see
Fig. 7(e) and (f)] and Tmin [see Fig. 8(e) and (f)] from August
to September in AEZs 2 and 3 coincided with a positive trend
of rainfall [see Fig. 7(e) and (f)].

Results revealed a significant negative correlation (r = - 0.21,
p < 2.2e−16) between trends of rainfall and Tmin at AEZ2

during August [see Fig. 10(a)]. Trends of rainfall and the two
extreme temperature variables at all the other combinations of
AEZs and months showed a significant positive correlation [r =
0.15 to 0.62, p < 5e−7, Fig. 10(b)].

IV. DISCUSSIONS

In West Africa, CHIRPS-v2 satellite-based rainfall was more
accurate than TC reanalysis product, although the TC data has a
finer spatial resolution (4 km) compared to CHIRPS-v2 (5.5 km).
In contrast, the reanalysis TC Tmax gridded data showed slightly
higher agreement with gauge data compared to the satellite
multidata source (CHIRTSmax) product. Moreover, the gridded
temperature variables [see Fig. 3(c)–(e)] showed a higher cor-
relation with gauge station data compared to the two gridded
rainfall products [see Fig. 3(a) and (b)]. Other interpolated
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Fig. 7. Variability of trends of monthly CHIRPS-v2 rainfall over six AEZs in West Africa. Only values from grid cells that showed a significant trend (p < 0.1)
in Fig. 4 are shown. The X sign in the boxplot indicates the mean of the trend. The spatial extent of AEZs is shown in Fig. 1

climatic surfaces such as WorldClim-2 [25] reported a lower
accuracy of rainfall compared to temperature variables. Rainfall
exhibits high spatial and temporal variability, such as the abrupt
changes along the rain shadows. In contrast, temperature exhibits
a rather smooth latitudinal and altitudinal gradient. Even when
disrupted, for example, by coastal effects, the resulting changes
are rather gradual [25].

Recent evaluations of monthly gridded CHIRPS-v2 data
against gauge station observations in West Africa reported a
high correlation that is similar to the results reported in this
study [15], [18], [28]. The higher accuracy of CHIRPS- v2
data is because the product was generated from high-resolution
climatology, multiple satellite products, and the algorithm incor-
porated a bias correction using the gauge station data [12]. The
higher bias observed in TC rainfall data could emanate from
the fact that the product was produced through downscaling
of coarser resolution (0.5°) CRU grids that are generated by

interpolation of spatially skewed gauge stations data [26]. The
low density of gauge observations used to estimate the original
CRU product could have resulted in poor representation of
local rainfall processes that are predominantly convective [41].
The lower accuracy of TC rainfall in West Africa compared to
CHIRPS-v2 echoes earlier findings by [20] that the performance
of gridded rainfall products exhibit differences from region to
region and is also dependent on the timescale of observation,
season, and topography. Comparing accuracy between relatively
new gridded datasets such as CHIRPS-v2, CHIRTSmax, and
TC rainfall is recommended to ascertain which ones are more
reliable at particular locations or context. However, to the best of
the author’s knowledge, this study is the first attempt to validate
TC monthly time series dataset in Africa.

The evaluation of gridded climate products was not com-
pletely independent because a proportion of gauge stations data
is input to the satellite-based algorithms; either directly for



MUTHONI: SPATIAL-TEMPORAL TRENDS OF RAINFALL, MAXIMUM AND MINIMUM TEMPERATURES OVER WEST AFRICA 2969

Fig. 8. Variability of trends of TC maximum temperatures (Tmax) over six AEZs in West Africa. Only values from grid cells that showed a significant trend (p
< 0.1) in Fig. 5 are shown. The X sign in the boxplot indicates the mean of the trend. The spatial extent of AEZs is shown in Fig. 1.

CHIRPS-v2 [12] and CHIRTSmax [13] or indirectly for TC
data [14]. The TC data was originally derived from the CRU
Ts4.0 and WorldClim climatologies that were interpolated from
a fraction of gauge stations data [14]. Some of the gridded
products such as CHIRPS-v2 use a different number of stations
over the years due to the prevalent decline of gauge stations data
[12]. This situation further complicates the identification of a
completely independent set of gauge stations

A point to pixel procedure was utilized to assess the accuracy
of the gridded climate variables. A mismatch between the scale
of two datasets can introduce bias during accuracy assessment
[14]. There is a potential risk of scale-dependent bias in the
current evaluation because the values of climate variables at the
location of a gauge station were compared with values of the
corresponding grid cell that covered approximately four-square
kilometers. However, the severity of such bias is more critical in
regions with complex terrain where the altitude of a station may

differ substantially from the average elevation of a colocated
grid cell. However, this should not be a significant source of
error in West Africa, where topographical gradients are mainly
gradual.

CHIRPS-v2 rainfall showed significant (p < 0.1) increasing
trend (0.1–3mm/month/year) along the Sahel, Sudan, and north-
ern Guinea savanna zones (AEZ 2, 3, and 4) [see Fig. 4(c)–(f)
and Fig. 7(c)–(f)], from June to September with peak increase
recorded in August, which is the wettest month in above AEZs.
Sanogo et al. [17] observed a positive trend of rainfall along the
West Africa Sahel that peaked in August. The significant positive
trend of rainfall over AEZ 2 and 3 during the wet season peak in
August and September was combined by significant cooling [see
Figs. 7–9]. Increased rainfall amplified the Tmin cooling effect
at AEZ2 in August. The inverse correlation between the positive
rainfall trend and the cooling of day and nighttime temperatures
is well documented in west Africa. Oueslati et al. [42] reported
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Fig. 9. Variability of trends of TC minimum temperature (Tmin) over six AEZs in West Africa. Only values from grid cells that showed a significant trend (p <
0.1) in Fig. 6 are displayed. The X sign in the boxplot indicates the mean of the trend. The spatial extent of AEZs is shown in Fig. 1.

a sharp drop in surface temperatures after rainfall events in
Burkina Faso. This is partly because of the convective activities
that increase the daytime cloud cover that, in-turn, attenuates
the incoming solar radiation. A recent long-term (1854–2014)
evaluation of rainfall trends using 602-gauge records over a
larger area in West Africa, reported a substantial recovery of
August–October rainfall [11]. However, the evaluation sug-
gested that rain has not fully recovered to the era of persistent
wet conditions that prevailed before 1968 across the region.
Therefore, the significant positive trends observed in this article
could be part of a transition state toward the wetter conditions.

Recent studies have associated the greening trend along the
Sahel belt of West Africa to the prevalent increase of growing
season rainfall [43], [41]. Usman et al. [28] reported a positive
trend of CHIRPS-v2 rainfall between August and October, with
a peak of 4 mm/year in August, over the Sudan-Sahelian savanna
in Nigeria, northern Togo, and western Burkina Faso. This

change was observed for a period of 35 years (1981–2015). They
observed that the positive trend of rainfall coincides with the late
maturity of sorghum and millet, which are the main staple cereal
crops in this zone. The significant increase in rainfall during
the late growing season over the Sudano-Sahelian savanna in
Nigeria is especially crucial for sorghum and millet production
since late drought impedes swelling of the grain, thus affecting
dry weight production. Drought before the flowering stage of
millet could reduce yields by over 70%. Sorghum is particularly
sensitive to late-season rainfall as the crop does not enter the
high water use period during its life cycle until August. The
positive trend of rainfall during the peak of the growing season
reduces the risk of detrimental drought during the ripening stage
of sorghum.

There is a growing body of evidence that farmers are adapting
to increased rainfall in Sahel and Sudan-savanna in West Africa.
For example, Lalou et al. [4] observed that an increase in total
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Fig. 10. Correlation between trends of CHIRPS-v2rainfall versus TC Tmin (a) and CHIRTSMax Tmax (b) for Sahel (AEZ-2) and Sudan Savanna (AEZ-3) of
West Africa during August and September. Only values from grid cells showing overlapping significant trends (p < 0.05) for the three variables in Figs. 4–6 are
included in the correlation analysis. The linear regression lines are shown with 95% confidence interval is shaded in gray color.

annual rainfall improved the adoption of Sanio pearl millet
variety along a North–South gradient in the Sahel over Senegal.
Sanio pearl millet variety requires more water and takes longer to
mature compared to the dominant Souna millet that ripens early
(80 days) and better adapted to droughts. They observed that
an average of 6.3 new villages adopted Sanio millet per year
when the average rainfall during the growing season was 415
mm. However, adoption exceeded 25.6 villages per year when
average rainfall was between 580 and 620 mm. Results from this
study provide further evidence on priority locations for scaling
out appropriate agronomic and animal husbandry technologies
to take advantage of the improved agricultural potential in the
Sahel and Sudan-Savanna agroecologies.

However, the observed positive trend of rainfall during the
wettest months, over the three arid-to-semiarid agroecologies,

can counter-intuitively accentuate floods and waterlogging.
Floods are frequent in the study area [44]. Moreover, increased
late-season rainfall (September–October) over AEZ 2–3 report-
edly caused rotting of mature millet and groundnuts crops,
thereby increasing preharvest losses [44]. Therefore, appropriate
adaptive measures are required to harness the increased mois-
ture and control its adverse effects on croplands and range-
lands at AEZ 2–3. The positive but low-magnitude rainfall
trend recorded during the dry months (January–December) at
the humid forest zone (AEZ-7) can offer dry season pastures.
However, the rainfall trends observed during these arid months
should be treated with caution, considering that CHIRPS-v2
product showed a tendency to overestimate low-magnitude rain-
fall events. The significant positive rainfall trends observed from
June to October along most AEZs could also be underestimated.
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Warming trends dominated in most agroecologies, except
for a few instances of localized cooling during August and
September over AEZ2 and AEZ3. Aguilar et al. [45] observed a
similar warming trend in Guinea that was characterized by hot
extremes and fewer cold extremes. A positive trend of rainfall
occurred over most AEZs between June and October (see Fig. 7).
However, this positive trend largely coincided with significant
warming trends. Increased warming can enhance the evaporative
loss of soil moisture, thereby attenuating the potential beneficial
effect of increased rainfall. The widespread warming trends will
directly affect the water balance in West Africa, especially the
evapotranspiration component.

Recent studies have quantified the effect of climate change on
crop yields [1]–[3]. Zhao et al. [3] demonstrated that each degree
Celsius increase of global mean temperature reduces global
yields of maize, wheat, and rice by 7.4%, 6%, and 3.2%, re-
spectively, though there are considerable variations across space.
Ray et al. [1] estimated that 1%–45% of the variability in maize
yield in different sections of the study area was due to climate
variability. In Southern Mali, Traore et al. [46] reported that an
increase of Tmax by 0.08 °C /year and 1 dry day/year during
the rainy season resulted in a yield loss of cotton equivalent to
24 kg/haand 41 kg/ha, respectively. It would be informative to
quantify how the observed warming trends, especially North of
11° latitude where rainfall is increasing or stable, could affect
yields of major staple crops. However, the current analysis did
not quantify trends of crop yields due to scarcity of matching
time series yield data. The next logical step to advance the
information generated by this study is to quantify the impact
of observed significant changes in climatic variables on crop
yields vis-à-vis the current edaphic and agronomic management
practices. Undertaking such a study will decipher the magnitude
of climatic control over past agricultural production and how the
scenario can unfold in the future if the observed climatic trends
prevail or escalate. Time series data for crop yields at farm level
would support the calibration of robust models for estimating
crop yields using increasingly available remote sensing data.
Initiatives that promote efficient record-keeping at the farm
level and increasing accessibility of such data for research are a
priority.

V. CONCLUSION

CHIRPS-v2 rainfall, CHIRTSmax, TC-Tmax, and TC-Tmin
accurately estimated gauge station data. Therefore, these grid-
ded datasets can reliably complement the sparse gauge station
network in West Africa. Increased availability of freely avail-
able gridded data facilitates a better understanding of spatial–
temporal trends of climate to inform the design of evidence-
based measures for adapting to climate change and variability.
A positive trend of rainfall was observed during the wet season
peak from August to September, mainly North of 11° latitude. A
widespread significant warming trend was observed over West
Africa in all months that emphasize the need for increased
investments of measures to deal with the effects of heat stress
on crops. The information generated in this study supports the
design of early warning systems against drought and floods.

Supplementary material 1: Characteristics of gauge stations
used for accuracy assessment.

Supplementary material 2: Variability of significant trends of
Tmax, Tmin, and Tmax for different AEZs and months.
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