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Abstract 13 

The ability to carry out systematic, accurate and repeatable vegetation surveys is an essential 14 

part of long-term scientific studies into ecosystem biodiversity and functioning.  However, 15 

current, widely used traditional survey techniques such as destructive harvests, pin frame 16 

quadrats and visual cover estimates can be very time consuming and are prone to subjective 17 

variations. We investigated the use of digital image techniques as an alternative way of 18 

recording vegetation cover to plant functional type level on a peatland ecosystem. Using an 19 

established plant manipulation experimental site at Moor House NNR (an Environmental 20 

Change Network site), we compared visual cover estimates of peatland vegetation with cover 21 

estimates using digital image classification methods, from 0.5 m x 0.5 m field plots. Our 22 

results show that digital image classification of photographs taken with a standard digital 23 

camera can be used successfully to estimate dwarf-shrub and graminoid vegetation cover at a 24 

comparable level to field visual cover estimates, although the methods were less effective for 25 

lower plants. Our study illustrates the novel application of digital image techniques to provide 26 

a new way of measuring and monitoring peatland vegetation to the plant functional group 27 

level, which is less vulnerable to surveyor bias than are visual field surveys. Furthermore, as 28 

such digital techniques are highly repeatable, we suggest that they have potential for use in 29 

long-term monitoring studies, at both plot and landscape scales.  30 

 31 

Keywords: Digital imaging, peatlands; vegetation survey; plant functional type; long-32 

term monitoring; Moor House NNR 33 

 34 
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1. Introduction 35 

The ability to carry out systematic, accurate and repeatable vegetation surveys is an essential 36 

part of scientific studies into ecosystem biodiversity and functioning. Such surveys, for 37 

example the Countryside Survey of Great Britain (Carey et al. 2008) and Environmental 38 

Change Network vegetation recording (Rose et al., this issue), can provide invaluable 39 

information about long-term vegetation change, biodiversity and indicators of environmental 40 

change.  In addition, given the growing recognition that vegetation composition plays a vital 41 

role in driving important ecosystem functions, vegetation surveys can help to inform on the 42 

ecosystem service value of land. For example, vegetation composition is important in 43 

controlling ecosystem carbon cycling processes (De Deyn et al. 2008).  This is particularly 44 

relevant to carbon-rich ecosystems such as peatlands (Gorham 1991), where different plant 45 

functional types (PFTs) have been shown to influence both short- and long-term rates of 46 

carbon cycling (Dorrepaal et al. 2007, McNamara et al. 2008, Trinder et al. 2008). Indeed, the 47 

influence of vegetation composition on greenhouse gas fluxes and rates of decomposition has 48 

recently been shown to be stronger than the effects of moderate climate warming (Ward et al. 49 

2013, Ward et al. 2015). These influences of vegetation on ecosystem function (Hooper and 50 

Vitousek 1997, Tilman et al. 1997), may be the result of changes in different aspects of 51 

vegetation including: community species richness (Naeem et al. 1994, Tilman et al. 1996); 52 

effects of specific individual species (Chapin et al. 1995) or changes in the composition of 53 

plant functional traits (Lavorel and Garnier 2002, Garnier et al. 2004, Diaz et al. 2007, 54 

Grigulis et al. 2013).  Thus, the development of cost and time effective ways to repeatedly 55 

monitor vegetation composition accurately to PFT level, is of great relevance to ecosystem 56 

function studies, particularly for long-term monitoring sites such as those operated by the 57 

Environmental Change Network (ECN) and other networks in the International Long Term 58 

Ecological Research Network (ILTER). 59 
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To assess vegetation change over time, repeatable and reliable survey and monitoring 60 

techniques are needed to allow comparisons between data sets (Howard et al. 2003).  61 

However, current widespread traditional methods such as destructive harvests (Nordh and 62 

Verwijst 2004), are damaging to the environment and therefore cannot be used in most long-63 

term investigations where conservation is paramount and repeated sampling of other 64 

parameters is required (Gilbert and Butt 2009). Although other survey methods such as visual 65 

cover estimates (Howard et al. 2003, Vittoz and Guisan 2007) and recording 66 

presence/absence of species (Scott and Hallam 2003) are non-destructive, they tend to be 67 

subjective and can be affected by errors and surveyor biases, and therefore can be difficult to 68 

repeat accurately. Techniques such as pin-frame point counts, although more accurate, can be 69 

time consuming. 70 

 71 

Digital image analysis (DIA) offers a non-destructive method which is a potentially faster 72 

and less biased alternative to these commonly used techniques (Richardson et al. 2001, 73 

Rasmussen et al. 2007, Booth et al. 2008). Several DIA techniques show great potential for 74 

use in long-term monitoring projects to build up large scale temporal datasets (Laliberte et al. 75 

2007), particularly for those which require survey data to PFT level rather than to detailed 76 

species level, which would require specialist botanical knowledge. Given the importance of 77 

PFTs as key drivers of ecosystem functions, the development of DIA techniques in 78 

monitoring to this scale could provide a standardised technique for monitoring vegetation 79 

change and hence the impact on change on ecosystem functions. 80 

 81 

The aim of this study was to develop a practical, accurate and repeatable technique to 82 

distinguish between PFTs, using an established plant removal experiment on the peatland 83 

ECN site at Moor House National Nature Reserve (NNR). To do this, we used a standard 84 
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compact digital camera (Nikon 5.1 Megapixel) and two methods of image classification.  The 85 

first method was an unsupervised classification method, referred to as a histogram peak 86 

classification method, which classifies images on the basis of peaks in histograms of Red, 87 

Green and Blue (RGB) values. The second method was a supervised classification method, 88 

which classifies images on the basis of training areas (manually defined pixels). These 89 

methods can be carried out using a variety of Geographical Information Systems software, 90 

including freeware such as QGIS and others to ensure that techniques were practical and 91 

affordable for use in future studies by a range of projects and users. In our study, we used 92 

ArcGIS (version 9.3, ESRI UK. Ltd, Aylesbury, UK) for method 1, hereafter named as 93 

“histogram peak classification”.  For method 2, hereafter named as “supervised 94 

classification”, we used ERDAS (version 9.1, ERDAS Inc. Norcross, GA, USA).  95 

 96 

2. Materials and Methods 97 

2.1 Study site 98 

We used Moor House NNR in the North Pennines of  England  (54°65’N, 2°45’W; altitude 99 

590 m), as our study site. Moor House NNR has been studied in ecological research since the 100 

1930s (Crowle 2008), and is currently the largest of the UK ECN Network, making it an 101 

important long-term monitoring site with a wealth of historic and present day scientific 102 

information. The vegetation present on the blanket bog is typical of UK National Vegetation 103 

Classification M19b, Calluna vulgaris-Eriophorum vaginatum blanket mire, Empetrum 104 

nigrum ssp. nigrum sub-community (Rodwell 1991). Species present can be divided into 105 

three broad functional groups: ericoid dwarf-shrubs (dominated by Calluna vulgaris and 106 

Empetrum nigrum), graminoids (dominated by Eriophorum vaginatum) and lower plants 107 

(comprising a diverse community of mosses, liverworts and lichens, including Sphagnum, 108 
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Hypnum, Plagiothecium, Rhytidiadelphus, Aulacomnium, Polytrichum, Pleurozium, 109 

Dicranum, Campylopus and Cladonia spp). 110 

 111 

Traditional field vegetation surveys using visual cover estimates were performed and 112 

photographs were taken on an established plant removal manipulation experiment (Ward et 113 

al. 2013), located on an area of upland blanket bog within Moor House NNR. The plant 114 

removal experiment (Ward et al. 2013) consisted of 1.5 x 1.5 m plots where above-ground 115 

vegetation had been selectively removed to create areas with one, two or all 3 PFTs in all 116 

combinations, giving a total of seven manipulation treatments, each replicated four times 117 

(n=28).  118 

 119 

2.2 Field techniques 120 

A white plastic quadrat measuring 0.5m x 0.5m was placed in each treatment plot, and the 121 

corner positions of the quadrat marked with fixed wooden canes, to ensure accurate repeat 122 

measurements.  For each plot, visual field surveys of cover estimates were carried out and a 123 

digital photograph taken at two dates during the growing season. Digital photographs were 124 

taken using a Nikon Coolpix L3 5.1 Megapixel digital compact camera, mounted on a tripod 125 

with a horizontal boom and spirit level to ensure that the images were taken 1 - 1.2m directly 126 

above the plot. A light meter (Skye Pyranometer Sensor, Skye Instruments, UK) was used to 127 

record light conditions and, wherever possible, images were taken whilst there was cloud 128 

cover and the light meter readings were less than 400 W m-2 in order to avoid shadows. 129 

 130 

For the visual surveys, the percentage cover for each of the three PFTs was estimated by eye 131 

to the nearest 5%, a technique widely used in surveys such as the Countryside Survey 132 

(Maskell et al. 2008). Cover estimates were made on a two dimensional ‘birds eye’ view to 133 
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total 100% cover, so that direct comparison could be made with the photographs. To 134 

investigate the effects of surveyor bias on the accuracy of visual field surveys, we compared 135 

percentage cover estimates of 9 plots from 5 different surveyors. 136 

 137 

2.3 Visual estimate technique using a Fishnet grid  138 

To provide a baseline estimate of PFT percentage cover upon which the results from the 139 

visual field surveys and DIA analysis could be compared, we first analysed each digital 140 

photograph using a fishnet grid technique. This visual estimate technique involved dividing 141 

each photograph into a ‘fishnet grid’ of 100 squares, with each square representing 1% of the 142 

total area.  This grid provided a framework within which vegetation in each 1% square could 143 

then be allocated visually to one of the 3 PFTs, with the standard rule that any square that 144 

was more than half occupied by a functional group was recorded as 1% cover for that group. 145 

As with the visual field surveys, we tested the effect of surveyor bias on the accuracy of this 146 

technique by comparing cover estimates of 9 plots from 5 different surveyors. 147 

 148 

2.4 Digital image analysis techniques 149 

All images were initially standardised using Corel Paint Shop Pro (version X1, Corel 150 

Corporation, Maidenhead, Berks, UK), a commonly available digital photograph editing 151 

software package. Firstly, images were straightened and cropped to the plot boundary to 152 

remove any vegetation from outside the quadrat (final average image resolution was 3.1 mm). 153 

Secondly, the brightness and contrast of the digital photographs were altered in order to 154 

examine whether they affected the accuracy of DIA techniques in estimating PFT cover. We 155 

then analysed the images using two techniques, both of which classified images based on 156 

values of the red, green and blue (RGB) spectrum. One method used the histogram of RGB 157 
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values within the image to identify peaks representing different PFTs; the other used a 158 

supervised classification method. 159 

 160 
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 161 

Figure 1. Original digital image and analyses used; a) visual estimate grid, b) histogram peak 162 

classification and c) supervised classification. 163 
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2.4.1 DIA technique 1 –histogram peak classification method 164 

The first DIA technique is an unsupervised classification method, involving the classification 165 

of images based on clusters of RGB values (‘peaks’) identified in histograms of RGB values. 166 

We used ArcGIS, a widely used geographical information software package, capable of 167 

carrying out digital analysis on raster images in a number of ways.  The resolution of the 168 

image was reduced to pixels of 5cm, thus matching the resolution of the fishnet grid, with 169 

100 squares representing 5cm x 5cm on the ground. Reducing the resolution of the images 170 

helped to minimize the ‘salt and pepper’ effect (Laliberte et al. 2007), where small amounts 171 

of bare ground in between the vegetation were detected.  172 

 173 

We then classified the cells into between 3 and 5 classes representing the different PFTs and 174 

also bare ground and white quadrat where applicable. Within the software, a histogram is 175 

automatically generated from all the RGB colour values within the image.  Each peak in the 176 

histogram represents a distinct colour range found in the image. For example, an image 177 

containing pixels of only 2 colours would have 2 distinct histogram peaks. The assumption is 178 

that each PFT, having a distinct homogenous colour signal, can be identified as a separate 179 

peak in the RGB histogram.  The peaks are separated into classes (or ranges of RGB values), 180 

by setting the range boundaries manually on the histogram.  The software then allows 181 

classification of the image by allocating the individual pixels, based on their RGB value, to 182 

each defined class (or RGB range): bare ground, each of the 3 PFTs and the white plastic 183 

quadrat around the edge of the image. Once classified, the pixel counts for each class enable 184 

the percentage cover per PFT for each image to be calculated. 185 

 186 
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The histogram peaks for each class (RGB ranges) obtained from the single vegetation type 187 

images were then applied in the classification of plots containing mixed vegetation types. 188 

This technique allowed PFTs to be easily defined at a coarse scale.  189 

 190 

2.4.2 DIA technique 2 - supervised classification method 191 

The second DIA technique used a supervised classification method. This was carried out in 192 

ERDAS Imagine, which is typically used in large-scale remote sensing, such as Land Cover 193 

Mapping, using satellite imagery. The method classifies images using several signature areas 194 

for each of the five classes, manually defined by the analyser by selecting pixels representing 195 

each class and saving them as signatures within the software. 196 

Images were classified through the allocation of pixels to classes according to the identified 197 

signatures, using a maximum likelihood classifier, to show the three PFTs. Percent cover of 198 

each PFT was then calculated using the pixel counts per class.  199 

 200 

2.5 Statistical analysis 201 

Statistical analysis was carried out using SAS, Enterprise Guide 4 (version 9.1, SAS Institute 202 

Inc, Cary, NC, US) to compare vegetation cover estimates of PFTs from the different 203 

techniques using general linear models (GLMs). Pairwise t-tests (Tukey-Kramer) were used 204 

to identify significant differences between PFT treatment plots (one PFT, two PFT or all 205 

three PFT) and techniques.  Residuals of all data were plotted to check for normality.  206 

 207 

3 Results 208 

The estimated percentage cover of all PFTs did not differ between survey dates (dwarf-shrubs 209 

(F = 0.39, P = 0.53), graminoids (F = 0.02, P = 0.88) or lower plants (F = 2.87, P = 0.09)), or 210 
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with alteration of image brightness (P = 1).  Survey data from all dates were therefore 211 

combined into one data set. 212 

 213 

Comparison of PFT percentage cover estimated visually in the field by 5 different surveyors 214 

showed that the estimated percentage cover of lower plants differed significantly between 215 

surveyors (F = 4.95, P = 0.002).  In contrast, visual percentage cover estimates under office 216 

conditions using the fishnet grid technique did not differ significantly between surveyors for 217 

any of the 3 PFTs. This supports our assumption that visual percentage cover estimates under 218 

non-field conditions using a photo and grid reduces variation between surveyors relative to 219 

estimates carried out in the field. 220 

 221 

When comparing percentage cover estimates of all PFT from each technique from all plots, 222 

the ability of traditional and digital survey techniques to accurately estimate percentage cover 223 

of PFTs (when compared to the fishnet grid), was dependent on the PFT in question (Figure 224 

2). For dwarf-shrubs, visual field surveys significantly underestimated cover (F = 3.69, P = 225 

0.015 respectively), whereas both DIA techniques gave percentage cover that did not differ 226 

significantly from fishnet estimates. For graminoids, visual field surveys and both DIA 227 

techniques gave percentage cover estimates that did not differ significantly from the fishnet 228 

technique (F = 2.32, P = 0.081). For lower plants, visual field surveys and both DIA 229 

techniques gave significantly greater percentage cover estimates than the fishnet technique in 230 

single PFT plots (F = 4.3, P = 0.007), with large variations between techniques (64% for 231 

visual surveys, 110% for histogram peak classification and 25% for supervised 232 

classification). The ability of all techniques to accurately estimate the percentage cover of a 233 

single PFT was influenced by the presence or absence of other PFTs in the surveyed plot 234 

(Figure 3). For dwarf-shrubs, absence of other PFTs resulted in underestimation of this shrub 235 
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cover in visual field surveys (F = 3.4, P = 0.032). Graminoid percentage cover was not 236 

influenced by the presence or absence of other PFTs, whereas lower plant percentage cover 237 

was overestimated in the absence of the other PFT when measured using the histogram peak 238 

classification (F = 4.47, P = 0.0113).  239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 
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 251 

Figure 2.  Comparisons of vegetation cover estimated using the visual field survey, histogram peak 252 

classification and supervised classification techniques for each of the three plant functional groups, 253 

shown as percentage difference compared with vegetation cover estimated by the baseline fishnet grid 254 

technique.  Data shown are taken from analysis of all plots using all techniques. Values are means +/- 255 

standard error. 256 
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 257 
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Figure 3.  Vegetation percent cover estimated by all four techniques, split between field plant 258 

manipulation treatments.  a) Dwarf-shrubs, b) Graminoids, c) Lower plants.  (Figures are means +/- 259 

standard error). 260 

 261 

4 Discussion 262 

Evidence that vegetation composition impacts on ecosystem processes highlight the vital 263 

need to monitor vegetation change over time, and therefore, the need for standardised 264 

accurate monitoring techniques. Our aim was to develop repeatable and accurate methods of 265 

quantifying vegetation cover to PFT level on a 0.5m x 0.5 m scale on a peatland ecosystem 266 

using DIA techniques.  We found that the DIA techniques tested (histogram peak 267 

classification and supervised classification) were both effective ways of estimating percent 268 

cover for the three peatland PFTs. Both techniques worked best for dwarf-shrubs and 269 

graminoids, but were less effective for lower plants.    270 

 271 

Traditional field survey techniques tend to be time consuming and may be biased by surveyor 272 

efficiency or fatigue, and adverse weather conditions (van Hees and Mead 2000). However, 273 

in studies that only require recording to the level of plant functional types, there is potential 274 

to use coarser scale digital image analysis, which do not require the same level of botanical 275 

expertise, but are easily repeatable and accurate. Plant removal experiments, such as the one 276 

used in this study, are not only ecologically valuable, by providing information on the role of 277 

diversity and individual PFTs on ecosystem processes (Diaz et al. 2003); they are also ideal 278 

for testing the practicality of using digital imaging techniques for estimating vegetation cover 279 

to PFT scale. For example, the three PFT studied here, have distinct and homogenous RGB 280 

signatures, thus making the classifications used in this study easier to define.  281 

 282 
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As the fishnet grid technique used in this study uses visual estimation in the same way as the 283 

traditional field surveys, but in a controlled environment, and using a calibration grid, it 284 

removes some of the factors that can cause bias (such as weather conditions and surveyor 285 

fatigue). For these reasons, the assumption was made that this technique was the most 286 

accurate technique tested in this study; and therefore taken as the baseline against which other 287 

techniques were measured. Our data support this assumption by showing that observations 288 

from five different surveyors were more variable in the field than those carried out with the 289 

fishnet grid.  290 

 291 

The accuracy of the DIA techniques tested did not differ between survey dates and light 292 

conditions, but was dependent on the PFTs present. The consistency in accuracy of the DIA 293 

techniques between survey dates and light conditions suggests that these techniques are 294 

repeatable at this site, hence fulfilling one of our main aims. However, it should be noted that 295 

both DIA techniques required classification criteria to be defined for each survey date and as 296 

stated previously, photographs for DIA analysis should be captured in stable light conditions 297 

(Rasmussen et al. 2007) and where possible below 400 W m-2 to prevent shadows. In 298 

situations where it is not possible to capture all photographs in stable light conditions, use of 299 

a flash (Laliberte et al. 2007) or manual shading using an umbrella may reduce shadowing. In 300 

contrast to date and light conditions, the accuracy of DIA techniques was influenced by the 301 

individual PFT in question as well as the presence/absence of other PFTs in the surveyed 302 

plot. There was no difference in the accuracy of PFT cover estimates using DIA techniques 303 

on the complex survey plots containing two or three PFT. However, it was more difficult to 304 

carry out the histogram peak classification in plots containing 2 or all 3 PFTs as there was 305 

some overlap in the colours of the plant tissues between PFTs and it was thus more difficult 306 

to determine the boundaries between the different RGB value peaks in the histogram. 307 
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Contrary to expectation, differences in the percentage cover of shrubs and lower plants were 308 

detected in the simple single PFT plots. Traditional visual field surveys were less accurate 309 

than DIA techniques in estimating dwarf-shrub cover in the absence of other PFTs, 310 

highlighting a limitation of this technique. The underestimation of dwarf-shrubs cover in 311 

these single PFT plots by the visual survey technique was probably due to observer bias, i.e. 312 

surveyors may have perceived these plots as simple to survey, therefore taking less time to 313 

survey them accurately, or alternatively may have found the long cover of stemmed shrub 314 

vegetation difficult to estimate due to its scattered nature (Dethier et al. 1993, Torell and 315 

Glimskar 2009).  DIA techniques showed large variation in cover estimates of lower plants, 316 

suggesting that the techniques differ in ability to distinguish mosses from bare ground, and 317 

thus highlighting the difficulty of quantifying cover of this PFT. There are several possible 318 

reasons for the large variation between techniques in estimating moss cover.  Firstly, lower 319 

plants are the most diverse PFT in peatlands (Lang et al. 2009), with high interspecific 320 

variation in growth forms and tissue colouration. A greater amount of moss, lichen and 321 

liverwort were visible in the single PFT plots relative to the mixed PFT plots. Variations in 322 

colour and textures were, therefore, more pronounced in these single PFT plots. Secondly, 323 

lower plants were the most variable in cover between surveyed plots, and had the smallest 324 

contribution to total vegetation when all three groups were present.  Lastly, this PFT occupied 325 

a large area underneath the canopy of the other PFT, which was not captured by the 2D 326 

digital images, resulting in possible underestimation of this PFT from DIA techniques.  327 

 328 

The DIA techniques studied here revealed a trade-off between accuracy (supervised 329 

classification) and speed (histogram peak classification). Once the time consuming process of 330 

selecting colour bands for each PFT has been carried out, histogram peak classification is 331 

repeatable for a large number of images captured on the same day and containing the same 332 
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PFT in a short period of time (approx. 4-5 minutes per photograph). In contrast, supervised 333 

classification is only easily repeatable if the training signatures used are identical between 334 

images. This is rarely possible and therefore training signatures have to be selected for each 335 

image, making this technique slow, taking approx. 20-30 minutes per photograph. Whilst the 336 

supervised classification method provides more accurate estimations due to finer resolution 337 

classification based on the original photograph pixels, and signature areas allowing variability 338 

in colour per class can be included in this method, this method is more time intensive. The 339 

greater time required for the supervised classification technique compared with the histogram 340 

peak classification is disadvantageous, particularly when analysing complex vegetation plots 341 

such as those with a large number of mixed PFT and lower plants. In addition, the process of 342 

selecting signature areas for each PFT in this software requires prior knowledge and observer 343 

involvement, therefore introducing possible observer bias and subjectivity. Due to the 344 

sensitivity of the supervised classification, extra detail such as twigs and other debris that 345 

histogram peak classification or other less sensitive techniques would broadly classify as bare 346 

ground are detected, therefore signature areas are required for these additional details, adding 347 

to the time required for this technique.  348 

 349 

The plots surveyed in this investigation showed a large amount of variation over a small scale 350 

for the more sensitive method of supervised classification, making it impractical for large-351 

scale surveys such as ECN and ILTER studies. However, the histogram peak classification 352 

method provides a quick and easy to use technique, which could be used in these large-scale 353 

studies. Both the histogram peak classification and the supervised classification methods 354 

could be used in long term surveys, such as Countryside Survey, which are repeated on a 7-355 

10 year timescale, because they both use methods that require repeat selection of 356 

classification criteria (i.e. histogram peaks and training areas) for repeat surveying. Indeed, 357 
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current repeated surveys such as the Land Cover Map use a classification method very similar 358 

to the supervised classification technique described here, albeit on a larger scale (Morton et 359 

al., 2011). There would be limitations related to the complexity of vegetation community 360 

composition, since neither technique would be suitable for species-rich swards such as high 361 

diversity grasslands, where there is less variation in the colour spectrum of PFTs.  However, 362 

we suggest that this novel use of digital imaging analysis offers a valid alternative to manual 363 

surveying of less species-rich systems with distinct PFTs. 364 

 365 

5. Conclusion 366 

Our study illustrates a novel application of digital methods for measuring and monitoring 367 

peatland vegetation to PFT level, which can be both more accurate and more time efficient 368 

than visual field surveys, and, in the case of one of the techniques, highly repeatable. Of the 369 

two DIA techniques tested, the supervised classification showed a higher degree of accuracy 370 

when compared with visual estimates. However, in view of the greater amount of time 371 

required to operate this system, we conclude that the histogram peak classification would be 372 

the most suitable technique to develop and automate for widespread use in monitoring 373 

vegetation change.  We suggest that the high degree of repeatability, and the lack of specialist 374 

equipment required, make DIA techniques a useful tool for use on long-term monitoring sites 375 

where broad-scale vegetation surveys are required. 376 

 377 
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